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Abstract— Multivariate variable-length sequence data are
becoming ubiquitous with the technological advancement in
mobile devices and sensor networks. Such data are difficult to
compare, visualize, and analyze due to the nonmetric nature of
data sequence similarity measures. In this paper, we propose
a general manifold learning framework for arbitrary-length
multivariate data sequences driven by similarity/distance
(parameter) learning in both the original data sequence space
and the learned manifold. Our proposed algorithm transforms
the data sequences in a nonmetric data sequence space into
feature vectors in a manifold that preserves the data sequence
space structure. In particular, the feature vectors in the manifold
representing similar data sequences remain close to one another
and far from the feature points corresponding to dissimilar data
sequences. To achieve this objective, we assume a semisupervised
setting where we have knowledge about whether some of data
sequences are similar or dissimilar, called the instance-level
constraints. Using this information, one learns the similarity
measure for the data sequence space and the distance measures
for the manifold. Moreover, we describe an approach to handle
the similarity search problem given user-defined instance level
constraints in the learned manifold using a consensus voting
scheme. Experimental results on both synthetic data and real
tropical cyclone sequence data are presented to demonstrate the
feasibility of our manifold learning framework and the robustness
of performing similarity search in the learned manifold.

Index Terms— Application, embedding, feature extraction,
isometric feature mapping (ISOMAP), longest common
subsequence (LCSS), metric learning, similarity learning,
similarity search, tropical cyclone.

I. INTRODUCTION

MANY applications require comparing sequence data,
including financial time series, audio sequences,

and DNA sequences. With the advent of modern mobile
technology, we are collecting more complex multivariate data
sequences for pattern mining and analysis. For example, one
might measure the similarity of multidimensional trajectories
of moving objects or extract patterns from multiple sensors
at various locations over time. The multivariate and
variable-length nature of such data sequences makes their
comparison and analysis challenging. In particular,
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conventional notions of similarity or distance between
two data sequences (of different length, see Section III-A) are
not metric. In many cases (if not all), the triangle inequality
property is not valid in the data sequence space with
such conventional distance measures. Without the triangle
inequality, convergence theorems for metric spaces cannot be
used for data sequences.

In this paper, we propose a framework to embed multivariate
arbitrary-length data sequences into a manifold (Section II).
Our proposed algorithm transforms the data sequences in
a nonmetric data sequence space into feature vectors in a
manifold that preserves the data sequence space structure.
In particular, the feature vectors in the manifold representing
similar data sequences remain close to one another and
far from the feature points corresponding to dissimilar
data sequences. To achieve this objective, we assume a
semisupervised setting. In this setting, we have knowledge of
the similarity (or dissimilarity) of sequences within a subset
of data, called the instance-level constraints [1]. Using this
information, one learns the similarity measure for the data
sequence space and the distance measures for the manifold.
Fig. 1 shows an example of tropical cyclone trajectory data
(wind intensity and pressure not known) projected into the
learned manifold. One observes that those in close proximity
in the data sequence space remain close in the manifold. The
four solid line trajectories correspond to the four circle rep-
resentations in the manifold. The two dotted line trajectories
correspond to diamond representations in the manifold.

To demonstrate the usefulness of the learned manifold, we
propose a solution for similarity search in the learned mani-
fold. Our approach allows a user query such as “List all tropi-
cal cyclones that are similar to tropical cyclones s1, s2, . . . , sk

and dissimilar to tropical cyclones d1, d2, . . . , dl .” This
user query requires the user to specify the tropical cyclones
represented by multivariate variable-length sequences as
the instance-level constraints. It enables users to perform:
1) event data sequence clustering or categorizing based on
knowledge of limited number of events and 2) similar events
identification for data retrieval and analysis. For example, a
scientist provides the query system with a small set of tropical
cyclones that have similar trajectories and wind intensity time
series but traveling at different speeds; the system then returns
tropical cyclone events from the past 20 years that exhibit
similar characteristics and related satellite data for further
analysis.

The outline of this paper is as follows. In Section II,
we motivate and describe the manifold-learning problem for
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Fig. 1. Projecting multivariate arbitrary-length tropical cyclone trajectory
sequences into the learned 3-D manifold. Feature values (e.g., wind intensity
and pressure) are not shown.

data sequences. In Section III, we describe our proposed
approach in detail and some needed background knowledge.
In Section IV, we first describe the tropical cyclone data
sequences from 2000 to 2008 used in the similarity search
problem. Then, we describe how multivariate variable-length
synthetic data are generated based on the tropical cyclone data
sequences for the analysis of our proposed manifold-based
similarity search approach. Experimental results are then pre-
sented to demonstrate the feasibility of our manifold learning
framework and the robustness of performing similarity search
in the learned manifold.

II. MANIFOLD LEARNING FOR DATA SEQUENCES

Conventional manifold learning refers to nonlinear
dimensionality reduction methods based on the assumption
that [high dimensional] input data are sampled from a smooth
manifold [2], so that one can embed these data into the
[low dimensional] manifold while preserving some structural
(or geometric) properties that exist in the original input
space. This smooth manifold is a space that locally resembles
a Euclidean space Rn . However, note that in practice, a
manifold is nothing more than the underlying support of a data
distribution, which is known only through a finite sample [3].
An embedding is a representation of a (topological) object
(such as a manifold or a graph) in a certain space [· · · ], such
that its (topological or structural) properties are preserved [3].

Some of the more representative manifold learning
algorithms (see [2] and references therein) are the
isometric feature mapping (ISOMAP) [4], the locally linear
embedding (LLE) [5], and the Laplacian eigenmaps [6].

Recently, Lin et al. [7] proposed a dimensionality
reduction approach that seeks an embedding function
whose gradient field is close to the parallel field relating
to local isometric property in the data manifold. Manifold
representations have been used in applications related to
image pattern recognition [8], speech recognition [9], and
text classification [10]. Li et al. [11] proposed understanding
the dynamical process from video sequences in a manifold
motivated by Lin et al. [12] on embedding a time series in
another time-series manifold focusing on temporal correlation.

The general manifold learning framework proposed in
this paper is as follows. Given a finite set X consisting
of multivariate arbitrary-length data sequences that are
partitioned into similar data sequence set S′ and dissimilar
data sequence set D′, we learn a mapping

f : (X, d1) → (M, d2)

such that d1 is the learned similarity measure used in X and d2
is a learned distance metric used in M , a low-dimensional
(learned) manifold. Before performing similarity search given
the instance-level constraints and a set of unlabeled data
sequences U , we learn a mapping

g : (X ∪ U, d1) → (M ′, d2)

such that d1 and d2 are previously learned, and M ′ is a
low-dimensional manifold. In addition, g and f preserve
the same structural property induced by X . In particular, the
representations of data sequences in S′ should be close to
one another and far away from the representations of data
sequences in D′ in both M and M ′. Note that M and M ′ do
not need to be the same metric space. While any conventional
nonlinear dimensionality reduction approach (see [2]) can be
used in the data sequence embedding, we use the distance
preserving ISOMAP [4] in our discussion. It is an extension
of linear embedding approaches (e.g., multidimensional
scaling (MDS) [13]), which learns the global nonlinear
geometric structure of the input data [4]. One capability
of ISOMAP is its ability to discover nonlinear degrees of
freedom that underlie complex natural observations, such as
the trajectories and feature attributes of tropical cyclones.

In our problem, we assume that there exists some intrinsic
low-dimensional manifold that the data sequence space can be
projected onto. One main challenge for tasks related to data
sequences is the nonmetric nature of the similarity measures,
especially when one considers multivariate arbitrary-length
data sequence comparison. However, based on [14], the
estimated geodesic distance between two points in the
original data sequence space (induced by X) converges
to the true geodesic distance between the two points in
M . Hence, the MDS step in ISOMAP will asymptotically
recover the embedded (Mahalanobis) data structure [14].
By incorporating the dimensionality reduction step into
similarity learning (Section III-C), we ensure that similarity
learning is performed in a fixed dimensional metric space
that preserves the nonlinear geometric structure of the data
sequence space. This nice property ensures that the similarity
measure learned is robust to variation in user-defined similar
data sequences. In other words, the learned similarity measure
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can still distinguish similar and dissimilar data sequences
accurately as the feature and spatiotemporal variations
increase for the user-defined similar data sequences. The
fine-tuning of the nonmetric similarity measure needed for
the neighborhood graph construction ensures that we have
a manifold that preserves the structure in the original space
defined by the user-defined instance-level constraints. This is
achieved through the use of supervised metric learning.

III. METHODOLOGY

In Section III-A, we review similarity measures for data
sequences. In particular, we provide background information
about the longest common subsequence (LCSS) similarity
measure. In Section III-B, we describe the soft longest
common (SLC) subsequence similarity measure for data
sequences used in our proposed algorithm. In Section III-C,
we describe and discuss our proposed data sequence manifold
learning approach given the instance-level constraints in
detail. In Section III-D, we describe and discuss the data
sequence similarity search in the learned manifold in detail.

A. Similarity Measures for Data Sequences

Many similarity measures have been proposed for data
sequences (see [15] and references therein). The two main
categories are the L p-norm-based similarity measures and the
elastic similarity measures. The former similarity measures are
metric, but they assume fixed length data sequences and do not
support local time shifting. The latter can be used to compare
arbitrary-length data sequences and support local time shifting
but they are not metrics. The common L p-norm-based
similarity measures use L1, L2, or L∞ norm. The classical
elastic measure that is first used to overcome the weakness
of L p norms is the dynamic time warping (DTW) [16].
The LCSS-based similarity measure was proposed to handle
2-D and 3-D arbitrary-length data sequences. The LCSS-based
similarity measure is robust to noise and give more weight to
the similar portion of the sequences [17]. The edit sequence
on real sequence is robust to noise, shifts, and scaling of
data [18]. Both time warp edit distance (TWEP) [19] and
Edit Distance with Real Penalty (ERP) [20] (which combines
L1-norm and the edit distance) support local time shifting and
they are metrics. However, both ERP and TWEP are derived
for 1-D time series. Recently, Buchin et al. [21] and Liu and
Schneider [22] proposed using additional context or semantic
information for similarity analysis of trajectory sequence data.

It has been empirically shown that no single similarity
measure outperforms others for time series [15]. For the
purpose of neighborhood graph construction in manifold
learning, one could use any similarity measure that supports
local time shifting and multivariate data sequence. In this
paper, we use a variant of LCSS-based similarity measure.
First, we generalize the LCSS-based similarity measure [17],
an edit distance-based elastic similarity measure, to
multivariate data sequences. Consider two arbitrary-length
multivariate spatiotemporal data sequences

A = 〈(ta,1, a1,1, . . . , am,1), . . . , (ta,n, a1,n, am,n)〉
B = 〈(tb,1, b1,1, . . . , bm,1), . . . , (tb,l , b1,l, . . . , bm,l)〉

with m attributes and of length n and l, respectively. Define
the similarity function M1 between A and B , given δ and
E = (ε1, ε2, . . . , εm), by

M1(A, B, δ, E) = LCSSδ,E (A, B)

min(|A|, |B|) (1)

with the generalized LCSS defined by

LCSSδ,E (A, B)

=

⎧
⎪⎪⎨

⎪⎪⎩

0, |A| × |B| = 0
1 + LCSSδ,E (H (A), H (B)), ck > 0, |ti − t j | < δ
max{LCSSδ,E (H (A), B),

LCSSδ,E (A, H (B))}, otherwise
(2)

such that H (A) is the sequence 〈(ta,1, a1,1, . . . , am,1), . . . ,
(ta,n−1, a1,n−1, am,n−1)〉 for any data sequence A of length n
and

C =
⎛

⎜
⎝

c1
...

cm

⎞

⎟
⎠ =

⎛

⎜
⎝

e1 − |a1,ti − b1,t j |
...

em − |am,ti − bm,t j |

⎞

⎟
⎠

for some predefined δ and E .

B. Soft Longest Common Subsequence

To better reflect the similarity between multivariate data
sequences, we further extend the generalized LCSS-based
similarity measure to the SLC subsequence. The classical
LCSS is a kind of hard-decision encoder. In other words, the
LCSS similarity measure counts each similar data (point) pair
as 1 when the constraints C and |ti − t j | < δ are satisfied
[see 1 + LCSSδ,E (H (A), H (B)) in (2)].

This leads to a common hard-/soft-decision problem. For
example, given two pairs of data points, (a1,ti , b1,t j ) with
{ck = 0.1, |ti − t j | < δ} and (a′

1,t ′i
, b′

1,t ′j
) with {c′

k = 10,

|t ′i − t ′j | < δ}, obviously (a1,ti , b1,t j ) should be closer than
(a′

1,t ′i
, b′

1,t ′j
). However, due to 1 + LCSSδ,E (H (A), H (B))

in (2), they are quantitatively similar. Hence, we modified the
LCSS similarity counting process such that each new count
takes on a value between 0 (exclusive) and 1 (inclusive) as
follows:
SLCδ,E (A, B)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, |A| × |B| = 0
min

(
1 − ck

ek
, 1

)

+ SLCδ,E (H (A), H (B)), ck > 0, |ti − t j | < δ
max{SLCδ,E (H (A), B),

SLCδ,E (A, H (B))}, otherwise
(3)

this modification gives more credits to those more similar pairs
(i.e., ck ≈ ek), while the less similar pairs (i.e., ck ≈ 0 or
ck < 0) are assigned smaller values. This extra information
provides more reliable similarity count for each data point,
and therefore, better reflects the true similarity between two
multivariate data sequences. In particular, in the presence
of corrupted/noisy data, a soft-decision approach generally
performs better than its hard-decision counterpart [23], [24].
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Similar to (1), we define the similarity function M2 between
A and B , given δ and E = (ε1, ε2, . . . , εm), by

M2(A, B, δ, E) = SLCδ,E (A, B)

min(|A|, |B|) . (4)

To have good performance, the parameters δ and E have to
be tuned according to the specific application. One concludes
from Example 1 that the LCSS-based similarity measure M1
and SLC-based similarity measure M2 are sensitive to the
parameters δ and E . Moreover, M2 shows more variability
in the similarity values than M1 (compare Example 1.2 and
Example 1.3). When exact matching is required [δ = 0 and
E = (0)], M1 and M2 similarity measures are identical
(see Example 1.4). In addition, note that both similarity mea-
sures can have similar data point correspondence (or pairing).

Example 1: Given two variable sequences, A =
〈(0a,1, 01,1), (0.5a,2, 11,2), (1a,3, 31,3), (1.5a,4, 11,4)〉
and B = 〈(0b,1, 11,1), (1b,2, 21,2), (2b,3, 11,3)〉, where
d = 1 and m = 0.

1) δ = 1 and E = (0.5).
LCSSδ,E (A, B) = 2; M1(A, B, δ, E) = 0.67.
SLCδ,E (A, B) = 2; M2(A, B, δ, E) = 0.67.
Possible correspondence: 11,2 → 11,1, 11,4 → 11,3.

2) δ = 1 and E = (1).
LCSSδ,E (A, B) = 3; M1(A, B, δ, E) = 1.
SLCδ,E (A, B) = 1; M2(A, B, δ, E) = 0.33.
Possible correspondence: 01,1 → 11,1, 11,2 →
21,2, 11,4 → 11,3.

3) δ = 1 and E = (1.5).
LCSSδ,E (A, B) = 3; M1(A, B, δ, E) = 1.
SLCδ,E (A, B) = 1.67; M2(A, B, δ, E) = 0.56.
Possible correspondence: 01,1 → 11,1, 11,2 →
21,2, 11,4 → 11,3.

4) δ = 0 and E = (0).
LCSSδ,E (A, B) = 0; M1(A, B, δ, E) = 0.
SLCδ,E (A, B) = 0; M2(A, B, δ, E) = 0.

C. Similarity Parameter Learning for
Data Sequence Embedding

1) Algorithm Description: One can easily embed data
sequences based on the construction of a neighborhood graph
using the SLC-based similarity measure M2 with any para-
meters E and δ, and then apply a manifold learning approach.
Here, we utilize some limited side information (user-defined
instance-level constraints [1]) to obtain a better embedding
such that the (unseen) similar data sequences are in close
proximity in the manifold. This is achieved using a learning
approach to learn the parameters of M2.

Distance metric learning [25]–[28] aims to learn a distance
metric (parameters) for the input data space from a collection
of similar/dissimilar points. This learned distance metric pre-
serves the distance relation among the training data. However,
not all similarity functions satisfy the metric properties.
Moreover, it has been shown empirically that nonmetric
similarity functions have better performance than the
metric similarity functions for problem, such as similarity
search problem for time series or data sequences [15].

Recently, a hashing approach has been proposed that considers
the learned Mahalanobis distance metric for scalable similarity
search on image and systems data sets [29]. Yu and Gertz [30]
proposed learning the DTW distance by the direct application
of Xing et al.’s [25] approach on the Mahalanobis distance
with the two trajectories interpolated to the same length in
the input space.

Most metric learning methods attempt to learn a distance
metric from side information, which is often available in the
form of pairwise constraints; that is, pairs of similar data
points and pairs of dissimilar data points. The information
of similarity or dissimilarity between a pair of examples can
easily be collected from the label information in supervised
classification. The most intuitive learning approach to use for
our problem is the one proposed by Xing et al. [25]. In their
approach, the metric learning problem is posed as a convex
optimization problem with the constraints given by the must-
link data pairs and cannot-link data pairs. The objective is
to find the matrix representing the Mahalanobis metric that
allows the similar data points close to one another and the
dissimilar data points far away from the similar data points.

The main differences in the problem setting are: 1) the use
of SLC-based similarity M2 (that do not satisfy all the metric
properties) during the neighborhood graph construction and
2) the arbitrary-length multidimensional data sequence pair
constraints in the original data sequence space. Moreover,
the optimization step has to be modified for the integer time
parameter δ in SLC. Our proposed algorithm can handle
flexible length sequence comparison.

Xing et al.’s metric learning framework is extended to learn
parameters of nonmetric similarity for generic (arbitrary length
and multidimensional) data sequences and distance metric in
the learned manifold simultaneously. A dimensionality reduc-
tion component is integrated into the Xing et al.’s framework
to facilitate metric learning in a fixed low dimensional metric
space induced by the nonmetric M2 for neighborhood graph
construction. Let fM2 be a mapping from the data sequence
space to a fixed low-dimensional space M induced by M2. Let
S and D be the set of must-link pairs and the set of cannot-
link pairs, respectively. To perform the parameter learning
for similarity and distance measures, we use a variant of the
objective function introduced in [25] as such

min
E,δ

∑

(xi ,x j )∈S

d(xi , x j )
2

s.t.
∑

(xi ,x j )∈D

d(xi , x j ) ≥ 1 P > 0 (5)

where S and D are similar set and dissimilar set, respectively;
P = (ε1, ε2, . . . , εm , δ) ∈ (R+)m ×Z+ is the parameter vector
for SLC in the data sequence space and

d(xi , x j ) =
√

[ fM2(xi ) − fM2(x j )]T A[ fM2(xi ) − fM2(x j )]
is the Mahalanobis distance metric for a manifold M and A is
a positive semidefinite matrix. There are two main reasons for
the constraint

∑
(xi ,x j )∈D d(xi , x j ) ≥ 1. First, it helps to ensure

that dissimilar sequences are far away. Second, it prevents a
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Algorithm 1 Data Sequence Similarity Parameter and
Manifold Learning

Input: S′, similarity set; D′, dissimilar set; K .
Output: Manifold, M; Parameters: P , A
1: Initialize P := [0.1, . . . , 0.1, 1], A = I , the identity

matrix;
2: Construct the “must-link” pair set, S and

“cannot-link” pair set, D using S′ and D′;
3: Compute the K−nearest neighbor graph using M2

defined by P for data sequences in S′ and D′;
4: Compute the shortest path distance between all data

sequences using Dijkstra’s algorithm and M2 defined
by P;

5: Apply MDS to construct a fixed low dimensional
manifold M;

6: Compute the Mahalanobis distances for data sequence
pairs in S and in D, separately in M;

7: Compute objective function (6);
8: Update P or A;
9: Repeat Step 3 to 8 until |gi+1 − gi | < γ ;

trivial solution such that the data sequence space converges to
a single point.

Solve the unconstrained minimization problem

g(S, D, P, A) =
∑

(xi ,x j )∈S

d(xi , x j )
2

− log

⎛

⎝
∑

(xi ,x j )∈D

d(xi , x j )

⎞

⎠

−
m∑

j=1

log ε j − log δ. (6)

The additional terms are used to control the magnitude of
parameter vector P .

The coordinate descent method [31] is used for the
minimization step to avoid gradient computation for P .
g(·) is minimized along one coordinate direction at each itera-
tion. In our implementation, the coordinate is selected based on

arg min
Pi∈I

g(S, D, Pi , A) (7)

such that I = {Pi = (εk
1 , . . . , εk+1

i , . . . , εk
m , δ)|εk+1

i =
εk + hi ei }, ei is the i th unit vector and hi is a fixed small
value. We fix δ and A and allow search in εi space first
for all i . When the global minimum (at fixed δ and A) is
achieved at P∗, we optimize A using the gradient approach
in [25] at fixed δ and P∗. When a global minimum is reached,
we perform minimization with step size 1 on δ. Initialization
of P starts near the zero vector and A = I such that I is
the identity matrix. One notes that as εi and δ increase, the
similarity value between two data sequences increases.

Algorithm 1 provides a high-level description of the simi-
larity parameters (P and A) and manifold learning procedure.
In Step 2, we construct the must-link pairs by pairing up all
the data sequences in the set S′ of similar data sequences.

Hence, |S| = |S′|(̇|S′| − 1)/2. To construct the cannot-link
pairs, the data sequences in the set D′ of dissimilar data
sequences are all paired up first. Then, each data sequence
in S′ is paired with all the data sequences in D′. Hence,
|D| = |D′|(̇|D′| − 1)/2 +|S′| · |D′|. One does not need a data
sequence in D′ to be dissimilar to the other data sequences
in D′. However, in this paper, we assume that data sequences
in S′ to be close together, and data sequences in D′ to not only
far from data sequences in S′ but also data sequences in D′
to be spaced out. To remove this assumption, one may have
data sequences in D′ close together forming clusters, which
we want to avoid when performing parameter learning.

Lines 3 to 5 are the steps for the ISOMAP algorithm.
Step 3 computes the K -nearest neighbor graph using M2
defined by P for the data sequences in S′ and D′. Step 4
computes the geodesic distance between all data sequences
using Dijkstra’s algorithm and M2 defined by P . Step 5
constructs the low-dimensional manifold M using MDS.
Lines 7 computes the objective function (6). Line 8 updates the
P parameter or A parameter depending on the earlier described
implementation of the coordinate descent method. Line 9 is the
stopping criterion based on the absolute difference between
two consecutive objective function values, gi+1 and gi .
Algorithm 1 halts when the criterion value is less than γ.

2) Computational Complexity: The computational
complexity of Algorithm 1 is analyzed by breaking it down
into three components: 1) dissimilarity matrix construction
by computing M2 values for all sequence pairs (Step 3);
2) ISOMAP (Steps 4 and 5); and 3) the coordinate
descent method (Steps 6–8). Based on [17, Lemma 1],
the (dis)similarity matrix construction can be computed in
O(s2δl), where s is the number of data sequences and
l = 2 max(l1, . . . , ls), li , i = 1, . . . , s are the sequence
lengths. For the ISOMAP algorithm, the computational
complexity is O(s3). The convergence rate of the coordinate
descent method is similar to steepest descent. Even though this
can be perceived to be slow, it is still effective for practical
purposes [31]. Note that the convergence rate for the gradient
approach in [25] is faster than the coordinate descent method.
During each iteration, one needs to construct the dissimilarity
matrix only once and run the ISOMAP algorithm. From an
implementation perspective, dissimilarity matrix construction
(Step 3) is the most expensive step as s < l and δ ≥ 1. Here,
s < l as the number of user-defined data sequences for the
similarity query is assumed to be limited.

The neighborhood graph is generated using M2. It has to
be noted that for each iteration only part of the similarity
distance values (M2) change. This is because SLC tolerates
certain amount of mismatch between the comparison pairs
[see (3)]. The parameters, δ and E in (4), are used to tune
the amount of mismatch the similarity measure can tolerate.
Therefore, the topology of the neighborhood graph changes
gradually as the algorithm iterates. Thus, we do not necessarily
need to repeatedly construct the entire neighborhood graph.
The changes in the neighborhood graph can be interpreted
as either an insertion of new edges or a removal of existing
edges in the neighborhood graph. Previous studies [32], [33]
have discussed the dynamic shortest path updating algorithms
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Algorithm 2 Data Sequence Voting-Based Similarity
Search on a Manifold M ′
Input: S′, similarity set; U ′, the set of unlabeled data

sequences; P and A, learned parameters; C ,
user-defined ranking cut-off; K .

Output: O, the set of similar data sequences.
1: Compute the K−nearest neighbor graph using M2

defined by P for data sequences in S′ and U ′;
2: Compute the shortest path distance between all data

sequences using Dijkstra’s algorithm and M2 defined
by P;

3: Apply MDS to construct a fixed low dimensional
manifold M ′;

4: Compute Mahalanobis distance vector Ds = {dsu}|U
′|

u=1

dsu = ||s − u||A

for each s ∈ S′, ∀u ∈ U ′ in M ′;
5: D̄s = sort(Ds) = {dūs1, . . . , dūsC , . . . , dūs|U ′ | }

such that dūs1 < dūs2 < · · · < dūsC < · · · < dūs|U ′ | ,
for each s ∈ S;

6: R = {ūsi |ūsi ∈ U ′, dūsi ≤ dūsC , s ∈ S′};
7: Nu = #{v ∈ R : v = u} for all u ∈ U ′;
8: O = {u|u ∈ U ′, Nu > |S ′|

2 };

that deal with these graph changes. For practical applications
such as the similarity search task in Section III-D, one can
store the learned parameters. Then, one progressively updates
the parameters as more data sequences become available.
Therefore, the computational complexity for Algorithm 1
would be nearly the same as that for ISOMAP. Applying steps
similar to incremental ISOMAP [32]–[34] in our proposed
algorithm can further improve its computational complexity.

D. Data Sequence Similarity Search in the Manifold

To select the most similar data sequences from a set U of
unlabeled data sequences, we use a voting scheme that polls
from the data sequences in the similar set S′ in the manifold
using the Mahalanobis distance with the learned parameter
matrix A. Note that the manifold is constructed based on
the neighborhood graph using the SLC-based similarity and
the learned parameter vector P . The voting scheme is a
combination of ranking the unlabeled data sequences and a
majority vote decision based on the ranking. For each data
sequence s ∈ S′, the unlabeled data sequences in U ′ are
ordered based on their Mahalanobis distances from s. If an
unlabeled data sequence u ∈ U ′ is ranked as among the C most
similar (or closest) data sequences to s, it will receive a vote
from s. If u received more than |S′|/2 votes, it is considered
similar to the data sequences in S′.

Algorithm 2 shows our voting approach for similar data
sequences selection using Mahalanobis distance in the
manifold M derived from the neighborhood graph using the
learned SLC-based similarity measure M2 from Algorithm 1.
Lines 1–3 are the steps for the ISOMAP algorithm using the
learned SLC-based similarity measure M2. Line 4 computes

the Mahalanobis distances from all the unlabeled data
sequences in U ′ to each data sequence in the similar set S′
in the manifold M . Line 5 sorts and ranks the unlabeled data
sequences for each data sequences in S′ using the computed
Mahalanobis distances in Step 4. Line 6 gathers the C most
similar unlabeled data sequences for each data sequence
in S′ into a single set. Line 7 counts the number of times an
unlabeled data sequence is among the top C unlabeled data
sequences closest to each data sequence in S′. Line 8 is a
voting scheme, which selects a data sequence if it is ranked
among the top C data sequences for more than half the data
sequences in S′.

Other variants of the voting scheme can also be used for
the similarity search. In particular, vote counts can be based
on the C farthest from the data sequences in the dissimilar
set or vote counts based on ranking data sequences from both
similar and dissimilar sets.

IV. EXPERIMENTAL RESULTS

In Section IV-A, we describe the tropical cyclone data set
and how synthetic similar data sequences are generated from
the tropical cyclone data set. In Section IV-B, we show the
feasibility of similarity search (Algorithm 2) in the learned
manifold based on the proposed similarity parameter learning
approach (Algorithm 1) and its robustness to variability in
the instance-level constraints using the synthetic data set and
the tropical cyclone data set. In Section IV-C, we illustrate a
scenario when a user provides a similar tropical cyclone set S′
and a dissimilar tropical cyclone set D′, and uses Algorithm 2
to search for similar tropical cyclones from a set of unlabeled
tropical cyclone data sequences. Preliminary results on tropical
cyclone similarity search were published in [38].

A. Data Set Description

1) Tropical Cyclone Data Set: A tropical cyclone event is
a nonfrontal synoptic scale low-pressure system over tropical
or subtropical waters with organized convection and definite
cyclonic surface wind circulation.1 The frequently used
term hurricane describes a high-intensity tropical cyclone
with sustained surface wind intensity equal or >119 km/h.
Some examples of similarity of interest to scientists and
meteorologists are track similarity [Hurricane Audrey (1957)
and Hurricane Rita (2005)2], strength similarity
(Hurricane Katrina (2005) and Hurricane Camille (1969) [35])
and hurricane origin [Cape Verde hurricanes:
Hurricane Isabel (2003), Hurricane Floyd (1999), and
Hurricane Hugo (1989)3].

A tropical cyclone event data sequence consists of both the
trajectory and the feature attributes. A trajectory is the path a
moving object follows through space and time. It is described
by: 1) spatial attributes (latitude and longitude) and 2)
temporal attributes (year, day, and time). The feature attributes

1http://www.aoml.noaa.gov/hrd/tcfaq/A1.html
2National Weather Service Forecast Office. http://www.srh.noaa.gov/lch/rita/

rita_audrey.php
3National Climatic Data Center (NCDC). Climate of 2003: Comparison

of Hurricane Floyd, Hugo, and Isabel. http://www.ncdc.noaa.gov/oa/climate/
research/2003/fl-hu-is-comp.html
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Fig. 2. Histogram for the data sequence length of tropical cyclones occurring
from 2000 to 2008.

Fig. 3. Relationship between any two attributes in the data sequences for
tropical cyclones occurring in the North Atlantic Ocean from 2000 to 2008.

are: 1) the maximum sustained wind intensity (knots) and
2) the minimum central pressure (millibar). Two consecutive
data vectors in a data sequence are 6 h apart.

One can retrieve tropical cyclone and some subtropical
cyclone event data sequences from the NOAA Coastal Services
Center website4 for both the North Atlantic Ocean and the
Eastern North Pacific Ocean from 1851 to present. For this
paper, 116 tropical cyclones occurring in the Atlantic Ocean
from 2000 to 2008 and synthetic data sequences generated
based on the 116 tropical cyclones are used in our experiments.

The tropical cyclone data sequences have arbitrary length.
From Fig. 2, one sees that most of the data sequences consist
of between 10 and 60 data vectors for tropical cyclone
occurring in the North Atlantic Ocean between 2000 and 2008.

The top left graph in Fig. 3 shows the trajectories for the
tropical cyclones. From the bottom right graph, one observes
that there is an anticorrelation between the minimum central
pressure and the maximum sustained wind intensity. Hence,
we need only use one of the two feature attributes in our man-
ifold learning. In this paper, we use the maximum sustained
wind intensity.

2) Synthetic Data Set: Synthetic data are used to test the
robustness of our approach as the variation in the similarity
set increases. Synthetic data sequences are generated based on
real tropical cyclone sequences described in Section IV-A1.
For each experimental trial, one similar set S′ of 10 synthetic
tropical cyclone sequences is generated as follows.

1) Randomly pick one data sequence sq from the real
tropical cyclone event sequence set.

2) Specify a threshold γa for each trajectory and feature

4http://csc-s-maps-q.csc.noaa.gov/hurricanes/

attribute a, so that sq is bounded by a volume tube with
radius γa in each attribute dimension and sq is the tube
center.

3) Specify a translational threshold η so that a generated
data sequence can shift at most η.

4) Generate each of the 10 new similar data sequences as
follows.

a) Randomly assigned an integer length lnew to a new
data sequence so that lnew is between l − t and
l + t , where l is the length of sq and t is a fixed
integer.

b) Randomly generate lnew points such that they fell
in the volume tube described in Step 2.

c) Randomly shift the generated points satisfying the
constraint in Step 3.

Then, we randomly pick 30 data sequences from the tropical
cyclone event sequence set, excluding sq , and include them
into the dissimilar set D′.

B. Similarity Search in a Manifold

In our experiment, since |S′| = 10 and |D′| = 30, we have
|S| = (10 · 9)/2 = 45 and |D| = (30 · 29)/2+10 ·30 = 2040,
respectively, according to Section III-C. Moreover, γa is varied
from 1 to 2 for all a, η = 1, and t = l. For each γa value, we
perform 20 trials.

Using the procedure for generating a set of similar data
sequences in Section IV-A2, we generate another 100 positive
testing examples. Eighty five data sequences, excluding the
30 in D′ and sq , from the real tropical cyclone event sequence
set are used as negative testing examples. Hence, we have
|U ′| = 185. K is set to 10 for the ISOMAP algorithm, the
manifold dimension is fixed at 2 (for visualization purposes).

Accuracy of similarity search in manifold is computed as
follows. First, similarity values between sq and all the data
sequences in U ′ are computed. Then, the similarity values are
sorted. The positive testing examples should be among the
100 closest to sq . Hence

Accuracy

= #{p|p ∈ Pe, Sp ≤ S|Pe|} + #{n|n ∈ Ne, Sn > S|Pe|}
|Pe| + |Ne|

where Pe and Ne are the sets of positive and negative testing
examples, respectively; Sp and Sn are the similarity values for
a positive example p and a negative example n, respectively;
and S|Pe| is the similarity value of the sorted value at position
|Pe| (assuming sorting in increasing order).

Fig. 4 shows experimental results when no parameter learn-
ing is performed. A fixed P = (1, 1, 5, 1) and A defined
as the identity matrix (i.e., Euclidean distance) are used.
As γa increases, the SLC similarity score decreases. In other
words, as the data sequences in S′ become more diverse,
the SLC similarity measure using a fixed P is less likely to
measure similarity accurately for the data sequences that are
generated from the same distribution as those in S′. Moreover,
one observes that the accuracy variability increases as γa

increases.
Next, we compare the similarity search accuracies in a

manifold using a predefined similarity measure or a learned
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Fig. 4. Similarity search accuracy in a manifold with predefined
similarity/metric parameters.

Fig. 5. Similarity search accuracy comparison.

similarity measure to construct the k-nearest neighbor graph.
Similarity search results of data sequences at a fixed length in
our learned manifold are compared with the similarity search
results from the following constructed manifolds.

1) Manifold based on similarity measure learned from
using Xing et al.’s metric learning approach with
Euclidean distance.

2) Manifold using predefined parameters for the SLC-based
similarity measure (use the optimal parameter at
γa = 1.2).

3) Manifold using predefined parameters for the LCSS
similarity measure (use the optimal parameter at
γa = 1.2).

Fig. 5 shows the similarity search performance comparison
in the two learned manifolds and the two manifolds
constructed using predefined similarity measures.

It can be seen that similarity search in manifold learned
using our proposed approach shows consistently better results
than similarity search in manifolds using predefined similarity
measures or using Xing et al.’s metric learning approach
when the variability of the similar data sequences increases
(i.e., γa increases). At γa ≤ 1.2, because the synthetic
similar data sequences are very close in the manifold for
any similarity measure, similar searches using different man-
ifolds show perfect accuracy, i.e., 100%. As γa increases, the
similarity search accuracy drops. Manifolds constructed using
learned similarity measures show more robustness. On the
other hand, the similarity search in a manifold constructed

Fig. 6. Solid lines: five data sequences in the similar set S′. Dashed lines:
ten data sequences in the dissimilar set D′ (trajectories only).

using predefined similarity measures show significant drop in
accuracy. This is consistent with the observations in Fig. 4.
As γa increases, the similarity score becomes more variable
and inconsistent without similarity parameter learning. As a
result, the similarity search task becomes more difficult.

C. Application: Tropical Cyclone Similarity Search
With User-Defined Prior Knowledge

One application of our proposed data sequence manifold
learning is tropical cyclone similarity search with user-defined
prior knowledge. In particular, this application corresponds to
the query “List all tropical cyclones that are similar to tropical
cyclones in S′ and dissimilar to the tropical cyclones in D′.”
For this task, we first include five tropical cyclone event data
sequences from the real tropical cyclone event data sequence
set into S′ and include another 10 data sequences into D′.
Fig. 6 shows the sets S′ and D′ used for Algorithm 1. We then
include the other one hundred and one tropical cyclone
events into U ′. For both Algorithm 1 and 2, K = 15. For
Algorithm 2, C = 5.

Fig. 7 shows the five most similar data sequences for
each of the five data sequences in S′ based on Step 6 in
Algorithm 2. Fig. 8 shows the two trajectories (solid lines)
and wind intensity time series of the output from Algorithm 2
together with the trajectories of the five similar data sequences.
The two output trajectories clearly overlap with the selected
similar set and one of the output trajectories is very short.
To return data sequences with lengths comparable with those
in S′, one could filter out short data sequences in U ′ by
including an additional criterion

min(|A|, |B|)
max(|A|, |B|) ≥ t (8)

for a data sequence B in U ′ with A ∈ S′ and t = 0.5 (say),
before step 1 in Algorithm 2. When this criterion is included,
the two output trajectories have comparable lengths, as shown
in Fig. 9(a) instead of the ones in Fig. 8. On the other hand,
if one wants to consider only short data sequences, one can
use the criterion

min(|A|, |B|)
max(|A|, |B|) < t . (9)

Fig. 9(b) shows three (short) output trajectories using the same
input S′ and D′.
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Fig. 7. Five data sequences (trajectories [top, solid lines] and intensities [bottom]) in the similar set S′ and their corresponding five most similar unlabeled
data sequences (trajectories [top, dashed lines]).

Fig. 8. (a) Five data sequences (solid lines) in the similar set S′ and the two
output trajectories (dashed lines) using Algorithm 2. (b) Wind intensity time
series from the similar set S′ (dashed lines) and the two wind intensity time
series from output data sequences (solid lines).

Fig. 10 shows some seemingly similar data sequences to the
data sequences in S′ and their corresponding Nu values (see
Step 7, Algorithm 2). One notes that Nu needs to be >2 to be
output by Algorithm 2. One observes from Figs. 8 and 10 that
the initial subsequences of those data sequences having higher
Nu (≥2) tend to be very similar to those initial subsequences of
data sequences in S′. In addition, from Fig. 7, one observes that
a data sequence may be similar to some data sequences that
look different (e.g., the third and the fourth sequences). This is
because our proposed algorithm works with all the dimensions

Fig. 9. When t = 0.5, the output trajectories (dashed lines) based on
(a) criterion (8) and (b) criterion (9), given the five data sequences (solid
lines) in the similar set S′.

of the input data, which means it not only considers the
geographic relationship (what we see in the visualization
figures) but also make use of other dimensions (e.g., wind
speed). Some sequences may be similar in terms of geographic
trajectories but significantly different in wind speech or other
entries. This affects the Nu value, which is used in making
selection decision in Algorithm 2. Moreover, the user-defined
ranking cutoff, C , also affects the number of data sequences
selected. In other words, with higher C and a fixed |S′|, there
will be more data sequences selected (Fig. 11).

In Section IV-B, we show that the similarity search per-
formance in the manifold learned by our proposed algorithm
using SLC is competitive against the similarity search in
manifold learned by the other metric learning approach or in
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Fig. 10. Some similar data sequences (dashed lines) not selected by Algorithm 2 and their corresponding wind intensity time series. Note that the top second
to the left and the bottom left sequences are short data sequences hidden among the data sequences in S′ (solid lines).

Fig. 11. Number of output data sequences versus user-defined ranking
cutoff, C , when |S′| = 5.

a manifold constructed using a predefined similarity measure
for the synthetic data set. Fig. 12 shows some examples
selected by the similarity search based on different learned
(or fixed) manifold using either the Euclidean norm, LCSS,
or SLC. Similarity search using LCSS and SLC tends to
select sequences that are highly similar to the training data
[Fig. 12(c)]. Similarity search in manifold learned using

Xing et al.’s approach is more tolerant to mismatches in
the sequences. Fig. 12(a) and (b) shows two data sequences
selected in the manifold constructed using similarity measures
with parameters learned from Xing et al.’s approach. Although
the spatial trajectories are similar to the training examples, the
wind intensity time series are different.

This application of our proposed algorithm can be used
by scientists and climatologists to narrow down searches of
weather events given specific characteristics described by
data sequences as instance-level constraints. Sometimes new
scientific problems can be conceived from the results obtained
from this application. For example, our approach identifies
two tropical cyclones as being similar to data sequences
in S′ despite some differences. The trajectories and wind
intensitites over time of these cyclones are similar initially
(Fig. 8), but Hurricane Helen (September 12–27, 2006)
becomes a Category 3 hurricane while Tropical Storm
Josephine (September 2–9, 2008) weakens after three days.
Why did one intensify and the other one die out more quickly?
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Fig. 12. (a) and (b) Data sequences selected by similarity search on the manifold using metric derived from Xing et al.’s approach. (c) Data sequence selected
by similarity search on the manifolds with predefined parameters utilizing the LCSS and SLC similarity measures. Bold lines: selected data sequences.

Using each of these two tropical cyclones separately, one can
further perform similarity search to identify two groups of
similar tropical cyclones for further analysis. By integrating
the query described earlier in this section into a satellite data
retrieval system [36], one can retrieve satellite data based on
the output from the query for analysis [37].

V. CONCLUSION

In this paper, we propose a general manifold learning frame-
work for arbitrary-length multivariate data sequences driven
by similarity/metric learning in both the original data sequence
space and the learned manifold given user-defined instance
level constraints. Moreover, we describe an approach to handle
the similarity search problem in the learned manifold using a
consensus voting scheme. The key contribution of this paper
is the development of a novel manifold learning framework,
which transforms the data sequences in a nonmetric space into
feature vectors in a manifold that preserves the data sequence
similarity in the nonmetric space. Toward this end, one can
compare data sequences in a metric space. Experimental
results on both synthetic data and real tropical cyclone
sequence data are presented to demonstrate the feasibility
of our manifold learning framework and the robustness of
performing similarity search in the learned manifold.

There are some challenges that require further investigations
for the similarity search problem in a learned manifold for data
sequences.

1) Implementation Using Other Data Sequence Embedding
Approaches: In this paper, the implementation of our
proposed framework utilizes ISOMAP that assumes the
original data come from a convex set. If such an assump-
tion is true, then the true geometric structure can be
recovered and no distortion is introduced in the learned
manifold. Other embedding approaches, such as LLE
and Laplacian–Eigenmaps, can replace ISOMAP in the
implementation to remove the convexity assumption on
the original data.

2) Better Approach for Similarity Search in a Manifold:
One weakness of Algorithm 2 is that the output is

dependent on the user-defined ranking cutoff, C . If C
increases with fixed |S′|, the number of selected data
sequences will increase (Fig. 11). There are currently
no rule to decide the best C value to use.
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