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Abstract
A subspace constrained mean shift (SCMS) algorithm is a non-parametric iterative tech-
nique to estimate principal curves. Principal curves, as a nonlinear generalization of
principal components analysis (PCA), are smooth curves (or surfaces) that pass through the
middle of a data set and provide a compact low-dimensional representation of data. The
SCMS algorithm combines the mean shift (MS) algorithm with a projection step to estimate
principal curves and surfaces. The MS algorithm is a simple iterative method for locating
modes of an unknown probability density function (pdf) obtained via a kernel density esti-
mate. Modes of a pdf can be interpreted as zero-dimensional principal curves. These modes
also can be used for clustering the input data. The SCMS algorithm generalizes the MS
algorithm to estimate higher order principal curves and surfaces. Although both algorithms
have been widely used in many real-world applications, their convergence for widely used
kernels (e.g., Gaussian kernel) has not been sown yet. In this paper, we first introduce a
modified version of the MS algorithm and then combine it with different variations of the
SCMS algorithm to estimate the underlying low-dimensional principal curve, embedded in
a high-dimensional space. The different variations of the SCMS algorithm are obtained via
modification of the projection step in the original SCMS algorithm. We show that the modi-
fication of the MS algorithm guarantees its convergence and also implies the convergence of
different variations of the SCMS algorithm. The performance and effectiveness of the pro-
posed modified versions to successfully estimate an underlying principal curve was shown
through simulations using the synthetic data.
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1 Introduction

Principal curves and surfaces are nonlinear generalization of principal component analysis
(PCA) (Jolliffe 2002). They provide a new low-dimensional representation of the input data
by mapping the high-dimensional observations onto a low-dimensional manifold, embed-
ded in the high-dimensional space. The new low-dimensional representation facilitates tasks
such as dimensionality reduction and data visualization. The first formal definition of princi-
pal curves was given by Hastie and Stuetzle (1989). According to their definition, a principal
curve is a smooth, self-consistent, parameterized curve that passes through the middle of
data set to provide a nonlinear summary of the data. Since Hastie and Stuetzle’s ground-
breaking work, several other definitions of principal curves and algorithms to construct
them have been proposed based on, or inspired by, the original definition (see Banfield and
Raftery (1992), Chang and Gosh (2001), Delicado (2001), Biau and Fischer (2012), and
Tibshirani (1992) and Kegl et al. (2000), among others).

The modes of a probability density function (pdf) play an important role in manymachine
learning applications, such as image segmentation (Tao et al. 2007), object tracking in
video sequences (Comaniciu et al. 2000), and clustering (Yuan et al. 2012). The collec-
tion of these modes can be viewed as a zero-dimensional principal curve. The mean shift
(MS) algorithm is a simple non-parametric technique that iteratively tries to find modes of
a pdf (estimated from data samples). The mean shift (MS) algorithm is an iterative, non-
parametric technique that was introduced by Fukunaga and Hostetler (1975) to estimate
modes of a pdf and it was generalized by Cheng (1995). The MS algorithm became popular
in the machine learning community when its applications for clustering and image segmen-
tation were revealed by Comaniciu and Meer (2002). Although the MS algorithm has been
successfully used in many machine learning applications ranging from clustering to object
tracking, a rigorous proof for its convergence is still missing in the literature (Ghassabeh
2016). The authors in Comaniciu and Meer (2002) incorrectly claimed that the sequence
generated by the MS algorithm is a convergent sequence. Later it was shown that a cru-
cial step in the their convergence proof was not correct (Li et al. 2007; Ghassabeh 2015).
Later, the convergence of the generated MS sequence was claimed by showing that the MS
algorithm with the Gaussian kernel is an instance of the expectation maximization (EM)
algorithm (Carreira-Perpiñán 2007). However, without additional conditions, the generated
sequence of parameter estimates by the EM algorithm may not necessarily converge (Wu
1982). On the positive side, the authors in Li et al. (2007) and Ghassabeh (2015) showed
that the sequence of the estimated modes (zero-dimensional principal curves) generated by
the MS algorithm is a convergent sequence if an estimated pdf has a finite number of modes
(or equivalently has isolated modes (Arias-Castro et al. 2016)). However, this convergence
proof has not been generalized for widely used kernels (e.g., Gaussian) (Ghassabeh 2016).

Ozertem and Erdogmus (2011) introduced subspace constrained mean shift (SCMS)
algorithm to estimate principal curves and surfaces. The SCMS algorithm is a generaliza-
tion of the MS algorithm, which iteratively tries to find modes of a pdf (estimated from
data samples) in a local subspace. In other words, in contrast to the MS algorithm that finds
zero-dimensional principal curves as the modes of a pdf, the SCMS algorithm estimates
a principal curve or surface (with dimensions higher that zero) by looking for modes of a
pdf projected in a subspace. The SCMS algorithm has been successfully used in applica-
tions such as time-series denoising (Ozertem and Erdogmus 2011), vector quantization of
noisy sources (Ghassabeh et al. 2012a), and dimensionality reduction of noisy data (Ghas-
sabeh et al. 2012b). Although extensive simulation results demonstrated the power of the
SCMS algorithm to estimate the underlying principal curve/surface, the convergence of
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the sequence generated by the SCMS algorithm has not been proved yet. The authors in
Ozertem and Erdogmus (2011) claimed the convergence of the SCMS algorithm based on
the assumption that the MS algorithm always converges that, as mentioned above, has not
been proven yet.

In this paper, we first present the modified version of the MS algorithm that guarantees
the convergence of the generated sequence by the MS algorithm. The converged generated
sequence by the modified MS algorithm can be considered as zero-dimensional principal
curve. Then, we present the modified SCMS algorithm by combining the modified MS
algorithm with the original SCMS algorithm and its three variations. The convergence of
the modified MS algorithm implies the convergence of the modified SCMS algorithm for
any initial starting point. We show that the estimated pdf values along the output sequence
generated by the proposed modified SCMS algorithm are a convergent sequence. We also
show that the difference between two consecutive members of the generated sequence by the
modified SCMS algorithm converges to zero. The effectiveness of the proposed modified
SCMS algorithm to estimate a principal curve is shown through simulations. In the next
section, we briefly review the MS and SCMS algorithms. The modified MS and proposed
modified SCMS algorithms are presented in Section 3. Simulation results to support the
theoretical results and to show the effectiveness of the proposed algorithms for finding a
principal curve are given in Section 4. Section 5 is devoted to the concluding remarks.

2 Mean Shift and Subspace ConstrainedMean Shift Algorithms

In this section, we briefly review the MS and SCMS algorithms and show how they can be
used to estimate principal curves and surfaces (zero-dimensional principal curves for the
MS algorithm).

2.1 MS Algorithm

The MS algorithm starts from one of the data points, as the initial mode, and iteratively
shifts it to a weighted average of neighboring points to find stationary point of the estimated
pdf. The MS algorithm does not require any prior knowledge of the number of clusters
and there is no assumption for the shape of the clusters. The MS algorithm behaves like an
instance of the gradient ascent algorithm (Fashing and Tomasi 2005) with an adaptive step
size. The iterations for each starting point continue until the norm of the difference between
two consecutive mode estimates becomes less than some predefined threshold. The resulting
estimated modes in this procedure can be taken as the cluster center (or zero-dimensional
principal curves) (Comaniciu and Meer 2002). Furthermore, all data points associated with
the same mode are considered members of the same cluster.

A D-variate kernel K : RD → R is a non-negative real-valued function that satisfies the
following conditions (Wand and Jones 1995)

∫
RD

K(x)dx = 1, lim‖x‖→∞ ‖x‖DK(x) = 0,
∫
RD

xK(x)dx = 0,
∫
RD

xxT K(x)dx = cKI ,

where cK is a constant and I is the identity matrix. Let xi ∈ R
D, i = 1, . . . , n

be a sequence of n independent and identically distributed (iid) random variables.
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The kernel density estimate f̂ at an arbitrary point x using a kernel K(x) is given
by

f̂ (x) = 1

n

n∑
i=1

KH(x − xi ), (1)

where KH(x) = |H|−1/2K(H−1/2x), H is a symmetric positive definite D × D matrix
called the bandwidth matrix, and |H| denotes the determinant of H. A special class of ker-
nels, called radially symmetric kernels, has been widely used for pdf estimation. Radially
symmetric kernels are defined by K(x) = ck,Dk(‖x‖2), where ck,D is a normalization fac-
tor that causes K(x) to integrate to one and k : [0,∞) → [0, ∞) is called the profile of the
kernel. The profile of a kernel is assumed to be a non-negative, non-increasing, and piece-
wise continuous function that satisfies

∫ ∞
0 k(x)dx < ∞. Symmetric kernels are defined by

K(x) = ck,Dk(‖x‖2), where ck,D is a normalization factor that causes K(x) to integrate to
one and k : [0, ∞) → [0,∞) is called the profile of the kernel. The profile of a kernel is
assumed to be a non-increasing, non-negative, and piecewise continuous function that sat-
isfies

∫ ∞
0 k(x)dx < ∞. Using the profile k, and the bandwidth h, the kernel density f̂ (x)

in Eq. 1 changes to the following well-known form (Silverman 1986)

f̂h,k(x) = ck,D

nhD

n∑
i=1

k

(
‖x − xi

h
‖2

)
. (2)

Assuming that the profile k is differentiable with derivative k′, by taking the gradient of
Eq. 2, we obtain

∇f̂h,k(x) = 2ck,D

nhD+2

[
n∑

i=1

g

(
‖x − xi

h
‖2

)]

×
[∑n

i=1 xig
(‖ x−xi

h
‖2)∑n

i=1 g
(‖ x−xi

h
‖2) − x

]
, (3)

where g(x) = −k′(x). The second term in the above representation is called the mean shift
(MS) vector mh,g(x) (Comaniciu and Meer 2002).

From Eq. 3 and by equating the gradient function to zero, it can be observed that the
modes of the estimated pdf are the fixed points of the following function

mh,g(x) + x =
∑n

i=1 xig
(‖ x−xi

h
‖2)∑n

i=1 g
(‖ x−xi

h
‖2) , (4)

where mh,g(x) is the MS vector defined in Eq. 3. To solve Eq. 4, the MS algorithm starts
from one of the data points and the mode estimate yj in the j th iteration is updated by

yj+1 = yj + m(yj ) =
∑n

i=1 xig
(
‖ yj −xi

h
‖2

)
∑n

i=1 g
(
‖ yj −xi

h
‖2

) . (5)

The MS algorithm repeatedly updates the mode estimate, yj , using Eq. 5 until the norm
of the difference between two consecutive estimates becomes less than some predefined
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threshold, i.e., ‖yj+1 − yj‖ < ε for some j ∈ N. The final points when the algorithm
stops are modes of the pdf, which also can be considered as zero-dimensional principal
curves. The MS algorithm is summarized in Algorithm 1. Typically all n instances of the
MS algorithm are run in parallel, with the ith instance initialized to the ith input data point.

2.2 SCMS Algorithm

Ozertem and Erogmus defined a d-dimensional principal surface in RD1 as the set of points
that are local maximum of a pdf in a local orthogonalD−d-dimensional subspace (Ozertem
and Erdogmus 2011). They proposed the SCMS algorithm to find points that satisfy that
definition. The SCMS algorithm generalizes the MS algorithm to estimate higher order
principal curves and surfaces (d ≥ 1). Similar to the MS algorithm, the SCMS algorithm
starts from one of the input points, as the initial estimate, it evaluates the MS vector in
each iteration. In order to estimate the modes on the d-dimensional subspace, it projects the
calculated MS vector in the previous step to the subspace spanned by the D−d eigenvectors
corresponding to the D − d largest eigenvalues of the local inverse covariance matrix of the
estimated pdf at that point. The local inverse covariance matrix at an arbitrary point x is
estimated by Ozertem and Erdogmus (2011)

�̂
−1

(x) = −Ĥ (x)f̂ (x)−1 + ∇f̂ (x)∇f̂ (x)T f̂ (x)−2, (6)

1It is called a principal curve for D = 1, and becomes a mode of the pdf for D = 0
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where Ĥ (x) and ∇f̂ (x) are the Hessian and gradient of the pdf estimate at x.2 The steps of
the SCMS algorithm to estimate a d-dimensional principal curve/surface are summarized in
Algorithm 2 (Ghassabeh et al. 2013). Typically, n instances of the SCMS algorithm can run
in parallel, each time initialized to one of the input data points. The resulting n output points
are considered as a discrete approximation of the underlying principal curve (for d = 1) or
surface (for d ≥ 2). Ghassabeh et al. (2013) presented three new variations of the SCMS

algorithm by replacing local inverse covariance matrix, �̂
−1

, by the Hessian matrix Ĥ , and
two local estimates (local to yj ) of the covariance matrix of f̂ as follows:

(i) The Hessian of f̂ ,

Ĥ (x) = c

nh2+D

n∑
i=1

(
−I + 2(x − xi )(x − xi )

T

h2

)
exp

(
−‖x − xi‖2

2h2

)
,

where c is the kernel profile normalization factor and I is the D × D identity matrix;
(ii) The estimated local covariance matrix using the κ nearest data points,

�̂κ (x) = 1

κ − 1

∑
xi∈Nκ(x)

(xi − mκ (x))(xi − mκ (x))T ,

where Nκ(x) is the set of the κ nearest neighbors of x in the observed data set
{x1, . . . , xn}, and mκ (x) is the average over members of Nκ(x);

(iii) The estimated local covariance matrix using the κ nearest outputs,

�̂κ,j (x) = 1

κ − 1

∑
y

(i)
j ∈Nκ,j (x)

(y
(i)
j − mκ,j (x))(y

(i)
j − mκ,j (x))T ,

where Nκ,j (x) is the set of the κ nearest neighbors of x among the outputs
{y1

j , . . . , y
n
j } at the j th iteration and mκ,j (x) is the average over members of Nκ,j (x).

In this case, we update all the outputs in each iteration.

The resulting three variations of the original SCMS algorithm calculate the mean shift vec-
tors using Eq. 5. But for the projection step instead of the local inverse covariance matrix
in Eq. 6, three different matrices are used and the mean shift vector is projected into sub-
space spanned by the eigenvectors of the above matrices. In other words, for each matrix
above the projection matrix V j in the SCMS algorithm is given by V j = [vd+1, . . . , vD],
where vi , i = d +1, . . . , D are the D −d eigenvectors corresponding to the D −d smallest
eigenvalues (Ghassabeh et al. 2013). The projection step and termination criterion remain
the same as in the original SCMS algorithm.

2Note that for the special case of Gaussian distribution f̂ ∼ N(μ,�), the local inverse covariance matrix in

Eq. 6 becomes equal to the inverse covariance matrix, i.e., �̂
−1

(x) = �−1.
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3 ModifiedMS and SCMS Algorithms

From Eq. 5, it can be observed that the mode estimate sequence, {yj }, generated by the
MS algorithm is always inside the convex hull of the data set. Therefore, {yj } is a bounded
sequence and it can be shown that it satisfies (Ghassabeh 2016)

lim
k→∞ ‖yj+1 − yj‖ = 0. (7)

Note that the above two properties are not enough to imply the convergence of the sequence
{yj }j=1,2,... generated by the MS algorithm (Ghassabeh 2016; Li et al. 2007). We slightly
modified the MS algorithm to guarantee the convergence of the generated sequence. Similar
to the original version, the proposed modified MS algorithm starts from one of the input data
points and computes the mean shift vector using Eq. 4. Then, it updates the mode estimate
by assigning the computed MS vector to the closest input data point. In other words, the
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proposed algorithm updates the mode estimate in each iteration by assigning it to one of the
data points as follows (Ghassabeh and Rudzicz 2018)

ỹj+1 = yj + m(yj ), (8)

yj+1 = argmin
x∈{x1,...,xn}

‖ỹj+1 − x‖, (9)

where m(yj ) is the MS vector in Eq. 4, and {x1 . . . , xn} is the set of input data. The
proposed modified MS algorithm is summarized in Algorithm 3.

The sequence generated by the modified MS algorithm, {yj }j=1,2,..., is a convergent
sequence. Also, similar to the original MS algorithm, the estimated pdf values along the generated
sequence, {f̂ (y)j }j=1,2,..., are an increasing and convergent sequence (Ghassabeh and Rudzicz
2018). The next theorem states two convergence results relating to the density estimate values
produced by the modified MS algorithm. The proof is given in the Appendix.

Theorem 1 Assume a kernel pdf estimate f̂ with bandwidth h, and a radially symmetric
kernel K having profile k which is positive, strictly decreasing, convex, and continuously
differentiable on R (as is defined in (2)). Let {yj } denote the sequence of points generated
by the modified MS algorithm with arbitrary initialization. Then, the following holds:

(i) The density estimate values along the sequence of output values of the modi-
fied MS algorithm is a monotonically increasing and convergent sequence, i.e.,
{f̂h,k(yj )}j=1,2,... is monotonically increasing and convergent.
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(ii) The mode estimate sequence, {yj }j=1,2,...,, generated by the modified MS algorithm
is a convergent sequence.

In the original MS algorithm, the stopping threshold ε is set manually so that a good
tradeoff between running time and approximation accuracy is achieved. However, the con-
vergence is guaranteed in the proposed version, and there is no need to set a predefined
threshold as the stopping criterion for the algorithm. It is clear that setting a threshold
in general cannot be used as a reliable measure of closeness to the convergence point (if
there is a convergence point). It is possible that the difference between two consecutive
mode estimates becomes less than the predefined threshold and the algorithm terminates the
iterations, but both points are far from the possible convergence point.

The authors in Ozertem and Erdogmus (2011) claimed the convergence of the SCMS
algorithm based on the assumption that the MS algorithm always converges, which, as we
discussed, has so far been unproven. We propose the modified SCMS algorithm to estimate
principal curves and surface by replacing the mean shift vector calculation in the original
version by the modified MS vector calculated through the modified MS algorithm. To put
it succinctly, the proposed modified SCMS algorithm differs from the original step only
at the way it updates the mean shift vector in each iteration, i.e., it uses the modified MS
algorithm. In this way, the convergence of the proposed algorithm is guaranteed for any
initial point, since from Theorem 1 it can be observed that the modified MS step generates
is a convergent sequence. The next theorem summarizes three convergence results relating
to the density estimate values produced by the proposed modified SCMS algorithm. The
proof is given in the Appendix.

Theorem 2 Assume a kernel pdf estimate f̂ with bandwidth h, and a radially symmetric
kernel K having profile k, which is positive, strictly decreasing, convex, and continuously
differentiable on R (as is defined in (2)). Let {yj } denote the sequence of points generated
by the SCMS algorithm with arbitrary initialization. Then, the following holds:

(i) The sequence {f̂ (yj )} is non-decreasing and convergent.
(ii) lim

j→∞ ‖yj+1 − yj‖ = 0.

(iii) lim
j→∞ ‖V T

j ∇f̂ (yj )‖ = 0.

Note that the above theorem is analogous to what is proved in proposition 2 in Ghass-
abeh et al. (2013) for the original SCMS algorithm, just the MS vectors are replaced by the
modified MS vectors to guarantee the convergence of the whole process. Although the local
inverse covariance matrix �̂

−1
(yj ) is used during the proof of theorem 2, all three state-

ments remain valid if the projection matrix V j , j = 1, 2, . . ., is an arbitrary sequence of
D×(D−d)matrices having orthonormal columns. Thus for the convergence results to hold,
V j does not have to be necessarily the matrix whose columns are the D − d orthonormal
eigenvectors corresponding to the largest eigenvalues of the local inverse covariance matrix
�̂

−1
(yj ). As a result, the three matrices introduced at the end of Section 2 can be used to

create the projection matrix V j , j = 1, 2, . . . as well. Therefore, the proposed modified
SCMS algorithm can be presented in four variations that differ only at the projection matrix.
The four projection matrices can be derived using any of the following four matrices:

(i) The local inverse covariance matrix,
(ii) The Hessian of f̂ ,
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(iii) The estimated local covariance matrix using the κ nearest data points,
(iv) The estimated local covariance matrix using the κ nearest outputs.

The proposed modified SCMS algorithm is summarized inAlgorithm 4. Use of two local
estimates of the covariance matrix, introduced at Section 2, may reduce the computational
cost. Although using only the κ nearest neighbors instead of the whole data set to estimate
the projection matrix does not change the theoretical complexity in each iteration, in practice
with a finite data set, the running time significantly reduces. A good value of κ will in
generally depend on the structure of the underlying manifold. In our simulations, we chose
κ to be between 4 and 6% of the number of observations, but setting κ in general is beyond
the scope of this paper.
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Table 1 Performance results of
four variations of the proposed
modified SCMS algorithm for
estimating the principal curve on
a noisy circle

2-D circle SCMS Hessian Cov. 1 Cov. 2

Running time (s) 32.704 34.570 13.593 12.517

Av. squared Euclidean distance 0.814 0.812 0.786 0.779

4 Simulation Results

In this section, we demonstrate the effectiveness of the proposed modified SCMS algo-
rithm for finding a principal curve. Simulations using synthetic data are provided to support
the theoretical results in Section 3. The input data set X = {x1, . . . , x500} has the follow-
ing form xi = ui + ei , i = 1, . . . , 500, where ui ∈ R

2, i = 1, . . . , 500 are uniformly
selected data points on a circle with unit radius (they can be interpreted as clean unobserved
data), ei , i = 1, . . . , 500 is bivariate zero-mean Gaussian noise with identity covariance
matrix times 0.45. The bandwidth h is set to 0.4, dimension of the principal curve d = 1,
ε = 0.01 is used as the stopping criteria, and the number of nearest neighbors for last two
variations the proposed SCMA algorithm is set to κ = 40. The average squared Euclidean
distance between the output points and the closest point on the generative circle is used
to measure the performance of each variations of the proposed modified SCMS algorithm,
and the average running time is measured in seconds. Data points in X = {x1, . . . , x500}
are fed into each algorithms and each variation is initialized with input data. Table 1 sum-
marizes the performance of four variations of the proposed modified SCMA algorithm to
estimate the principal curve on a two-dimensional noisy circle. The different variations of
the proposed algorithm use different projection matrices as follows, SCMS (local inverse

−1 0 1

−1

−0.5

0

0.5

1

SCMS

−1 0 1

−1

−0.5

0

0.5

1

Hessian

−1 0 1

−1

−0.5

0

0.5

1

Local Cov. using observed data

−1 0 1

−1

−0.5

0

0.5

1

Local Cov. using output vectors

Fig. 1 First n = 500 samples, denoted by blue, are uniformly selected on the circle, the black points are the
observed input data points (inputs to the proposed algorithm) generated by adding independent, zero-mean
Gaussian noise to the blue points on the generative curve, and the red points are the outputs of different
variations of the proposed SCMA algorithm
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covariance matrix), the Hessian matrix, the local covariance matrix using the original data
points (Cov. 1), and the local covariance matrix using the output points in each iteration
(Cov. 2). It can be observed from Table 1 that performance of all four proposed variation
is similar in terms of closeness to the generative original circle. In terms of runtime, as it
is expected, the local covariance matrices (using original data points or using the output
points) perform significantly better than two other cases.

The generative curve, the simulated data points, and the generated output points from
the four versions of the proposed modified algorithm are shown in Fig. 1. From Fig. 1, it
can be observed that all four versions of the proposed modified version show similar perfor-
mance visually and all four are able to successfully estimate the underlying one-dimensional
principal curve.

5 Conclusion

The MS and SCMS algorithms have been widely used in many machine learning applica-
tions, but the convergence of the generated sequences has not been proved yet. The MS
algorithm has been used to estimate modes of a pdf, which play an important role in appli-
cations such as clustering. The SCMS algorithm generalized the MS algorithm and was
used to estimate a low-dimensional manifold embedded in a high-dimensional space. In this
paper, we first present the modified MS algorithm and then combine it with the original
SCMS algorithm and introduce the modified SCMS algorithm. The convergence proper-
ties of the generated sequences for both modified MS and modified SCMS algorithms are
investigated and it was shown that the modified versions generate convergent sequences.
Convergence property of the generated sequences implies that there is no need to set a
stopping threshold for the proposed modified versions and the generated sequence con-
verges after a finite number of iterations (when the number of samples n is finite). We also
show that the estimated pdf along the generated sequence by the modified SCMS algo-
rithm is a monotonically increasing and convergent sequence. By changing the projection
matrix in the projection step, four different variations of the modified SCMS algorithm are
presented. Finally, simulations using synthetic data are provided to support the theoretical
results. Through simulations, we show that four variations of the proposed modified SCMS
algorithm can be successfully used to estimate the underlying principal curve.

Appendix

Proof of Theorem 1 Let X = {x1, . . . , xn} denote the input data set. Let yj+1 
= yj . To

prove part (i), we show f̂h,k(yj+1) > f̂ (yj ). From Eq. 2, we have

f̂h,k(yj+1) − f̂h,k(yj )

= ck,D

nhD

[
n∑

i=1

k

(
‖yj+1 − xi

h
‖2

)
− k

(
‖yj − xi

h
‖2

)]

≥ ck,D

nhD+2

n∑
i=1

k′
(

‖yj − xi‖2
h

)

(
‖yj+1 − xi‖2 − ‖yj − xi‖2

)
, (10)



Journal of Classification

where the last inequality comes from the convexity of the profile function k, i.e., k(x2) −
k(x1) ≥ k′(x1)(x2 − x1). By the triangle inequality, we have

‖yj+1 − ỹj+1‖ ≤ ‖yj+1 − xi‖ + ‖ỹj+1 − xi‖, i = 1, 2, . . . , n, (11)

where ỹj+1 is given in Eq. 8. Using Eqs. 10 and 11, we obtain

f̂h,k(yj+1) − f̂h,k(yj ) ≥ ck,D

nhD+2

n∑
i=1

k′
(

‖yj − xi

h
‖2

)

(
‖yj+1 − ỹj+1‖2 − ‖ỹj+1 − xi‖2

−2‖yj+1 − ỹj+1‖‖ỹj+1 − xi‖ − ‖yj − xi‖2
)
. (12)

From Eq. 13, we have ‖yj+1 − ỹj+1‖2 − ‖ỹj+1 − xi‖2 ≤ 0 for xi ∈ {x1, . . . , xn}, and as
a result we have

n∑
i=1

k′
(

‖yj − xi

h
‖2

)

(
‖yj+1 − ỹj+1‖2 − ‖ỹj+1 − xi‖2

)
> 0, (13)

where the above inequality is true since the profile k is a strictly decreasing function and
k′(x) < 0. Furthermore, we have

n∑
i=1

k′
(

‖yj − xi

h
‖2

)

(
−2‖yj+1 − ỹj+1‖‖ỹj+1 − xi‖ − ‖yj − xi‖2

)
> 0. (14)

Combining Eqs. 12, 13, and 14, we obtain

f̂h,k(yj+1) − f̂h,k(yj ) > 0, (15)

which implies the sequence {f̂h,k(yj )}j=1,2,... is an increasing sequence. From Eq. 13, it is

obvious that yj ∈ {x1, . . . , xn}, j = 1, 2, . . . , and since n is finite then f̂h,k(yj ), given in

Eq. 2, is bounded. Thus, as long as yj+1 
= yj , the sequence {f̂h,k(yj )}j=1,2,... is a bounded
and strictly increasing sequence, which two previous conditions imply the convergence of
{f̂h,k(yj )}.

To prove part (ii), first note that the modified MS algorithm starts from one of the data
points, and in each iteration the cluster center estimate is assigned to be one of the data
points. The algorithm stops when two consecutive estimates become equal, i.e., yj+1 = yj

for some j ≥ 1. From part (a), in each iteration, each data point can be assigned to the cluster
center estimate at most one time; otherwise, f̂h,k,(yj+k) = f̂h,k(yj ) for some k ≥ 1 which
contradicts part (a). Since the number of data samples, n, is finite, after a finite number of
iterations, the convergence for the sequence {yj } occurs.

Proof of Theorem 2 Let X = {x1, . . . , xn}, n ≥ 2 denote the set of observed data points.
The subspace constrained mean shift sequence {yj } is defined recursively by

yj+1 = V jV
T
j m(yj ) + yj , (16)
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where

m(yj ) =
∑n

i=1 xig

(∥∥∥ yj −xi

h

∥∥∥2
)

∑n
i=1 g

(∥∥∥ yj −xi

h

∥∥∥2
) − yj , (17)

with yj ∈ X being one of the input data points, as required by the modified MS algorithm.
Here g(x) = −k′(x), where k is the profile of kernel K and V j is the D × (D − d) matrix
having orthonormal columns that are eigenvectors corresponding to the largest eigenvalues
of the local inverse covariance matrix �̂

−1
, defined in Eq. 6, evaluated at yj that is one of

the input data point according to the modified MS algorithm.
Since the profile k is bounded, the sequence {f̂ (yj )} is bounded, so it suffices to show

that the sequence is non-decreasing to prove the convergence. Since it is assumed that k is
a convex function, we have k(t2) − k(t1) ≥ g(t1)(t1 − t2) for all t1, t2 ≥ 0, where g = −k′.
This combined by the definition of f̂ in Eq. 2 yields

f̂ (yj+1) − f̂ (yj ) = c

nhD

n∑
i=1

(
k

(∥∥∥∥
yj+1 − xi

h

∥∥∥∥
2
)

− k

(∥∥∥∥
yj − xi

h

∥∥∥∥
2
)

≥ c

nhD+2

n∑
i=1

g

(∥∥∥∥
yj − xi

h

∥∥∥∥
2
)(

‖yj − xi‖2 − ‖yj+1 − xi‖2
)

= Cj

n∑
i=1

pj (i)
(
‖yj − xi‖2 − ‖yj+1 − xi‖2

)
, (18)

where c is the normalization factor,

pj (i) =
g

(
‖ yj −xi

h
‖2

)
∑n

k=1 g
(
‖ yj −xk

h
‖2

) , i = 1, . . . , n

and

Cj = c

nhD+2

n∑
i=1

g

( ∥∥∥∥
yj − xi

h

∥∥∥∥
2
)
.

Since by assumption k is strictly decreasing, then g(t) = −k′(t) > 0 for all t ≥ 0,
pj (1), . . . , pj (n) are well defined, positive, and sum to 1. Therefore, the mean shift vector
at (26) can be rewritten as

m(yj ) =
n∑

i=1

pj (i)(xi − yj ) = E[Zj ],

where Zj is a random vector in R
D with discrete probability distribution function given

by Pr(Zj = xi − yj ) = pj (i), i = 1, . . . , n, and yj ∈ X , j = 1, . . . ,. Thus, letting
T j = V jV

T
j , the update step in the proposed modified SCMS algorithm can be rewritten as

yj+1 − yj = T jm(yj ) = T jE[Zj ]. (19)
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Let W j be a D × D matrix representing any orthogonal projection onto the null space of
T j . Then, x = T jx + W jx for all x ∈ R

D , and T jx and W jy are orthogonal for all
x, y ∈ R

D . We can rewrite the last sum in Eq. 18 as follows

n∑
i=1

pj (i)
(
‖xi − yj‖2 − ‖xi − yj+1‖2

)

= E
[
‖Zj‖2

]
− E

[∥∥Zj − T jE[Zj ]
∥∥2]

= E
[
‖W jZj‖2 + ‖T jZj‖2

]
− E

[
‖W jZj‖2 + ∥∥T jZj − T jE[Zj ]

∥∥2]

= E
[
‖T jZj‖2

]
− E

[∥∥T jZj − E[T jZj ]
∥∥2]

= ∥∥E[T jZj ]
∥∥2 = ‖yj+1 − yj‖2,

where in the last equality, we applied the identity E[Z2] = Var[Z] + (E[Z])2, which is
valid for real random variables with finite variance, to the components of T jZj . Combining
this with Eq. 18, we obtain

f̂ (yj+1) − f̂ (yj ) ≥ Cj‖yj+1 − yj‖2, (20)

where Cj > 0 and ‖yj+1 − yj‖2 ≥ 03 which imply that {f̂ (yj )} is non-decreasing and
thus convergent, proving part (i) of the theorem.

To prove part (ii), we note that k(x) > 0 for all x ≥ 0. Therefore, (2) implies that
f̂ (y1) > 0, y1 ∈ X , so part (i) yields min{f̂ (yj ) : j ≥ 1} = f̂ (y1) > 0. But this in
turn implies that {yj } is a bounded sequence, since otherwise it would have a subsequence
{yjk

} such that limk→∞ ‖yjk
‖ = ∞ which, in view of limx→∞ k(x) = 0, would give

limk→∞ f̂ (yjk
) = 0, contradicting our uniform positive lower bound on the f̂ (yj ).

In view of the above, there exists R > 0 such that ‖yj − xi‖ ≤ R for all j ≥ 1 and
i = 1, . . . , n. Since g = −k′ is non-increasing on [0, ∞), we obtain

Cj = c

nhD+2

n∑
k=1

g

(∥∥∥yj − xk

h

∥∥∥2
)

≥ c

hD+2
g

(
R2

h2

)
= C,

where C > 0 since g(x) > 0 for all x ≥ 0. Thus, Eq. 20 implies

‖yj+1 − yj‖2 ≤ C−1
(
f̂ (yj+1) − f̂ (yj )

)
,

and since lim
j→∞

(
f̂ (yj+1) − f̂ (yj+1)

)
= 0 by part (i), we obtain lim

j→∞ ‖yj+1 − yj‖ = 0.

3The equality ‖yj+1 − yj‖2 = 0 happens only when the convergence occurs that Theorem 1 guarantees it
for the modified MS algorithm.
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Finally, to show (iii), we note that by definition (2) of f̂ ,

∇f̂ (yj ) = 2c

nhD+2

n∑
i=1

(xi − yj )g

( ∥∥∥∥
yj − xi

h

∥∥∥∥
2
)

= 2c

nhD+2

[
n∑

i=1

g

( ∥∥∥∥
yj − xi

h

∥∥∥∥
2
)] ⎡

⎣
∑n

i=1 xig
(
‖ xi−yj

h
‖2

)
∑n

i=1 g
(
‖ xi−yj

h
‖2

) − yj

⎤
⎦

= 2c

nhD+2

[
n∑

i=1

g

( ∥∥∥∥
yj − xi

h

∥∥∥∥
2
)]

m(yj ).

Therefore,

‖V T
j ∇f̂ (yj )‖ = 2c

nhD+2

[
n∑

i=1

g

( ∥∥∥∥
yj − xi

h

∥∥∥∥
2
)]

‖V T
j m(yj )‖.

SinceV j has orthonormal columns and T j = V jV
T
j , we have ‖T jm(yj )‖ = ‖V T

j m(yj )‖.
This and Eq. 19 yield

‖V T
j ∇f̂ (yj )‖ = 2c

nhD+2

[
n∑

i=1

g

(∥∥∥∥
yj − xi

h

∥∥∥∥
2
)]

‖yj+1 − yj‖

so part (iii) follows from part (ii) and the fact that the conditions on k ensure that g = −k′
is bounded.
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