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a b s t r a c t

Linear discriminant analysis (LDA) is a traditional statistical technique that reduces dimensionality while
preserving as much of the class discriminatory information as possible. The conventional form of the LDA
assumes that all the data are available in advance and the LDA feature space is computed by finding the
eigendecomposition of an appropriate matrix. However, there are situations where the data are presented
in a sequence and the LDA features are required to be updated incrementally by observing the new
incoming samples. Chatterjee and Roychowdhury proposed an algorithm for incrementally computing the
LDA features followed by Moghaddam et al. who accelerated the convergence rate of these algorithms. The
proposed algorithms by Moghaddam et al. are derived by applying the chain rule on an implicit cost
function. Since the authors have not had access to the cost function they could not analyze the
convergence of the proposed algorithms and the convergence of the proposed accelerated techniques
were not guaranteed. In this paper, we briefly review the previously proposed algorithms, then we derive
new algorithms to accelerate the convergence rate of the incremental LDA algorithm given by Chatterjee
and Roychowdhury. The proposed algorithms are derived by optimizing the step size in each iteration
using steepest descent and conjugate direction methods. We test the performance of the proposed
algorithms for incremental LDA on synthetic and real data sets. The simulation results confirm that the
proposed algorithms estimate the LDA features faster than the gradient descent based algorithm presented
by Moghaddam et al., and the algorithm proposed by Chatterjee and Roychowdhury.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Linear discriminant analysis (LDA) is a popular supervised tech-
nique for both dimensionality reduction and classification. The LDA
has beenwidely used as a powerful yet simple technique for different
applications in computer vision and pattern recognition community
(e.g., [1–7]). The LDA technique looks for a linear transformation of
the data into a lower dimensional space, for maximum discrimina-
tion between classes [8].

The typical implementation of the LDA technique requires that
all samples are available in advance. However, there are situations
where the entire data set is not available and the input data are
observed as a stream. In this case, it is desirable for the LDA feature
extraction to have the ability to update the computed LDA features
by observing the new samples without running the algorithm on

the whole data set. For example, in many real-time applications
such as mobile robotics or on-line face recognition, it is important
to update the extracted LDA features as soon as new observations
are available. An LDA feature extraction technique that can update
the LDA features by simply observing new samples is an incremental
LDA algorithm, and this idea has been extensively studied over the
last two decades.

There have been two main approaches to updating LDA features:
indirect and direct. In the indirect approach, the incremental algo-
rithms are used to update the matrices which are involved in
computing the LDA features and then the LDA features are computed
through solving an eigendecomposition problem. For example, Pang
et al. [9] presented incremental algorithms to update the within-class
and between-class scatter matrices and used them to update the LDA
features. Ye et al. [10] used an incremental dimension reduction (IDR)
algorithm with QR decomposition for adaptive computation of the
reduced forms of within-class and between-class scatter matrices.
The proposed algorithm by Uray et al. [11] involves performing PCA
on a augmented matrix and then updating the LDA features. Kim
et al. [12,13] used sufficient spanning approximation for updating the
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mixture scatter matrix, the between-class scatter matrix, and the
projected data matrix. None of these algorithms deals with the LDA
features directly, and updating the LDA features is instead done by
solving an eigenvalue decomposition problem.

In contrast to the techniques above, there are incremental algo-
rithms that update LDA features directly. Chatterjee and Roychowdh-
ury [14] proposed an incremental self-organized LDA algorithm for
updating the LDA features. The incremental LDA algorithm in [14] is
composed of two parts: incremental computation of Q �1=2, where Q
is the correlation matrix of the input data, and incremental principal
component analysis (PCA). In other work, Demir and Ozmehmet [15]
proposed online local learning algorithms for updating LDA features
incrementally using error-correcting and the Hebbian learning rules.
Both algorithms in [14,15] are highly dependent on the step size,
which can be difficult to set a priori. Moghaddam et al. [16–18]
derived new incremental algorithms to accelerate the convergence
rate of the proposed algorithm in [14]. The proposed algorithms are
derived based on the steepest descent, conjugate direction, Newton–
Raphson, and quasi-Newton methods.

Moghaddam et al. [16–18] used an implicit cost function to find the
optimal step size in order to accelerate the convergence rate. Since the
authors in [16–18] have not had access to the explicit cost function,
they could not guarantee the convergence of the proposed algorithms.

In this paper, we first briefly discuss the proposed algorithms in
[16,17]. Then we use the steepest descent and conjugate direction
methods to derive accelerated incremental algorithms for computing
Q �1=2. We use the cost function in [19] to derive the accelerated
Q �1=2 algorithm based on the steepest descent method. We also
present a new algorithm for incremental computation of Q �1=2

using the conjugate direction method, and we introduce its acceler-
ated version by optimizing the step size in each iteration. Finally, we
combine the proposed accelerated incremental Q �1=2 algorithm
with incremental PCA to derive an accelerated incremental LDA
algorithm.We test the performance of the proposed algorithms using
synthetic and real data sets and show that the proposed algorithms
give a reliable estimate of the LDA features in fewer iterations than
the algorithm in [14], and the gradient descent version in [16,17]. The
incremental nature of the proposed accelerated LDA algorithms
make them appropriate for fast feature extraction when the data
are presented as a stream and the features can be updated as soon as
each new observation is available.

The organization of the paper is as follows: in the next section,
a brief review of the LDA algorithm is given. The accelerated
incremental LDA feature extraction algorithm is described in
Section 3. We present the accelerated Q �1=2 algorithm in
Section 4. Section 5 is devoted to simulation results. Concluding
remarks are given in Section 6.

2. Linear discriminant analysis

Let xiARd; i¼ 1;2;… denote the observed data which belongs to
exactly one of the available K classes, ω1;…;ωK , and let PðωiÞ;
i¼ 1;…;K denote the prior probability of the ith class ωi. Let
mi; i¼ 1;…;K denote the mean vector for class ωi, i.e., mi ¼
EðxjxAωiÞ, and let Σi denote the covariance matrix of the ith class,
i.e.,Σi ¼ E½ðx�miÞðx�miÞt jxAωi�; i¼ 1;…;K . In order to achieve the
maximum class separability, in addition to dimensionality reduction,
the following three matrices are defined [20]:

1. Within-class scatter matrix ΣW :

ΣW ¼
XK
i ¼ 1

PðωiÞE½ðx�miÞðx�miÞt jxAωi� ¼
XK
i ¼ 1

PðωiÞΣi; ð1Þ

2. Between-class scatter matrix ΣB:

ΣB ¼
XK
i ¼ 1

PðωiÞðm�miÞðm�miÞt ; ð2Þ

3. Mixture scatter matrix Σm
1:

Σm ¼ E½ðx�mÞðx�mÞt � ¼ΣW þΣB; ð3Þ

where m is total mean vector, i.e., m¼ EðxÞ ¼ PK
i ¼ 1 PðωiÞmi. The

within-class scatter matrix, ΣW , represents the scatter of samples
around their class means, the between-class scatter matrix, ΣB,
represents the scatter of class means around the total mean, and the
mixture scatter matrix, Σm, is the covariance of data samples regard-
less of the class to which they belong. The LDA technique looks for the
direction in which maximum class separability is achieved by projec-
tion of the data into those directions. That is, after projection of the
data into the LDA feature space, all the samples belonging to the same
class stay close together and well separated from the samples of the
other classes. In order to quantify this, different measures of separation
have been defined, for example [20]

J1 ¼ TrðΣ�1
W ΣBÞ; J2 ¼

TrðΣBÞ
TrðΣW Þ; J3 ¼ ln JΣ�1

W ΣB J ; J4 ¼
det ΣB

det ΣW
:

ð4Þ
It can be shown that the LDA transformation matrix, ΦLDA;p, into a p-
dimensional (poD) space is given by p leading eigenvectors of
Σ�1

W ΣB [21]. Since RankðΣBÞrK�1, then the reduced dimension by
the LDA technique is at most K�1, i.e., prK�1. The between-class
scatter matrix, ΣB, is not in general a full rank matrix and using (3) it
can be replaced by Σm�ΣW . As a result, instead of finding leading
eigenvectors of Σ�1

W ΣB, one can solve the generalized eigenvalue
problem:

ΣmΦLDA ¼ΣWΦLDAΛ; ð5Þ
where Λ is the diagonal eigenvalue matrix and the desired p LDA
features are given by p columns of ΦLDA corresponding to the largest
eigenvalues of Λ [20]. Further manipulation of (5) reveals that the
above problem can be simplified to the following symmetric eigen-
value problem2:

Σ�1=2
W ΣmΣ�1=2

W Ψ¼ΨΛ; ð6Þ
where Ψ¼Σ1=2

W ΦLDA. Note that since in most of the real world
applications the statistics of the observed data are not available, the
above mentioned matrices can be found as [20]

Σm ¼ 1
n

Xn
i ¼ 1

ðxi�mÞðxi�mÞt ;ΣB ¼
1
n

XK
j ¼ 1

ωj ðmj�mÞðmj�mÞt
����

ΣW ¼ 1
n

XK
j ¼ 1

X
xAωj

ðx�mjÞðx�mjÞt ; ð7Þ

where n is the total number of samples, and jωjj; j¼ 1;…;K denotes
the size of class ωj, i.e.,

PK
j ¼ 1 jωjj ¼ n.

3. Fast incremental LDA feature extraction

As mentioned, the main LDA features are the eigenvectors of
Σ�1

W Σ associated with the largest eigenvalues. Let xkARD;

k¼ 1;2;…; denote the observed vector sequence such that xk

belongs to exactly one of K classes ω1;…;ωK . Define three new

1 This is also called the covariance matrix.
2 The within-scatter matrix, ΣW , is the sum of positive definite matrices,

therefore itself is also a positive definite matrix and Σ�1=2
W exists.
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sequences fykgk ¼ 1;2;…, fzkgk ¼ 1;2;…, and fukgk ¼ 1;2;… as follows:

yk ¼ xk�m
ωxk
k ; zk ¼ xk�mk; uk ¼Wkzk; ð8Þ

where m
ωxk
k denotes the sample mean of the class to which xk

belongs at the k-th iteration, Wk is estimate of the inverse of the
square root of the covariance matrix (next section is devoted to
incremental computation of Wk), and mk denotes the total mean
estimate at the k-th iteration, i.e. mk ¼

Pk
i ¼ 1 xi=k. Each new

incoming sample updates the total class mean and the class mean
to which it belongs, and keeps the other class means unchanged.
From Theorem 2 and Theorem 3 in [14], we have

lim
k-1

E zkztk
� �¼Σm; ð9Þ

lim
k-1

E yky
t
k

� �¼ΣW ; ð10Þ

lim
k-1

E ukut
k

� �¼Σ�1=2
W ΣmΣ�1=2

W : ð11Þ

Let Q �1=2 denote an algorithm that estimates the inverse of the
square root of the covariance matrix Σ3 of its input data, e.g., if

fxkgk ¼ 1;2;…, then the output is an estimate of Σ�1=2. In other

words, the Q �1=2 algorithm takes xk's as its input and generates a
sequence fWkgk ¼ 1;2;… that converges to the inverse of the square
root of the covariance matrix of xk's. Eq. (10) implies that if the

Q �1=2 algorithm is trained using the sequence fykgk ¼ 1;2;…, then

the output of the Q �1=2 algorithm will converge to Σ�1=2
W , i.e.,

limk-1Wk ¼Σ�1=2
W .

Chatterjee and Roychowdhury [14] showed that, in order to
extract the leading LDA features incrementally, we need to
compute the leading eigenvectors of the correlation matrix of
the sequence fukgk ¼ 1;2;…. The following formula was proposed for
incrementally computing the p ðprnÞ leading eigenvectors of the
correlation matrix of a sequence xkARn; k¼ 1;2;… [22,23]:4

Φkþ1 ¼Φkþγkðxkxt
kΦk�ΦkUT ½Φt

kxkxt
kΦk�Þ; ð12Þ

where Φk is a n� p matrix whose columns converge to p leading
eigenvectors of the correlation matrix Q associated with the largest
eigenvalues, γk is the step size, and the operator UT½:� sets all the
elements below the main diagonal of its entry to zero. LetΨ andΛ1

denote the corresponding eigenvector and eigenvalue matrices of

Σ�1=2
W ΣmΣ�1=2

W , i.e., Σ�1=2
W ΣmΣ�1=2

W Ψ¼ΨΛ1. Let ΦLDA and Λ2

denote the corresponding eigenvector and eigenvalue matrices of

Σ�1
W Σ, i.e., Σ�1

W ΣΦLDA ¼ΦLDAΛ2. The incremental LDA feature

extraction is done in two steps: (1) using Q �1=2 algorithm to

estimate Σ�1=2
W , (2) computing the eigenvector matrix of

Σ�1=2
W ΣΣ�1=2

W , Ψ, using (12). Since Σ�1=2
W Ψ¼ΦLDA, the product

of the outputs of these two steps provides the desired LDA features,
i.e., ΦLDA [14]. In the next section, we first introduce incremental

algorithms for Q �1=2 and then by optimizing the learning rate, we

present accelerated versions of the Q �1=2 algorithm. Note that find-

ing the optimal learning rate for the Q �1=2 algorithmwill accelerate
the convergence rate of step (i), which leads a faster estimate of the
desired LDA features. The proposed accelerated incremental LDA
feature extraction algorithm is summarized in Algorithm 1. The
structure of the proposed accelerated incremental LDA feature
extraction is also given in Fig. 1.

4. A fast Q�1/2 algorithm

The authors in [14] showed that incremental LDA feature
extraction involves the computation of Q �1=2, where Q is the
symmetric positive definite correlation matrix of a uniformly bou-
nded random vector sequence xiARD; i¼ 1;2;…. They proposed
an algorithm, called the Q �1=2 algorithm, to find Q �1=2 incremen-
tally as follows:

Wkþ1 ¼WkþηkðI�Wkxkþ1xt
kþ1W

t
kÞ; ð13Þ

where Wkþ1 represents the Q �1=2 estimate at the kþ1-th itera-
tion, xkþ1 is the new incoming input vector at time kþ1, ηk is the
step size, and W0ARn�n is chosen to be a symmetric positive
definite matrix. Using stochastic approximation, Chatterjee and
Roychowdhury [14] proved that, under certain conditions, the
sequence fWkgk ¼ 0;1;2;… converges to Q �1=2 with unit probability,
i.e., limk-1Wk ¼Q �1=2. The proposed incremental Q �1=2 algo-
rithm in [14] suffers from a low convergence rate, due to using a
fixed or decreasing step size. The authors in [16,17] used different
techniques, including the steepest descent and conjugate direction
methods, to find the optimal step size in each iteration in order to
accelerate the convergence rate of the incremental Q �1=2 algo-
rithm. They showed that xkþ1xt

kþ1 in (13) can be replaced by
Q kþ1, which is the correlation matrix estimate using the first kþ1
incoming samples5. Therefore, the incremental Q �1=2 algorithm in
(13) can be rewritten in the following form:

Wkþ1 ¼WkþηkGkþ1;

Gkþ1 ¼ I�WkQ kþ1W
t
k: ð14Þ

The correlation matrix estimate Q k can be updated incrementally
by [14]

Q kþ1 ¼Q kþθkðxkþ1xt
kþ1�Q kÞ; ð15Þ

where, for a stationary process, we have θ¼ 1=ðkþ1Þ. Note that if
we use the covariance estimate, Σkþ1, instead of Q kþ1 in (14), the
sequence converges to Σ�1=2. The covariance estimate Σkþ1 can
be updated by

Σkþ1 ¼Σkþθkððxkþ1�mkþ1Þðxkþ1�mkþ1Þt�ΣkÞ; ð16Þ
where θ is 1=ðkþ1Þ for a stationary process and the mean vector
mkþ1 can be estimated adaptively as follows [14]:

mkþ1 ¼mkþκkðxkþ1�mkÞ; ð17Þ
where for a stationary process we have κk ¼ 1=ðkþ1Þ.

Replacing Q kþ1 in (14) by the correlation matrix Q and
comparing it to the general form of an adaptive algorithm [27]
reveals that the updating function GðWÞ ¼ I�WQW can be con-
sidered as the negative of the gradient of some cost function JðWÞ
with respect to W, i.e.,

�∇JðWÞ ¼ GðWÞ ¼ I�WQW: ð18Þ
The cost function JðWÞ and its derivative with respect to the step
size can be used to find the optimal step size ηk; k¼ 1;2;… in each
iteration. Since the cost function JðWÞ was unknown, the authors
in [16,17] could not compute the derivative of the cost function
JðWÞ with respect to ηk directly. Instead, they proposed using the
chain rule in order to break the derivative into two computable
parts. The proposed technique by [16,17] works fine when all the
elements of W are independent of each other, otherwise the
proposed chain rule formula may not give a right answer, as
explained in Section 4.2. Furthermore, since the authors in [16,17]
have not had access to the cost function they could not analyse the
convergence of the proposed accelerated algorithms. In the

3 For simplicity, we use Σ instead of Σm .
4 There are other techniques for incremental computing of the eigenvectors of

a correlation matrix, for example see [24–26].

5 The authors in [16,17] also introduced new formula for online estimation of
the correlation matrix.
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followings, We first briefly review the Q �1=2 algorithm using the
gradient descent method. Then we present the correct forms of
the optimal step size computed using the steepest descent and
conjugate direction methods in order to accelerate the conver-
gence rate of the incremental Q �1=2 algorithm.

4.1. Gradient descent method

Aliyari Ghassabeh and Moghaddam [19] introduced a cost func-
tion JðWÞ with the global minimum at Q �1=2 and showed that
applying the gradient descent method on JðWÞ would give the
adaptive algorithm in (14).6 The proposed cost function JðWÞ : C-R

is given as [19]

JðWÞ ¼ 1
3
Tr ðWQ 1=2�IÞ2ðWþ2Q �1=2Þ
h i

; ð19Þ

where C�Rn�n is the set of all symmetric positive definite matrices
W that commute with Q 1=2, i.e., WQ1=2 ¼Q 1=2W, Tr½:� is the matrix
trace function, and I denotes the identity matrix. By definition, the
cost function JðWÞ in (19) is one third of the trace of the product of a
symmetric semi-positive definite matrix, ðWQ1=2�IÞ2, with a sym-
metric positive definite matrix, Wþ2Q �1=2. Hence, the cost func-
tion itself is a semi-positive definite matrix [28], i.e., JðWÞZ0 for all
WAC. By taking the gradient of the cost function in (19) with
respect to W and equating it to zero, we obtain

∇JðWÞ ¼WQW�I¼ 0: ð20Þ
Eq. (20) reveals that, in the domain C, the cost function JðWÞ has a
unique stationary point that occurs at Q �1=2. Since JðQ �1=2Þ ¼ 0,
then the matrix Q �1=2 is the unique global minimum of the cost
function JðWÞ over the convex set C. Therefore, the gradient descent
algorithm can be used to minimize the cost function JðWÞ recursively
in order to find the global minimum, Q �1=2. By applying the gradient
descent method on the cost function JðWÞ, we obtain the following
recursive definition:

Wkþ1 ¼WkþηkðI�WkQ kþ1WkÞ: ð21Þ
Since the true value of Q is not known in advance, we replace it

by its estimate at the ðkþ1Þ-th iteration.7 It is straightforward to
show that if W0 is a symmetric matrix that commutes with Q 1=2,
then the generated sequence fWkgk ¼ 0;1;… will also have the same
properties. The authors in [14] showed that if W0 is a semi-
positive definite matrix, then there exists a uniform upper bound
for the step size ηk such that the members of the generated

sequence fWkgk ¼ 0;1;2;… also remain semi-positive definite matrices
(Lemma 5 in [14]). Therefore, if the initial guess W0 is chosen to be
in C, under certain conditions the sequence fWkgk ¼ 0;1;… remains in
the domain of the cost function, i.e. WkAC; k¼ 1;2;…. The cost
function JðWÞ along the sequence fWkgk ¼ 0;1;… is a decreasing
sequence and we have

JðW0ÞZ JðW1ÞZ JðW2ÞZ⋯Z0: ð22Þ
The boundedness from below and monotonically decreasing prop-
erties of the sequence fJðWkÞgk ¼ 0;1;… implies the convergence of
fJðWkÞgk ¼ 0;1;… [29]. For the gradient descent algorithm the conver-
gence occurs when the gradient of the cost function becomes zero.
Since the only stationary point of the cost function JðWÞ on the
domain C happens at Q �1=2, therefore the sequence fWkg converges
to Q �1=2, i.e., limk-1Wk ¼Q �1=2 and limk-1JðWkÞ ¼ 0.

4.2. Steepest descent method

In steepest descent, the optimal step size ηk;opt at the kþ1-th
iteration is found by equating the first derivative of the cost
function JðWÞ with respect to ηkþ1 to zero [30]. The authors in
[16,17] claimed that the first derivative can be written as product
of two parts using the chain rule as follows (Eq. (12) in [16] and
Eq. (15) in [17]):

∂JðWkþ1Þ
∂ηk

¼ JðWkþ1Þ
∂Wkþ1

� ∂Wkþ1

∂ηk
; ð23Þ

where W represent the vector form of matrix W and ‘ � ’ is the
inner product between two vectors. The above equality is correct
when all the elements of matrix Wkþ1 are independent of each
other. Otherwise, Eq. (23) may not be correct in general. For
example consider the following situation where diagonal elements
of matrix W are dependent and the cost function is defined as the
trace of its matrix input

W¼
δ w1;2

w2;1 2δ

 !
and JðWÞ ¼ TrðWÞ: ð24Þ

By taking the direct derivative of the cost function with respect to
δ, we get ∂JðWÞ=∂δ¼ ∂3δ=∂δ¼ 3. Using the chain rule in (23), we
obtain

JðWÞ
∂W

¼ 3 0
0 1:5

� �
and

W
∂δ

¼ 1 0
0 2

� �
; ð25Þ

where their inner product, 6, is not equal to ∂JðWÞ=∂δ¼ 3.
Furthermore, since the authors in [16,17] have not had access to the

explicit form of the cost function, they could not show the conve-
rgence of the proposed algorithms. Hence, although the resulting
optimal step size seem working fine in simulations, lack of an explicit
cost functionmakes them less appealing. In the following by exploiting
the explicit cost function we derive new accelerated algorithms for

Fig. 1. Accelerated incremental LDA feature extraction. The random vector sequence fxkgk ¼ 1;2;… is observed sequentially and is used to generate two new sequences
fykgk ¼ 1;2;… and fzkgk ¼ 1;2;… . The sequence fykgk ¼ 1;2;… is used to train accelerated Q �1=2 algorithm. The new sequence fukgk ¼ 1;2;… is generated by product of the output of
Q �1=2 algorithm and the sequence fzkgk ¼ 1;2;… . The p leading eigenvectors of the correlation matrix of the sequence fukg and output of Q �1=2 algorithm are used to update
the LDA features.

6 Specifically, applying the gradient descent method on the introduced cost
function in [19] gives Wkþ1 ¼WkþηkðI�WkQWkÞ. Since Q is not available in
advance, it will be replaced by its estimate Q kþ1, which asymptotically converges
to Q .

7 Note that replacing Q kþ1 in (21) by xkþ1xt
kþ1 (as an estimate of the correlation

matrix) gives (13). Eq. (21) was proposed in [16,17] as a smooth version of (13).
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incremental LDA using the steepest descent and conjugate direction
(next subsection) methods.

By taking the derivative of (19) with respect to the step size ηk,
equating to zero, and a few additional operations (for details see
the appendix) we get

∂JðWkþ1Þ
∂ηk

¼ aη2kþbηkþc¼ 0; ð26Þ

where a¼ TrðG3
kQ Þ, b¼ 2 TrðWkG

2
kQ Þ, and c¼ TrðW2

kGkQ Þ�TrðGkÞ.
Eq. (26) is a quadratic equation and the roots, the optimal step sizes,
are given by

ηk;opt ¼
�b7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�4ac

p
2a

: ð27Þ

Since the step size ηk cannot be a negative number, only the root with
the positive sign can be considered as an optimal step size and since
the correlation matrix Q is not available, it must be replaced by its
estimate Q kþ1 (as the number of the observed samples increases we
get a better estimate of theQ ). The optimal step size using the steepest
descent method is given by

ηk;opt ¼
�bkþ1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2kþ1�4akþ1ckþ1

q
2akþ1

; ð28Þ

where akþ1 ¼ TrðG3
kQ kþ1Þ, bkþ1 ¼ 2 TrðWkG

2
kQ kþ1Þ, and ckþ1 ¼

TrðW2
kGkQ kþ1Þ�TrðGkÞ. Therefore, the accelerated incremental

Q �1=2 algorithm using the steepest descent method has the following
form:

Wkþ1 ¼Wkþηk;optðI�WkQ kþ1W
t
kÞ; ð29Þ

where the correlation estimate Q kþ1 is given in (15) and ηk;opt in each

iteration is computed using (28). The accelerated Q �1=2 algorithm
(based on the steepest descent method) is summarized in Algorithm 2.

4.3. Conjugate direction method

The adaptive conjugate direction algorithm for minimizing a
cost function JðWÞ can be written as [31]

Wkþ1 ¼WkþαkDk;

Dkþ1 ¼ �∇WJðWkþ1ÞþβkDk; ð30Þ
where the scalar βk can be chosen by several different methods

[32]. For simulations in this paper, we computed β based on the
Polak–Reeves (PR) method as [32]

βk ¼
J∇JðWkþ1ÞT ð∇JðWkþ1Þ�∇JðWkþ1ÞJ

J∇JðWkÞJ2
ð31Þ

where J :J denotes the matrix norm. It is common to initialize D0

to be the gradient of the cost function at W0 with negative sign,
i.e., D0 ¼ �∇JðW0Þ. Using (18) and (30) the adaptive conjugate
direction algorithm for computing Q �1=2 is

D0 ¼ I�W0QW0;

Wkþ1 ¼WkþαkDk;

Dkþ1 ¼ ðI�Wkþ1QWkþ1ÞþβkDk; ð32Þ
where βk is computed using (31). Since the data are presented as a
stream, the correlation matrix Q is not known in advance. We
need to replace Q in (32) by its estimate at kþ1-th iteration which
gives a new algorithm for incremental computation of Q �1=2

based on conjugate direction method as follows:

D0 ¼ I�W0Q 0W0;

Wkþ1 ¼WkþαkDk;

Dkþ1 ¼ ðI�Wkþ1Q kþ1Wkþ1ÞþβkDk; ð33Þ
where Q 0 is the initial estimate of the correlation matrix. The
algorithm in (33) is a new algorithm for incremental computing of
Q �1=2 based on conjugate direction method.

To find the optimal value of the step size in order to accelerate
the convergence rate of the proposed Q �1=2 algorithm in (33), we
need to find a step size α to minimize f ðαÞ ¼ JðWkþαDkÞ, i.e.,
αk;opt ¼ arg minαARJðWkþαDkÞ. This goal can be achieved by
simply taking the first derivative of the cost function Jwith respect
to αk and equate it to zero. Expanding (19) and using (32), the cost
function JðWkþ1Þ can be written as follows:

JðWkþ1Þ ¼
1
3
Tr ðWkþαkDkÞ3Q
� 	

�TrðWkþαkDkÞþ
2
3
TrðQ �1=2Þ;

ð34Þ
where Dk is given in (32). By taking the first derivative of the cost
function JðWkþ1Þ with respect to αk and equating to zero, we
obtain (see details in Appendix)

∂JðWkþ1Þ
∂αk

¼ akα2
kþbkαkþck ¼ 0; ð35Þ
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Fig. 2. Estimating Q �1=2 using the steepest descent method. The proposed algorithm in [14], the gradient descent based algorithm in [16,17], and the proposed algorithm in
(33) use a fixed step size ηk ¼ 0:01 (αk for algorithm in (33)) in the left subfigure and use a decreasing step size ηk ¼ 1=ð50þ0:1� kÞ (αk for algorithm in (33)) in the right
subfigure. The proposed Q �1=2 algorithm based on the steepest descent method finds the optimal step size in each iteration.
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where

ak ¼ TrðD3
kQ kþ1Þ; bk ¼ 2

3 Tr ðWkD
2
kþD2

kWkþDkWkDkÞQ kþ1

� 	
;

ck ¼ 1
3 Tr ðW2

kDkþWkDkWkþDkW
2
k

� 	
Q kþ1

	
�TrðDkÞ: ð36Þ

Note that in the aforementioned formulas the correlation matrix Q
is replaced by its estimate Q kþ1. The only acceptable solution of

the quadratic equation in (23) is given by

αk;opt ¼
�bkþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2k�4akck

q
2ak

; ð37Þ

where αk;opt is the optimal step size in order to accelerate the
convergence rate of the incremental Q �1=2 algorithm in (32).

Algorithm 1. Accelerated incremental LDA feature extraction.

Y. Aliyari Ghassabeh et al. / Pattern Recognition 48 (2015) 1999–20122004



5. Simulation results

In this section we test the performance of the proposed learning
algorithms for incremental LDA feature extraction. To this end, we first
compare the performance of the proposed accelerated incremental
Q �1=2 algorithm with the algorithm proposed in [14], and the
gradient descent based algorithm in [17].8 Thenwe apply the proposed
accelerated incremental LDA technique for feature extraction from
both synthetic and real data sets. For all simulations in this paper it is

assumed that no prior knowledge about the nature or statistics of the
input data is available. The random input vectors are observed one-by-
one sequentially and used to train the proposed systems.

5.1. Accelerated incremental Q�1/2 algorithm

In this simulation, we use the second 10�10 matrix given in
[33] and multiply it by 20.9 The input sequence fxkAR10gk ¼ 1;2;… is
generated from a zero mean 10-dimensional Gaussian distribution

Algorithm 2. Accelerated Q �1=2 algorithm.

8 The gradient descent based algorithm in [17], can be considered as the
smooth version of the algorithm in [14]. 9 It is the matrix that has been used in [16,17].
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with the covariance matrix given by

8:54
0:22 113:80
�0:10 �1:38 0:60
�0:50 �5:64 1:96 56:00
1:60 �14:62 0:90 �2:14 68:80
�1:58 1:80 �0:82 3:0 5:06 45:40
�0:38 �2:48 0:46 �3:86 5:02 �3:60 6:54
1:48 0:20 0:44 1:90 6:32 5:90 0:54 14:54
1:78 8:64 �0:70 �4:52 0:78 �0:78 0:52 �1:92 14:30
0:10 �2:06 0:24 0:92 �0:20 �2:26 �0:32 �0:34 �0:18 1:30

2
6666666666666666664

3
7777777777777777775

ð38Þ

We generate 700 samples in order to train the proposed Q �1=2

algorithms. The members of the input sequence are given one-by-
one to each algorithm and the relative error in each iteration is
recorded. The relative error is given by

ek ¼
JWk�Q �1=2 JF

JQ �1=2 JF
; k¼ 1;2;…;700; ð39Þ

where J :JF denote the Frobenius-norm, Wk represents the estimate
at the k-th iteration, and Q is the actual covariance10 matrix in (38).

The initial value of the correlation matrix Q 0 is estimated using the
first 10 samples using (15) and the initial step size for all algorithms is

empirically chosen to be 0.01. We compare the performance of the
proposed algorithm to estimate Q �1=2 with the algorithm given in
[14], and the gradient descent based algorithm in [16,17] in two
scenarios. We first use a fixed step size, ηk ¼ 0:01, for the algorithms
in [14,16,17] thenwe repeat the simulations with a decreasing step size
given by ηk ¼ 1=ð50þk� 0:1Þ. For a better illustration, we scale all
relative errors to the interval ½0;1�. Fig. 2 compares the relative errors
resulting from estimation of the correlation matrix given in (38) for
different algorithms as functions of the number of iterations. All the
algorithms in Fig. 2 start with the step size η¼ 0:01. Although the
initial condition for the proposed algorithm based on the steepest
descent method is similar to the other algorithms, it is clear from Fig. 2
that the proposed algorithm outperforms all other algorithms in both
cases (fixed and decreasing step size) and reaches a low error in far
fewer iterations. We repeat a similar experiment and compare the
performance of the previously given algorithms with the proposed
accelerated Q �1=2 algorithm based on the conjugate direction method
in Fig. 3. The algorithm based on the conjugate direction method in
(33) uses either a fixed or decreasing step size, αk, but the accelerated
version finds the optimal step size using (37) in each iteration. The
proposed accelerated algorithm based on the conjugate direction
method provides a small relative error in fewer iterations compared
to existing algorithms. Table 1 compares the amount of error in
estimating the correlation matrix in (38) for different numbers of
iterations. It is clear from Table 1 that the proposed accelerated
algorithms based on the steepest descent and conjugate direction
methods give an accurate estimate of Q �1=2 in fewer number of

Table 1

The scaled normalized error of estimating Q �1=2 as a function of number of iterations for different algorithms. The fixed step size is η¼ 0:01 and the decreasing step size is
ηk ¼ 1=ð50þ0:1� kÞ.

Method Number of iterations

2 10 50 80 150 250 500 700

Method in [14], fixed η 0.994 0.961 0.832 0.748 0.589 0.402 0.199 0.161
Method in [14], decreasing ηk 0.992 0.941 0.749 0.637 0.461 0.281 0.166 0.147
Gradient descent based method in [16,17], fixed η 0.995 0.961 0.832 0.747 0.580 0.388 0.135 0.072
Gradient descent based method in [16,17], decreasing ηk 0.992 0.939 0.746 0.629 0.441 0.260 0.089 0.062
Steepest descent based method 0.915 0.417 0.384 0.286 0.164 0.135 0.074 0.059
Conjugate direction, fixed η 0.995 0.958 0.825 0.739 0.571 0.383 0.131 0.072
Conjugate direction, decreasing ηk 0.991 0.934 0.739 0.627 0.438 0.259 0.094 0.064
Accelerated conjugate direction 0.936 0.791 0.205 0.171 0.124 0.107 0.074 0.057
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Fig. 3. Estimated Q �1=2 using the accelerated conjugate direction method. The proposed algorithm in [14], the gradient descent based algorithm in [16,17], and the proposed
algorithm in (33) use a fixed step size ηk ¼ 0:01 (αk for algorithm in (33)) in the first figure and use a decreasing step size ηk ¼ 1=ð50þ0:1� kÞ (αk for algorithm in (33)) in the
second figure. The proposed accelerated Q �1=2 algorithm based on the conjugate direction method finds the optimal step size in each iteration.

10 Note that in this simulation, the correlation and covariance matrices
are equal.
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iterations comparing with the given algorithm in [14], and the gradient
descent based algorithm in [16,17].

5.2. Iris data set

The Iris data set is a very popular data sets in the pattern
recognition community.11 The data set contains 50 samples from each
of three species of iris, namely setosa, versicolor, and virginica. Four
features from each sample were measured: the length and width of

the sepals and the petals, in centimetres. Therefore, the input sequence
consists of 150 observations of four-dimensional vectors. The sequence
of four-dimensional vectors are used to train the proposed accelerated
incremental Q �1=2 algorithm and the output of Q �1=2 algorithm (i.e.,
Σ�1=2

W ) is used to extract two leading LDA features. For the Q �1=2

algorithm we set the initial step sizes for all algorithms to be 0.1. The
algorithm in [14], and the gradient descent based algorithm in [16,17]
use a decreasing step size given by 1=ð10þ i� 0:15Þ and the proposed
algorithms based on the steepest descent method and accelerated
conjugate directionmethod find the optimal step size in each iteration.
Fig. 4 compares the relative errors resulting from each algorithm on
estimating Σ�1=2

W as a function of number of iteration. Clearly, the
proposed algorithm gives a good estimate ofΣ�1=2

W in fewer iterations
compared with existing algorithms. The normalized errors of

Table 2

The scaled relative error of estimating Σ�1=2
W for the Iris data set as a function of the number of iterations for different algorithms. The algorithms in [14,16,17] use a

decreasing step size given by 1=ð10þ i� 0:15Þ. The initial step size for the proposed accelerated algorithms based on the steepest descent and conjugate direction is set to
1=10.

Method Number of iterations

2 5 20 40 75 100 130 150

Method in [14] 0.983 0.933 0.717 0.491 0.313 0.244 0.257 0.221
Gradient descent based method in [16,17] 0.983 0.933 0.719 0.512 0.284 0.203 0.150 0.125
Steepest descent based method 0.854 0.622 0.561 0.309 0.186 0.052 0.015 0.005
Accelerated conjugate direction method 1.165 0.712 0.566 0.306 0.220 0.032 0.025 0.011
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Fig. 5. This figure compares the performance of the steepest descent method with the algorithm in [14] and the gradient descent based algorithm in [16,17]. The left figure
shows the angle between the estimated first LDA feature and the actual first LDA features as a function of number of iterations for different algorithms. The right figure shows
the angle between the estimated second LDA feature and the actual second LDA features as a function of number of iterations for different algorithms
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Fig. 4. The left side compares the performance of the proposed algorithm based on the steepest descent method with the algorithm in [14] and the gradient descent based
algorithm in [17] for estimating Σ�1=2

W . The right side compares the performance of the proposed algorithm based on the conjugate direction method with the algorithms in [14,17].

11 According to UC Irvine machine learning repository, the data set is the most
popular set with 569;993 hits since 2007. These data can be downloaded at http://
archive.ics.uci.edu/ml/datasets/Iris.
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estimating Σ�1=2
W for different numbers of iterations are shown in

Table 2. Fig. 5 compares the performance of the proposed algorithms
based on the steepest descent and conjugate direction methods to
estimate the first LDA feature with algorithms given in [14,16,17]. Here,
as the number of iterations increases, the first LDA feature estimated
by the proposed technique moves towards the actual first LDA feature
faster than existing techniques. Similar graphs are shown in Fig. 6 for
estimating the second LDA feature. The angles between the estimated
LDA features and actual LDA features resulting from the proposed
algorithms and the algorithms in [14,16,17] are given in Tables 3 and 4.
In Tables 3 and 4 the angles either converges to zero or to 1801. When
the angle converges to zero, the algorithm gives us LDA direction a,
and when the angle converges to 180, the algorithm gives us the LDA
direction �a. Note that, in LDA both a and �a can be considered as
the same LDA features. In other words, projection of an arbitrary
vector x in direction of both a and �a gives the same vector.12 Fig. 7
depicts the projection of the Iris data set into the estimated LDA
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Fig. 6. This figure compares the performance of the conjugate direction method with the algorithm in [14] and the gradient descent based algorithm in [16,17]. The left
figure shows the angle between the estimated first LDA feature and the actual first LDA features as a function of number of iterations for different algorithms. The right figure
shows the angle between the estimated second LDA feature and the actual second LDA features as a function of number of iterations for different algorithms

Table 3
The angle between the first estimated LDA feature and the actual LDA feature as a function of the number of iterations for different algorithms.

Method Number of iterations

2 5 20 40 75 100 130 150

Method in [14] 19.24 19.60 12.47 9.91 3.82 4.82 6.66 4.01
Gradient descent based method in [16,17] 18.80 16.45 12.03 8.36 4.26 3.28 2.63 2.22
Steepest descent based method 15.52 9.86 9.59 4.82 2.09 1.11 0.32 0.18
Accelerated conjugate direction method 19.23 20.09 9.80 4.80 2.48 1.29 0.21 0.35

Table 4
The angle between the second estimated LDA feature and the actual LDA feature as a function of the number of iterations for different algorithms.

Method Number of iterations

2 5 20 40 75 100 130 150

Method in [14] 160.17 160.24 166.33 170.62 173.29 178.02 176.50 175.98
Gradient descent based method in [16,17] 159.96 162.06 166.60 170.46 174.05 175.64 176.75 177.27
Steepest descent based method 164.61 168.26 174.37 173.97 178.40 178.74 179.57 179.81
Accelerated conjugate direction method 160.72 158.95 174.30 174.16 176.89 178.55 179.86 179.63
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Fig. 7. Projection of four-dimensional samples of the Iris data set into estimated
two-dimensional LDA-feature space using the proposed steepest descent method.

12 The projection of x in the direction of a is ðx � aÞa¼ JxJ JaJ cos ðθÞa and in the
direction of �a is similarly ðx � ð�aÞÞð�aÞ ¼ JxJ JaJ cos ð180�θÞð�aÞ ¼ JxJ JaJ
cos ðθÞa.

Y. Aliyari Ghassabeh et al. / Pattern Recognition 48 (2015) 1999–20122008



feature space using the proposed steepest descent method. It can be
observed from Fig. 7 that although the dimensionality of the samples
reduced from four to two, three classes are linearly separable.

5.3. SRBCT data set

The small round blue cell tumors (SRBCTs) data set [34] contains
information of 63 samples and 2308 genes. The samples are distributed
in four classes: 23 Ewing's sarcoma (EWS), 8 Burkitt's lymphoma (BL),
12 neuroblastoma (NB), and 20 rhabdomyosarcoma (RMS). Each class
has widely differing prognoses and treatment options, making it
extremely important that doctors are able to classify the tumor category
quickly and accurately. Since the dimensionality of the input data is
much bigger than the number of samples, the within-class scatter
matrix (ΣW ) will be singular and the LDA features can therefore not be
computed. To solve this problem, we first reduce the dimensionality of
the data set to 50 by applying the PCA and projecting the data into
leading 50 principal components (since the first 50 eigenvalues of the
covariance matrix dominate the rest).13 Then we use the sequence of

50-dimensional data to train the proposed algorithms. Fig. 8 compares
the performance of the proposed algorithm based on the steepest
descent method to estimate Σ�1=2

W with the algorithm given in [17].
The initial step size for both algorithms is empirically set to η0 ¼ 0:008.
Fig. 8 shows that the proposed algorithm provides a low estimation
error in fewer iterations by optimizing the learning rate in each
iteration. Fig. 8 also shows the angle between the estimated three
leading LDA features and the actual LDA features. It is clear from the
right side of Fig. 8 that the angle between all three estimates and the
actual LDA features becomes negligible after about 40 iterations. The
projection of 50-dimensional samples into a 3-dimensional estimated
LDA feature space is shown in Fig. 9. It can be observed from Fig. 9 that
although the dimensionality is reduced from 50 into 3, the four classes
are linearly separable.

5.4. Extended Yale Face Database B

To show the effectiveness of the proposed structure for incremen-
tal LDA feature extraction, we implement it on the extended Yale face
database B14 [35]. The extended Yale face database B contains face
images of 28 individuals and around 64 near-frontal images under
different illuminations per individual [36]. We selected 5 individuals
with 64 images per individual (a total of 320 face images), cropped
every face image to remove the background, and resized them to
32�32 pixels [37]. Therefore, each face image is represented by a
1024-dimensional (32�32) vector. The histogram for all face images is
equalized in order to spreads out the intensity in an image and makes
the resultant image as flat as possible [38]. Fig. 10 shows the cropped,
histogram-equalized face images of five subjects under different poses
and illumination conditions. Before applying the proposed algorithm,
we reduce the dimensionality of the face images using the PCA
algorithm. Computing the eigenvalues of the covariance matrix of
the face images15 reveals that the first three largest eigenvalues are
33.436, 8.965, and 6.737, but the fortieth eigenvalue drops to 0.082.
Therefore, we only choose 40 significant eigenvectors corresponding
to the largest eigenvalues and reduce the dimensionality of the face
images to 40 by projecting them into the feature space spanned by the
significant eigenvectors of the covariance matrix. Fig. 11 shows
eigenfaces [39] corresponding to the 40 significant eigenvectors of
the covariance matrix. The 40-dimensional vectors are fed into the
proposed incremental LDA feature extraction algorithm sequentially.
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Fig. 8. The left part compares the performance of the proposed algorithm based on the steepest descent method to estimate Σ�1=2
W with the gradient descent algorithm given

in [17]. The right side shows the angle between the estimated leading LDA features and actual leading LDA features as a function of the number of iterations.
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13 For this part, we assumed that the whole data set is available in advance, but after
dimensionality reduction we trained the proposed algorithms using the sequential data.

14 The Yale Face Database B is available online at http://vision.ucsd.edu/leekc/
ExtYaleDatabase/ExtYaleB.html.

15 The covariance matrix is computed using the vectorized representation of
face images.
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For the Q �1=2 algorithm, we start with the identity matrix and the
estimate improves by observing new samples. Fig. 12 shows the angle
between the estimated significant LDA features and actual ones as a
function of number of iterations. It can be observed from Fig. 12 that as
the number of iterations increases (i.e., the proposed algorithm
observes more samples) the angle reduces and the proposed algo-
rithm provides a better estimate of significant LDA features. For a

better understanding of the performance of the proposed structure,
the distribution of the face images in the estimated three-dimensional
LDA feature space for different number of iterations is shown in Fig. 13.
The top left side of Fig. 13 shows the projection of face images into
estimated LDA feature space after just 5 iterations. It can be observed
that five subjects are mixed and are not linearly separable, due to an

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

Number of iterations

A
ng

le
 b

et
w

ee
n 

es
tim

at
ed

 a
nd

 a
ct

ua
l f

ea
tu

re

First LDA feature
Second LDA feature
Third LDA feature
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Fig. 10. Face images of 5 individuals that have been used in our simulations.
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different number of iterations.

Fig. 11. Eigenfaces corresponding to the 40 significant eigenvectors of the covariance matrix of the vectorized face images.
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inaccurate estimate of LDA features. As the number of the iterations
increases (i.e., the proposed structure observes more face images), the
classes gradually start to separate from each other and the overlapping
between them decreases. Finally, after 320 iterations, the proposed
structure gives a reliable estimate of the significant LDA features and
the five subjects are almost linearly separable as it is shown in the
bottom right of Fig. 13.

6. Conclusion

Chatterjee and Roychowdhury showed that finding the LDA

features incrementally involves computing Σ�1=2
W using a fixed or

decreasing step size [14]. The proposed technique in [14] suffered
from low convergence rate. In this paper, we apply the steepest
descent and conjugate direction methods on an explicit cost function
to find the optimal step size in each iterations in order to accelerate

the convergence rate of Σ�1=2
W algorithm. Similar to [14], we combine

the proposed accelerated Σ�1=2
W algorithm with an adaptive PCA

algorithm to derive the LDA features. We compare the performance of
the proposed structure for incremental LDA feature extraction with
the algorithm in [14], and the gradient descent based algorithm in
[16,17]. The simulations results showed that the proposed algorithm
provide a good estimate of the LDA features in fewer iterations
compared to the other methods.

The proposed algorithms can be used for on-line applications
where the whole data set is not available and is instead presented as
a stream. As soon as a new observation is available, the proposed
structure can update LDA features by simply using the old features
and the new sample without having to run the algorithm on the
entire data set.
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Appendix A

Let AAC, then all leading principal minors of A are positive, and
are continuous function of matrix entries [40]. Therefore, there
exists ϵ40 such that by perturbing each entries of A by at most ϵ
will still leave all the leading principal minors positive. Then
AþϵBAC for every BAC such that JBJ2o1 [40]. Therefore, C is
an open convex set.

By expanding the cost function at kþ1-th iteration and using
(18), we have

JðWkþ1Þ ¼ 1
3 TrðW3

kþ1Q Þ�TrðWkþ1Þþ2
3 TrðQ �1=2Þ

¼ 1
3 Tr ðWkþηkGkÞ3Q

� 	
�TrðWkþηkGkÞþ2

3 TrðQ �1=2Þ;
ðA:1Þ

where Gk ¼ I�WkQWk.
The cost function in (A.1) can be further simplified to

JðWkþ1Þ ¼
TrðW3

kQþ3ηkW
2
kGkQþ3η2kWkG

2
kQþη3kG

3
kQ Þ

3

�TrðWkþηkGkÞþ
2
3
TrðQ �1=2Þ: ðA:2Þ

By taking the derivative of (A.2) with respect to the step size ηk
and equating it to zero, we obtain

∂JðWkþ1Þ
∂ηk

¼ TrðG3
kQ Þη2kþ2 TrðWkG

2
kQ ÞηkþTrðW2

kGkQ Þ�TrðGkÞ

¼ akη2kþbkηkþck ¼ 0; ðA:3Þ

where ak ¼ TrðG3
kQ kþ1Þ, bk ¼ 2 TrðWkG

2
kQ kþ1Þ, and ck ¼ TrðW2

kGk

Q kþ1Þ�TrðGkÞ.

Appendix B

If we expand the matrix products, we get

JðWkÞ ¼ 1
3 Tr ðWkþαkDkÞ3Q

� 	
�TrðWkþαkDkÞþ2

3 TrðQ �1=2Þ

¼ 1
3 Tr ðW3

kþ3αkW
2
kDkþ3α2

kWkD
2
kþα3

kD
3
k ÞQ

� 	
�TrðWkþαkDkÞþ2

3 TrðQ �1=2Þ: ðB:1Þ

By taking the first derivative of (B.1) with respect to αk and
equating it to zero, we obtain

∂JðWkþ1Þ
∂αk

¼ akα2
kþbkαkþck ¼ 0; ðB:2Þ

where ak ¼ TrðD3
kQ kþ1Þ, bk ¼ 2

3 Tr ðWkD
2
kþDkWkDkþD2

kWkÞ
�

Q kþ1Þ, and ck ¼ 1
3 Tr ðW2

kDkþWkDkWkþDW2
k ÞQ kþ1

� 	
�TrðDkÞ.
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