1. Write a detailed, structured proof that
\[
\forall f : \mathbb{N} \to \mathbb{R}^+, \forall g : \mathbb{N} \to \mathbb{R}^+, g \in O(f) \Rightarrow g^2 \in O(f^2)
\]

(where \(f^2\) and \(g^2\) are defined in the obvious way: \(\forall n \in \mathbb{N}, f^2(n) = f(n) \cdot f(n)\), and similarly for \(g\)).

(I show only the finished proof here, not its development.)

Assume \(f : \mathbb{N} \to \mathbb{R}^+\) and \(g : \mathbb{N} \to \mathbb{R}^+\).

Assume \(g \in O(f)\).

Then \(\exists c, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow g(n) \leq c \cdot f(n)\). # definition of \(O\)

Let \(c_0 \in \mathbb{R}^+\) and \(B_0 \in \mathbb{N}\) be such that \(\forall n \in \mathbb{N}, n \geq B_0 \Rightarrow g(n) \leq c_0 \cdot f(n)\).

Show that \(g^2 \in O(f^2)\):

Let \(c_1 = c_0^2\). Then \(c_1 \in \mathbb{R}^+\). # because \(c_0 \in \mathbb{R}^+\)

Let \(B_1 = B_0\). Then \(B_1 \in \mathbb{N}\). # because \(B_0 \in \mathbb{N}\)

Assume \(n \in \mathbb{N}\) and \(n \geq B_1 = B_0\).

Then \(g(n) \leq c_0 \cdot f(n)\) (because \(n \geq B_0\),
so \(g^2(n) = g(n) \cdot g(n) \leq (c_0 \cdot f(n)) \cdot (c_0 \cdot f(n)) = c_0^2 \cdot f(n) \cdot f(n) = c_1 \cdot f^2(n)\).

Hence, \(\forall n \in \mathbb{N}, n \geq B_1 \Rightarrow g^2(n) \leq c_1 \cdot f^2(n)\).

Then \(\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow g^2(n) \leq c \cdot f^2(n)\).

Thus, \(g^2 \in O(f^2)\). # by definition of \(O\)

Therefore, \(g \in O(f) \Rightarrow g^2 \in O(f^2)\).

Then, \(\forall f : \mathbb{N} \to \mathbb{R}^+, \forall g : \mathbb{N} \to \mathbb{R}^+, g \in O(f) \Rightarrow g^2 \in O(f^2)\).

2. Prove that \(T_{BFT}(n) \in \Theta(n^2)\), where BFT is the algorithm below.

\[
\text{BFT}(E, n):
\begin{align*}
1. & \quad i \leftarrow n - 1 \\
2. & \quad \textbf{while } i > 0: \\
3. & \quad \quad P[i] \leftarrow -1 \\
4. & \quad \quad Q[i] \leftarrow -1 \\
5. & \quad \quad i \leftarrow i - 1 \\
6. & \quad P[0] \leftarrow n \\
7. & \quad Q[0] \leftarrow 0 \\
8. & \quad t \leftarrow 0 \\
9. & \quad h \leftarrow 0 \\
10. & \quad \textbf{while } h \leq t: \\
11. & \quad \quad i \leftarrow 0 \\
12. & \quad \quad \textbf{while } i < n: \\
13. & \quad \quad \quad \textbf{if } E(Q[h], i) \not= 0 \text{ and } P[i] < 0: \\
14. & \quad \quad \quad \quad P[i] \leftarrow Q[h] \\
15. & \quad \quad \quad t \leftarrow t + 1 \\
16. & \quad \quad \quad Q[t] \leftarrow i \\
17. & \quad \quad \quad i \leftarrow i + 1 \\
18. & \quad \quad h \leftarrow h + 1
\end{align*}
\]

(Although this is not directly relevant to the question, this algorithm carries out a breadth-first traversal of the graph on \(n\) vertices whose adjacency matrix is stored in \(E\).)

We show that \(T_{BFT}(n) \in \Theta(n^2)\) by proving \(T_{BFT}(n) \in O(n^2)\) and \(T_{BFT}(n) \in \Omega(n^2)\).
\(T_{\text{BFT}}(n) \in \mathcal{O}(n^2) \):

Let \(c = 16 \) and \(B = 1 \). Then, \(c \in \mathbb{R}^+ \) and \(B \in \mathbb{N} \).

Assume \(n \in \mathbb{N} \), \(n \geq B = 1 \), and \(E \) is an arbitrary input of size \(n \).

One of the tricky features of this algorithm is that the main loop depends on the values of \(h \) and \(t \), but the algorithm does not explicitly bound either value. To prove an upper bound on \(T_{\text{BFT}}(n) \), we start by proving a bound on the value of \(t \). Namely, we show that at any point during the execution of the algorithm, \(t \leq n \).

From lines 1–9, when the main loop (lines 10–18) begins execution, \(h = t = 0 \), \(P[0] = n \), \(Q[0] = 0 \), and \(P[i] = Q[i] = -1 \) for \(i = 1, 2, \ldots, n - 1 \).

Note that the value of \(t \) is changed only on line 15, and this line is executed only when \(P[i] < 0 \) (among other conditions).

Moreover, each time \(t \) is incremented, the value of \(Q[i] \) is set to a natural number (on line 16), so that at any point during the execution of the algorithm, \(Q[0 \ldots t] \in \mathbb{N} \) and \(Q[t + 1 \ldots n - 1] \in -1 \). Since \(h \leq t \) (from line 10), this means that \(Q[h] \geq 0 \) is always true inside the main loop.

Hence, on line 14, the assignment \(P[i] = Q[h] \) guarantees that \(P[i] \geq 0 \) from that point on. This means that the value of \(t \) can increase at most once for each value of \(i = 0, 1, \ldots, n - 1 \) (it increases only when \(P[i] < 0 \), at which point \(P[i] \) is set to a natural number), i.e., \(t \leq n \).

From the algorithm,
- line 1 takes 1 step;
- lines 2–5 take 4 steps for one iteration, and are executed exactly \(n - 1 \) times (once for each value of \(i = n - 1, n - 2, \ldots, 1 \)), plus 1 more step for the last execution of line 2, for a total of \(4(n - 1) + 1 = 4n - 3 \) steps;
- lines 6–9 take 4 steps;
- lines 12–17 take at most 6 steps for one iteration (if the condition of the if statement is true at every iteration), and are executed exactly \(n \) times (once for each value of \(i = 0, 1, \ldots, n - 1 \)), plus 1 more step for the last execution of line 12, for a total of at most \(6n + 1 \) steps;
- lines 10–18 take at most \(6n + 1 + 3 = 6n + 4 \) steps for one iteration, and are executed at most \(n \) times (since \(t \leq n \), as shown above), for a total of at most \(6n^2 + 4n \) steps;
- so in total, the algorithm takes at most \(1 + 4n - 3 + 4 + 6n^2 + 4n = 6n^2 + 8n + 2 \) steps.

Since \(n \geq 1 \), this means that the number of steps executed by the algorithm on input \((E, n)\)
\[\text{is } \leq 6n^2 + 8n + 2 \leq 6n^2 + 8n^2 + 2n^2 = 16n^2. \]

Since \((E, n)\) was arbitrary, \(\forall n \in \mathbb{N}, n \geq 1 \Rightarrow T_{\text{BFT}}(n) \leq 16n^2 \).

Therefore, \(T_{\text{BFT}}(n) \in \mathcal{O}(n^2) \).

\(T_{\text{BFT}}(n) \in \Omega(n^2) \):

Let \(c = 1 \) and \(B = 1 \). Then, \(c \in \mathbb{R}^+ \) and \(B \in \mathbb{N} \).

Assume \(n \in \mathbb{N} \) and \(n \geq B = 1 \).

Consider an input \((E, n)\) such that \(E[i][j] = 1 \) for all indices \(0 \leq i < n, 0 \leq j < n \).

The first time that lines 12–17 are executed, the condition of the if statement will be true for all values of \(i = 0, 1, \ldots, n - 1 \) so at the end of the loop, \(t \) will have value at least \(n \) (since \(t \) starts at 0 and gets incremented \(n \) times). Since lines 12–17 always get executed exactly \(n \) times (once for each value of \(i = 0, 1, \ldots, n - 1 \)), they take at least \(n \) steps.

This means that lines 10–18 will get executed for every value of \(h = 0, 1, \ldots, n - 1 \) (at least), and take at least \(n \) steps at each iteration, for a total of at least \(n^2 \) steps.

So the number of steps on input \((E, n)\) is \(\geq n^2 \).

Hence, \(\forall n \in \mathbb{N}, n \geq 1 \Rightarrow T_{\text{BFT}}(n) \geq n^2 \).

Therefore, \(T_{\text{BFT}}(n) \in \Omega(n^2) \).
3. Find a tight bound on the worst-case running time of the following algorithm. (This example was started during lecture, but it was not finished.)

```
# Precondition: L is a list that contains n > 0 real numbers.
1. max ← 0
2. for i ← 0, 1, . . . , n − 1:
   3. for j ← i, i + 1, . . . , n − 1:
      4. sum ← 0
      5. for k ← i, i + 1, . . . , j:
         6. sum ← sum + 1
      7. if sum > max:
         8. max ← sum
```

Intuitively, \(T(n) \in O(n^3) \) because of the three nested loops, each one of which iterate no more than \(n \) times. We want to prove this formally, and also show that the bound is tight (i.e., \(T(n) \in \Omega(n^3) \)).

\(T(n) \in O(n^3) \): (This part was covered in class.)

Proof Structure:

Let \(c' = \ldots \) and \(B' = \ldots \)

Then \(c' \in \mathbb{R}^+ \) and \(B' \in \mathbb{N} \).

Assume \(n \in \mathbb{N} \) and \(n \geq B' \) and \(L \) is a list of \(n \) real numbers.

- show \(t(L) \leq c' n^3 \ldots (t(L) \) is the number of steps taken by the algorithm on input L)

Then \(\forall n \in \mathbb{N}, n \geq B' \Rightarrow \forall L \in \{ \text{all lists of real numbers} \}, \text{len}(L) = n \Rightarrow t(L) \leq c' n^3 \).

Then \(\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow T(n) \leq cn^3 \).

Scratch Work: To find values of \(c \) and \(B \) that work, we over-estimate the number of steps taken by the algorithm. This simplifies the computation: we don’t have to find the exact number of steps carried out, just a value that is clearly greater than or equal to the number of steps.

In this case, working inside-out, we get that:

- line 6 takes 1 step;
- the loop on lines 5–6 iterates at most \(n \) times (because \(i \in \{0, 1, \ldots , n - 1\} \) and \(j \in \{i, i + 1, \ldots , n - 1\} \), so the number of steps is \(\leq n \cdot 1 = n \);
- lines 4–8 add at most 3 steps to this (counting each line separately);
- the loop on lines 3–8 iterates at most \(n \) times, so the number of steps is \(\leq n \cdot (n + 3) \leq n \cdot (n + n) = 2n^2 \) (if \(n \geq 3 \)) — we do this to keep the expression as simple as possible;
- the loop on lines 2–8 iterates exactly \(n \) times, so the number of steps is \(\leq n \cdot 2n^2 = 2n^3 \);
- line 1 adds 1 step to this, so the number of steps is \(\leq 2n^3 + 1 \leq 2n^3 + n^3 = 3n^3 \) (if \(n \geq 1 \)).

Complete Proof:

Assume \(n \in \mathbb{N} \) and \(n \geq 3 \) and \(L \) is a list of \(n \) real numbers.

Then the first line takes \(1 < n < n^3 \) steps.

Also, the loop over \(i \) iterates exactly \(n \) times, and for each iteration...

The loop over \(j \) iterates at most \(n \) times, and for each iteration...

The loop over \(k \) iterates at most \(n \) times, and each iteration takes 1 step, for a total of at most \(n \) steps.

The other statements in the loop body for \(j \) take at most 3 steps.

So the loop body for \(j \) takes at most \(n + 3 \leq 2n \) steps.

\(\ldots \) so the loop over \(j \) takes at most \(2n^2 \) steps.

\(\ldots \) so the loop over \(i \) takes at most \(2n^3 \) steps.

The entire algorithm therefore takes at most \(n^3 + 2n^3 = 3n^3 \) steps.

Then, \(\forall n \in \mathbb{N}, n \geq 3 \Rightarrow \forall L \in \{ \text{all lists of real numbers} \}, \text{len}(L) = n \Rightarrow t(L) \leq 3n^3 \).

Hence, \(T(n) \in O(n^3) \).
Proof Structure:

Let \(c' = \ldots \) and \(B' = \ldots \)

Then \(c' \in \mathbb{R}^+ \) and \(B' \in \mathbb{N} \).
Assume \(n \in \mathbb{N} \) and \(n \geq B' \).

Let \(L = \ldots \)

Then \(L \) is a list of \(n \) real numbers.

...show that \(t(L) \geq c'n^3 \)

Then \(\forall n \in \mathbb{N}, n \geq B' \Rightarrow \exists L \in \{ \text{all lists of real numbers} \}, \text{len}(L) = n \land t(L) \geq c'n^3 \).

Then \(\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow T(n) \geq cn^3 \).

Scratch Work: Note that the running time of the algorithm does not depend on the contents of \(L \): it is the same for every list of length \(n \). This means all we have to argue is that the algorithm always carries out at least some fraction of \(n^3 \) many steps.

In other words, we have to show that the loop over \(k \) iterates at least some fraction of \(n \) times, for at least a fraction of \(n \) many values of \(j \), for at least a fraction of \(n \) many values of \(i \).

To keep things simple, let’s split up the range \([0, \ldots, n - 1]\) into thirds, roughly: \([0, \ldots, n/3], [n/3, \ldots, 2n/3], [2n/3, \ldots, n - 1]\) (we’ll add appropriate floors and/or ceilings later on, to ensure every value is an integer). There are many other ways we could have done this! The important thing is to come up with a collection of pairs \((i, j)\) that contains at least \(n^2 \) many pairs (within a constant factor) and for which the difference \(j - i \) is at least some constant fraction of \(n \).

In this case:

- \(i \) iterates over at least the \(n/3 \) values \(\{0, 1, \ldots, n/3 - 1\} \) (more than that actually);
- for each of those values of \(i \), \(j \) iterates over at least the \(n/3 \) values \(\{2n/3, \ldots, n - 1\} \) (more than that actually);
- for each of these \(n^2/9 \) many pairs \((i, j)\), \(k \) iterates over every value \(\{i, \ldots, j\} \), and there are at least \(n/3 \) many values in that range (more than that actually).

This means the algorithm always executes line 6 at least \(n^3/27 \) many times.

To formalize this, a bit of trial and error shows that

- The range \(\{0, \ldots, [n/3]\} \) contains \([n/3] + 1 > n/3\) values.
- The range \(\{[2n/3], \ldots, n - 1\} \) contains \(n - 1 - [2n/3] + 1 \geq n - 2n/3 = n/3 \) values (because \([2n/3] \leq 2n/3 \Rightarrow [2n/3] = -2n/3\)).
- The range \(\{[n/3], \ldots, [2n/3]\} \) contains \([2n/3] - [n/3] + 1 \geq 2n/3 - n/3 = n/3 \) values (because \([2n/3] + 1 > 2n/3\)).

Complete Proof:

Assume \(n \in \mathbb{N} \) and \(n \geq 1 \).

Let \(L = [1, 2, \ldots, n] \).

Then for each value of \(i \in \{0, \ldots, [n/3]\}\)...

For each value of \(j \in \{[2n/3], \ldots, n - 1\}\)...

The loop for \(k \) iterates over every value in \(\{i, \ldots, j\} \), and executes 1 step at each iteration.

So the loop for \(k \) takes at least \(n/3 \) steps (since there are at least \([2n/3] - [n/3] + 1 \geq n/3 \) values for \(k \)).

... so the loop for \(j \) takes at least \(n^2/9 \) steps (since there are at least \(n - [2n/3] \geq n/3 \) values for \(j \)).

... so the loop for \(i \) takes at least \(n^3/27 \) steps (since there are at least \([n/3] + 1 > n/3 \) values for \(i \)).

Then \(\forall n \in \mathbb{N}, n \geq 1 \Rightarrow \exists L \in \{ \text{all lists of real numbers} \}, \text{len}(L) = n \land t(L) \geq n^3/27 \).

Hence, \(T(n) \in \Omega(n^3) \).