
Formal Theories for Linear Algebra

Stephen Cook and Lila Fontes

Department of Computer Science, University of Toronto
{sacook, fontes}@cs.toronto.edu

Abstract. We introduce two-sorted theories in the style of [CN10] for
the complexity classes ⊕L and DET , whose complete problems include
determinants over Z2 and Z, respectively. We then describe interpreta-
tions of Soltys’ linear algebra theory LAp over arbitrary integral domains,
into each of our new theories. The result shows equivalences of standard
theorems of linear algebra over Z2 and Z can be proved in the corre-
sponding theory, but leaves open the interesting question of whether the
theorems themselves can be proved.

1 Introduction

This paper introduces formal theories for the complexity classes ⊕L (also called
ParityL) and DET for reasoning about linear algebra over the rings Z2 and
Z, respectively. Complete problems for these classes include standard computa-
tional problems of linear algebra over their respective rings, such as computing
determinants, matrix powers, and coefficients of the characteristic polynomial of
a matrix [BDHM92]. (Recently [BKR09] proved that for each k ≥ 1, computing
the permanent mod 2k of an integer matrix is in ⊕L, and hence complete.) Each
theory allows induction over any relation in the associated complexity class ⊕L
or DET , and the functions definable in each theory are the functions in the class.
Thus determinants and characteristic polynomials can be defined in the theories,
but it is not clear that their standard properties can be proved without defining
concepts outside the associated complexity classes. This remains an interesting
open question [SK01,SC04].

The simplest way of defining the classes ⊕L and DET is using uniform
AC0 reductions (see below). Thus ⊕L = AC0(det2) and DET = AC0(det),
where det2 and det are the determinant functions for matrices over Z2 and Z
respectively, and AC0(∗) is the set of problems AC0-reducible to ∗.

The usual definitions of these classes involve counting the number of accept-
ing computations of nondeterministic log space Turing machines. Thus #L is the
class of functions f such that for some nondeterministic log space Turing ma-
chine M , f(x) is the number of accepting computations of M on input x. Then
the sets in ⊕L are those of the form {x | f(x) mod 2 = 1} for some f in #L.
It turns out that AC0(det) = AC0(#L), and AC0(det2) = AC0(⊕L) = ⊕L. To
get an idea of why det can be reduced to #L, note that Berkowitz’s algorithm
reduces det to integer matrix powering. It is easy to see that powering 0 − 1
matrices reduces to #L because the entry ij in the kth power of the adjacency

2 Stephen Cook and Lila Fontes

matrix for the configuration graph of a Turing machine is the number of compu-
tations of length k between configurations i and j. With a little creative thought
this reduction can be generalized to binary integer matrices (see [Fon09,AO96]).
Also DET = #LH =

⋃
i #LHi (the #L hierarchy), where #LH1 = #L and

#LHi+1 = #L#LHi (see [AO96]). (The exponent #LHi indicates that a func-
tion from this class is allowed to be an oracle for the log space machine whose
accepting computations are being counted.)

We should clarify that our definition ofDET here differs from that in [Coo85],
where DET is defined to be NC1(det), the closure of {det} under the more
general NC1 reductions. Allender proved (see the Appendix to [All04]) that
if AC0(det) = NC1(det) then the #L hierarchy collapses to some finite level
#LHi, something that is not known to be true. The present authors (now)
believe that AC0(det) = #LH is the more natural definition of DET , and
makes the corresponding logical theory much easier to formulate.

The complexity classes satisfy the inclusions L ⊆ ⊕L ⊆ DET ⊆ NC2 ⊆ P
and L ⊆ NL ⊆ DET (ignoring the distinction between function and language
classes) where L and NL are the problems accepted in deterministic and non-
deterministic log space, respectively. It is not known whether ⊕L and NL are
comparable. (Of course we cannot disprove the unlikely possibility that all of
the above classes could coincide.)

To construct formal theories for the classes ⊕L and DET we follow the frame-
work laid out in Chapter 9 of the monograph [CN10] of Cook and Nguyen for
defining theories for complexity classes between AC0 and P . All of these theories
share a common two-sorted (number and string) vocabulary L2

A. The intention
is that the number sort ranges over N and the string sort ranges over bit strings
(more precisely, finite subsets of N). The strings are intended to be inputs to the
machine or circuit defining a member of the complexity class, and the numbers
are used to index bits in the strings. Each theory V C for a class C extends the
finitely-axiomatized base theory V 0 for AC0 by addition of a single axiom stat-
ing the existence of a solution to a complete problem for C. General techniques
are presented for defining a universally-axiomatized conservative extension V C
of V C which has function symbols and defining axioms for each function in FC,
and V C admits induction on open formulas in this enriched vocabulary. It fol-
lows from the Herbrand Theorem that the provably-total functions in V C (and
hence in V C) are precisely the functions in FC.

Chapter 9 (with earlier chapters) of [CN10] explicitly defines theories for the
following classes:

AC0 ⊂ AC0(2) ⊂ TC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ NC ⊆ P (1)

These classes are defined briefly as follows. A problem in AC0 is solved by a uni-
form family of polynomial size constant depth Boolean circuits with unbounded
fanin AND and OR gates. AC0(2) properly extends AC0 by also allowing un-
bounded fanin parity gates (determining whether the inputs have an odd number
of 1’s) in its circuits. TC0 allows majority gates rather than parity gates in its
circuits (and has binary integer multiplication as a complete problem). NC1 cir-
cuits restrict all Boolean gates to fanin two, but the circuits are allowed to have

Formal Theories for Linear Algebra 3

logarithmic depth. Problems in L and NL are solved respectively by determin-
istic and nondeterministic log space Turing machines. NC is defined like NC1,
but the circuits can have polylogarithmic depth (and polynomial size). Problems
in P are solved by polynomial time Turing machines.

Our new theories V⊕L and V#L for ⊕L and DET extend the base theory
V 0 for AC0 by adding an axiom stating the existence of powers Ak of matrices A
over Z2 and Z, respectively, where k is presented in unary. (Matrix powering is
a complete problem for these classes [Fon09].) Here there is a technical difficulty
of how to nicely state these axioms, since neither the parity function (needed
to define matrix multiplication over Z2) nor integer product and multiple sum-
mation (needed to define matrix multiplication over Z) is definable in the base
theory V 0. We solve this by basing these theories on the theories V 0(2) (for
AC0(2)) and V TC0, and by using results from [CN10] to translate these axioms
to the language of the base theory V 0. We then show that the resulting theories
satisfy the requirements of Chapter 9 (existence of “aggregate functions”) that
allow the existence of the nice universal conservative extensions V⊕L and V#L
of V⊕L and V#L.

The new theories mesh nicely with the theories for the complexity classes in
(1). In particular, we have

V 0 ⊂ V 0(2) ⊂ V NC1 ⊆ V L ⊆ V⊕L ⊆ V#L ⊆ V NC ⊆ V P (2)

Next we study the question of which results from linear algebra can be proved
in the theories. For this we take advantage of Soltys’s theory LAp [SK01,SC04]
for formalizing results from linear algebra over an arbitrary field or integral do-
main. We present two interpretations of LAp: one into V⊕L and one into V#L.
Both interpretations translate theorems of LAp to theorems in the corresponding
theory, but the translations can alter the meaning of formulas by giving different
interpretations of the ring elements.

LAp has three sorts: One for indices (natural numbers), one for field (or ring)
elements, and one for matrices. When interpreting LAp into V⊕L our intention
is that the field is Z2, so we interpret field elements as formulas, where true
formulas represent 1 and false formulas represent 0. When interpreting LAp into
V#L our intention is that the ring is Z. In this case we interpret field elements
as strings representing binary integers.

LAp defines matrix powering, and uses this and Berkowitz’s algorithm [Ber84]
to define several functions of matrices, including determinant, adjoint, and char-
acteristic polynomial. The following standard principles of linear algebra are
discussed:

(i) The Cayley-Hamilton Theorem (a matrix satisfies its characteristic polyno-
mial).

(ii) The axiomatic definition of determinant (the function det(A) is character-
ized by the properties that it is multilinear and alternating in the rows and
columns of A, and det(I) = 1).

(iii) The co-factor expansion of the determinant.

4 Stephen Cook and Lila Fontes

Although it remains open whether LAp can prove any of these, a major result
from [SK01,SC04] is that LAp proves their pairwise equivalence. As a result of
this and our interpretations we have the following.

Theorem 1. V⊕L proves the equivalence of (i), (ii), and (iii) over the ring Z2,
and V#L proves their equivalence over Z.

An intriguing possibility (not yet realized) is that either V⊕L or V#L could
use special properties of Z2 or Z to prove its version of the principles, while still
leaving open whether LAp can prove them (for all integral domains or fields).
For example there is a dynamic programming algorithm involving combinatorial
graph properties (see the concluding Section 4) whose correctness for Z might be
provable in V#L using combinatorial reasoning with concepts from #L which
are not available in LAp.

[SK01,SC04] also present the so-called hard matrix identities, each equivalent
to the implication

AB = I → BA = I (3)

where A,B are square matrices. Again it is open whether LAp proves these iden-
tities, but LAp does prove that they follow from any of the principles mentioned
in Theorem 1 above. The next result follows from this and our interpretations.

Theorem 2. V⊕L proves that (3) over the ring Z2 follows from any of the three
principles mentioned in Theorem 1. The same is true for V#L over the ring Z.

[SK01,SC04] introduce an extension ∀LAp of LAp, which includes an induc-
tion rule that applies to formulas with bounded universally quantified matrix
variables, and shows that the three principles mentioned in Theorem 1 and the
four matrix identities are all provable in ∀LAp. The key idea in this proof uses
induction on a polynomial time relation, and in fact this proof can be carried out
in the theory V P for polynomial time defined in [CN10]. Since V P (see formula
(2)) extends both V⊕L and V#L we have the following result (alluded to at the
end of Section 6 in [SC04]).

Theorem 3. The theory V P proves the three principles (i), (ii), (iii) and the
matrix identity (3) for both the rings Z2 and Z.

2 Theories V ⊕L and V #L

We start by reviewing the two-sorted logic used here and in [CN10]. We have
number variables x, y, z, . . . whose intended values are numbers (in N), and string
variables X,Y, Z, . . . whose intended values are finite sets of numbers. We think
of the finite sets as binary strings giving the characteristic vectors of the sets.
For example the string corresponding to the set {0, 3, 4} is 10011.

All our two-sorted theories include the basic vocabulary L2
A = [0, 1,+, ·, | |;∈

,≤,=1,=2] which extends the first-order vocabulary of Peano Arithmetic. The
symbols 0, 1,+, · are intended to take their usual meanings on N. Here | | is a

Formal Theories for Linear Algebra 5

function from strings to numbers, and the intended meaning of |X| is 1 plus the
largest element of X, or 0 if X is empty. (If X = {0, 3, 4} then |X| = 5.) The
binary predicate ∈ is intended to denote set membership. We often write X(t)
for t ∈ X (think bit number t of the string X is 1). The equality predicates =1

and =2 are for numbers and strings, respectively. We will write = for both, since
the missing subscript will be clear from the context.

Number terms (such as x + ((|X| + 1) · |Y |)) are built from variables and
function symbols as usual. The only string terms based on L2

A are string variables
X,Y, Z, . . ., but when we extend L2

A by adding string-valued functions, other
string terms will be built as usual. Formulas are built from atomic formulas (e.g.
t = u, t ≤ u,X(t), X = Y) using ∧,∨,¬ and ∃x, ∀x,∃X,∀X.

Bounded quantifiers are defined as usual, except bounds on string quantifiers
refer to the length of the string. For example ∃X ≤ tϕ stands for ∃X(|X| ≤ t∧ϕ).

We define two important syntactic classes of formulas.

Definition 1. ΣB
0 is the class of L2

A formulas with no string quantifiers, and
only bounded number quantifiers. ΣB

1 formulas are those of the form ∃X ≤ tϕ,
where ϕ is in ΣB

0 and the prefix of bounded quantifiers may be empty.

Notice our nonstandard requirement that the string quantifiers in ΣB
1 for-

mulas must be in front.
We also consider two-sorted vocabularies L ⊇ L2

A which extend L2
A by pos-

sibly adding predicate symbols P,Q,R, . . . and function symbols f, g, h, . . . and
F,G,H, Here f, g, h, . . . are number functions and are intended to take values
in N, and F,G,H, . . . are string functions and are intended to take string values.
Each predicate or function symbol has a specified arity (n,m) indicating that
it takes n number arguments and m string arguments. Number arguments are
written before string arguments, as in

f(x1, . . . , xn, X1, . . . , Xm) F (x1, . . . , xn, X1, . . . , Xm) (4)

The formula classes ΣB
0 (L) and ΣB

1 (L) are defined in the same way as ΣB
0 and

ΣB
1 , but allow function and relation symbols from L in addition to L2

A.

2.1 Two-sorted complexity classes

In standard complexity theory an element of a complexity class is either a set of
binary strings or a function f : {0, 1}∗ → {0, 1}∗. In our two-sorted point of view
(Chapter 4 of [CN10]) it is convenient to replace a set of strings by a relation
P (x,X) of any arity (n,m), and functions are generalized to allow both number
functions and string functions as in (4). Each standard complexity class, includ-
ing those in (1) and ⊕L and #L, is defined either in terms of Turing machines
or circuit families. These definitions naturally extend to two-sorted versions by
representing strings (as inputs to machines or circuits) in a straightforward way
as binary strings, but by representing numbers using unary notation. This in-
terpretation of numbers is a convenience, and is justified by our intention that
numbers are ‘small’ and are used to index strings and measure their length. In
particular, we have the following definition of two-sorted ⊕L.

6 Stephen Cook and Lila Fontes

Definition 2. ⊕L is the set of relations P (x,X) such that there is a nondeter-
ministic log space Turing machine M such that M with input x,X (represented
as above) has an odd number of accepting computations iff P (x,X) holds.

The class AC0 can be defined in terms of uniform polynomial size constant
depth circuit families, but it has a nice characterization as those sets recognized
by an alternating Turing machine (ATM) in log time with a constant number
of alternations. More useful for us, [Imm99] showed that an element of AC0

can be described as an element of FO, namely the set of finite models of some
first-order formula with a certain vocabulary. From this and the ATM definition
of two-sorted AC0, we have the following important results relating syntax and
semantics (Theorems 4.18 and 4.19 of [CN10]).

Proposition 1 (Representation Theorems). A relation P (x,X) is in AC0

(respectively NP) iff it is represented by some ΣB
0 -formula (respectively ΣB

1 -
formula) ϕ(x,X).

For example the relation PAL(X) (X is a palindrome) is an AC0 relation
because the ΣB

0 -formula ∀x, y < |X|(x + y + 1 = |X| ⊃ (X(x) ↔ X(y)))
represents it.

A number function f(x,X) (respectively string function F (x,X)) is p-
bounded if there is a polynomial g(x,y) such that f(x,X) ≤ g(x, |X|) (re-
spectively |F (x,X)| ≤ g(x, |X|)). The bit graph of a string function F is the
relation BF defined by BF (i,x,X) ↔ F (x,X)(i). (Recall that Y (i) stands for
i ∈ Y .)

Definition 3. If C is a class of (two-sorted) relations then FC denotes the
corresponding class of functions, where f (respectively F) is in FC iff it is p-
bounded and its graph (respectively bit graph) is in C.

We will consider two-sorted vocabularies L which extend L2
A, and in all cases

each function and relation symbol in L has an intended interpretation in our
standard two-sorted model (the two universes being N and the set of finite subsets
of N). Thus we can make sense of both syntactic and semantic statements about
L.

If L is a two-sorted vocabulary, then f (respectively F) is ΣB
0 -definable from

L if it is p-bounded and its graph (respectively bit graph) is represented by a
formula in ΣB

0 (L).
AC0(L) (the AC0 closure of L) denotes the closure of L under ΣB

0 definabil-
ity. To show a function is in AC0(L) requires giving a finite sequence of functions
such that each is ΣB

0 -definable from the preceding ones. The relations in AC0(L)
are those whose characteristic functions are in AC0(L).

2.2 Theories V 0, V 0(2), and V TC0

The theory V 0 for AC0 is the basis for every two-sorted theory considered here
and in [CN10]. It has the two-sorted vocabulary L2

A, and is axiomatized by the

Formal Theories for Linear Algebra 7

set 2-BASIC of axioms consisting of 15 ΣB
0 formulas expressing basic properties

of the symbols of L2
A, together with the ΣB

0 comprehension scheme

ΣB
0 -COMP : ∃X ≤ y∀z < y(X(z)↔ ϕ(z))

where ϕ(z) is any ΣB
0 formula with no free occurrence of X.

V 0 has no explicit induction axiom, but nevertheless the induction scheme

ΣB
0 -IND :

(
ϕ(0) ∧ ∀x(ϕ(x) ⊃ ϕ(x+ 1))

)
⊃ ∀zϕ(z)

for ΣB
0 formulas ϕ(x) is provable in V 0, using ΣB

0 -COMP and the fact that
|X| produces the maximum element of the set X.

Definition 4. A string function F (x,X) is ΣB
1 -definable in a two-sorted theory

T if there is a ΣB
1 formula ϕ(x,X, Y) representing the graph Y = F (x,X) of F

such that T ` ∀x∀X∃!Y ϕ(x,X, Y). Similarly for a number function f(x,X).

It is shown in Chapter 5 of [CN10] that V 0 is finitely axiomatizable, and the
ΣB

1 -definable functions in V 0 comprise the class FAC0 (see Definition 3).
The definition in [CN10] of the theory V 0(2) for the class AC0(2) is based

on V 0 and an axiom showing the definability of the function Parity(x, Y). If
Z = Parity(x, Y) then Z(z) holds iff 1 ≤ z ≤ x and there is an odd number of
ones in Y (0)Y (1) . . . Y (z−· 1). The graph of Parity is defined by the ΣB

0 formula
δparity(x, Y, Z), which is ¬Z(0) ∧ ∀z < x(Z(z + 1)↔ (Z(z)⊕ Y (z))).

Definition 5. [CN10] The theory V 0(2) has vocabulary L2
A and axioms those

of V 0 and ∃Z ≤ x+ 1 δparity(x, Y, Z).

The complexity class FAC0(2) is the AC0 closure of the function Parity(x, Y),
and in fact the ΣB

1 -definable functions of V 0(2) are precisely those in FAC0(2).
The theory V TC0 for the counting class TC0 is defined similarly to V 0(2),

but now the function Parity(x, Y) is replaced by the function numones(y,X),
whose value is the number of elements (i.e. ‘ones’) of X that are less than y. The
axiom for V TC0 is based on a ΣB

0 formula δNUM (y,X,Z) defining the graph of
a string function accumulating the values of numones(y,X) as y increases.

The definition of δNUM (y,X,Z) uses the pairing function 〈x, y〉, which is the
L2
A term (x+ y)(x+ y + 1) + 2y.

Definition 6. [CN10] The theory V TC0 has vocabulary L2
A and axioms those

of V 0 and ∃Z ≤ 1 + 〈y, y〉δNUM (y,X,Z).

The class FTC0 is the AC0 closure of the function numones, and in fact the
ΣB

1 -definable functions of V TC0 are precisely those in FTC0.
In Chapters 5 and 9 of [CN10] it is shown that the theories V 0, V 0(2), V TC0

have respective universally axiomatized conservative extensions V 0, V 0(2), V TC0

obtained by introducing function symbols and their defining axioms for all string
functions (and some number functions) in the corresponding complexity class.
These have the following properties.

8 Stephen Cook and Lila Fontes

Proposition 2. Let (FC, V, V) be any of the triples (FAC0, V 0, V 0) or (FAC0(2),
V 0(2), V 0(2)) or (FTC0, V TC0, V TC0), and let L be the vocabulary of V . Then
(i) V is a universally axiomatized conservative extension of V , (ii) the ΣB

1 -
definable functions of both V and V are those in FC, (iii) a string function
(respectively number function) is in FC iff it has a function symbol (respectively
term) in L, (iv) V proves the ΣB

0 (L)-IND and ΣB
0 (L)-COMP schemes, and

(v) for every ΣB
1 (L) formula ϕ+ there is a ΣB

1 formula ϕ such that V ` ϕ+ ↔ ϕ.

2.3 New Theory V ⊕L

Recall (two-sorted)⊕L is given in Definition 2. It follows from results in [BDHM92]
(see [Fon09]) that ⊕L consists of the relations in the AC0 closure of matrix pow-
ering over Z2. The theory V⊕L extends V 0(2) by adding a ΣB

1 axiom for matrix
powering over Z2.

Recall that the theory V 0(2) is a conservative extension of V 0(2), and its vo-
cabulary LFAC0(2) has function symbols or terms for every function in FAC 0(2).
We describe the ΣB

1 axiom for matrix powering as a ΣB
1 (LFAC0(2)) formula

and refer to part (v) of Proposition 2 to conclude that this formula is provably
equivalent to a ΣB

1 (L2
A) formula.

Hence we will freely use FAC 0 functions and the function Parity(x, Y) (used
to define the theory V 0(2)) when describing formulas which will help express the
ΣB

1 axiom. In particular we will use the pairing function 〈x, y〉 and its inverses
left(z) and right(z). Since the pairing function is not surjective, we use Pair(z)
to abbreviate the formula z = 〈left(z), right(z)〉 which asserts that z codes a
pair.

We use the truth values {false, true} to represent the elements {0, 1} of Z2,
and we represent a matrix over Z2 with a string X. Here X(i, j) abbreviates
X(〈i, j〉) and refers to the entry ij of the matrix. We number rows and columns
starting with 0, so if X is an n× n matrix then 0 ≤ i, j < n.

The function Row(i,X) (written X [i]) refers to row i of matrix X, and is
defined by its bit graph X [i](b)↔ b < |X| ∧X(i, b).

The string function ID(n) codes the n × n identity matrix, and has a bit
graph axiom ID(n)(b)↔ left(b) < n ∧ Pair(b) ∧ left(b) = right(b).

In order to define matrix product we start by defining the AC0 string function
G(n, i, j,X, Y) equal to the string of pairwise bit products of row i of X and
column j of Y . The bit graph axiom is G(n, i, j,X, Y)(b) ↔ b < n ∧ X(i, b) ∧
Y (b, j).

Let PAR(X) stand for the formula Parity(|X|, X)(|X|). Thus PAR(X) holds
iff X has an odd number of ones. Let Prod2(n,X, Y) be the product of X and
Y treated as n× n matrices over Z2. The bit graph axiom is

Prod2(n,X, Y)(b)↔ (5)
Pair(b) ∧ left(b) < n ∧ right(b) < n ∧ PAR(G(n, left(b), right(b), X, Y))

Now we want to define the function PowSeq2(n, k,X) whose value is a string
Y coding the sequence I,X,X2, . . . , Xk of powers of the n×n matrix X. (Note

Formal Theories for Linear Algebra 9

that this function is complete for F⊕L.) We do this by giving its graph, which
is defined by the following ΣB

0 (LFAC0(2)) formula δPowSeq2
(n, k,X, Y):

Y [0] = ID(n) ∧ ∀i < k(Y [i+1] = Prod2(n,X, Y [i])
∧∀b < |Y |

(
Y (b) ⊃ (Pair(b) ∧ left(b) < n)

)
(The second line ensures that Y is uniquely defined.) Note that δPowSeq2

involves
the function Prod2 and hence is not equivalent to a ΣB

0 formula, but by part
(v) of Proposition 2, V 0(2) proves it is equivalent to a ΣB

1 formula δ′PowSeq2
.

Definition 7. The theory V⊕L has vocabulary L2
A and axioms those of V 0(2)

and the ΣB
1 formula ∃Y ≤ 1 + 〈k, 〈n, n〉〉δ′PowSeq2

(n, k,X, Y).

Note that the function PowSeq2 is ΣB
1 definable in V⊕L. Since V 0(2) is a con-

servative extension of V 0(2), it follows that the theory

T = V⊕L+ V 0(2) (6)

is a conservative extension of V⊕L, and this allows us to reason in T to make
inferences about the power of V⊕L.

Section 9B in [CN10] presents a general method for defining a universal
conservative extension V C (satisfying the properties of Proposition 2) of a theory
V C over L2

A, where V C is defined in a manner similar to V 0(2) and V TC0;
namely by adding an axiom to V 0 stating the existence of a complete function
for the complexity class C. Although our new theory V⊕L could be construed to
fit this pattern, for the purpose of defining V⊕L it is more naturally construed
to be the result of adding the modified axiom of Definition 7 where δ′ is replaced
by the original formula δ, and the base theory is V 0(2) rather than V 0. Note
that the resulting theory is the same as the conservative extension T (6) of
V⊕L mentioned above. It turns out that the development in Section 9B easily
generalizes to the case in which the base theory is an extension V of V 0 rather
than just V 0, and the construction of V C works so that Proposition 2 holds,
where now the complexity class C is the AC0 closure of {L, F}, where L is the
vocabulary of V and F is the function whose existence follows from the axiom.
In the present case, this allows us to define V⊕L satisfying Proposition 2, where
now the complexity class C is the AC0 closure of {Parity,PowSeq2}, which is
same as the AC0 closure of {PowSeq2}, namely ⊕L.

There is a technical requirement for the new function F introduced in the
above development in Section 9B, namely that the so-called aggregate F ∗ of
F must be definable and its properties provable in the new theory V C. The
aggregate satisfies ∀i < b(F ∗(X))[i] = F (X [i]) in the simple case that F has
a single argument X. In the case of PowSeq2, the aggregate PowSeq2

∗ takes a
sequence of matrices of various sizes as input and outputs a sequence of sequences
of powers of the matrices. See [Fon09] to see how to define PowSeq2

∗ in V⊕L.

10 Stephen Cook and Lila Fontes

2.4 New Theory V #L

As explained in the introduction, our theory V#L is associated with the class
DET , which is the AC0 closure of det (determinant of integer matrices). It
is interesting that integer matrix powering is complete for DET , even when
restricted to 0-1 matrices, and yet it is still in DET when integers are represented
in binary (see [Fon09]). Here we assume integers are represented in binary, and
the axiom for V#L asserts integer matrix powers exist.

To define integer matrix product we must define integer multiplication and
iterated integer summation. Both of these problems are complete for the com-
plexity class TC0, so we define V#L as an extension of the theory V TC0 (Section
9C of [CN10]). We work in the conservative extension V TC0 of V TC0. Func-
tions for multiplication and iterated sum over N are defined in [CN10], and it
is not hard to modify them to work for Z. Integers are represented by strings,
and matrices by arrays of strings. The entry ij of matrix X is the string X [i][j]

obtained by two applications of the function Row. Now integer matrix product is
the TC0 function ProdZ(n,X, Y) defined analogously to formula (5) for Prod2,
and the graph of iterated matrix product is defined by the ΣB

0 (LFTC0) formula
δPowSeqZ(n, k,X, Y) analogous to δPowSeq2

. By Theorem 2 V TC0 proves δPowSeqZ

is equivalent to a ΣB
1 formula δ′PowSeqZ

, which we use in an axiom for V#L.

Definition 8. The theory V#L has vocabulary L2
A and axioms those of V TC0

and the ΣB
1 formula ∃Y ≤ t δ′PowSeqZ

(n, k,X, Y) for a suitable term t.

The methods explained after Definition 7 can be used to construct the univer-
sal conservative extension V#L satisfying the conditions of Proposition 2 (see
[Fon09]).

The following summarizes properties of our new theories.

Theorem 4. Proposition 2 holds when (FC, V, V) is either of the triples (F⊕L,
V⊕L, V⊕L) or (FDET, V#L, V#L).

3 Interpreting LAp

Soltys’ theory LAp [SK01,SC04] (Linear Algebra with Powering) is a three-
sorted quantifier-free theory based on Gentzen style sequents. The three sorts
are indices i, j, k (intended to range over N), field elements a, b, c (intended
to range over some fixed field or integral domain F), and matrices A, B, C
(intended to range over matrices with entries in F). The vocabulary of LAp
has symbols 0, 1,+,−, ∗,div, rem (each with a subscript ‘index’) for indices, and
symbols 0, 1,+,−, ∗,−1 , r, c, e,

∑
(each with a subscript ‘field’) for field elements,

and relations ≤index,=index,=field,=matrix, and functions condindex, condfield,p.
The intended interpretations of 0, 1,+, ∗,−1, and −field are obvious. The other

intended interpretations are as follows. The symbol −index is cutoff subtraction;
div(i, j) and rem(i, j) are the quotient and remainder functions; r(A) and c(A) re-
turn the number of rows and columns in A; e(A, i, j) is the (i, j)th entry of matrix
A;
∑

(A) is the sum of all the entries of A; and for α a formula, condindex(α, i, j)

Formal Theories for Linear Algebra 11

is i if α is true and j otherwise (similarly for condfield(α, a, b)). The function
p(n,A) = An.

Terms and quantifier-free formulas are mostly constructed in the usual way,
respecting types. We use n,m for index terms, t, u for field terms, T,U for matrix
terms, and α, β for (quantifier-free) formulas. The four kinds of atomic formulas
are m ≤index n, m =index n, t =field u, and T =matrix U . Formulas are built from
atomic formulas using ∧,∨,¬. There are restrictions on terms beginning with
cond: If α is a formula with atomic subformulas all of the form m ≤index n and
m =index n, then condindex(α,m′, n′) is a term of type index and condfield(α, t, u)
is a term of type field.

Terms of type matrix also include the constructed term λij〈m,n, t〉 (with the
restriction that i and j are not free in m and n). It defines an m×n matrix with
(i, j)th entry given by t(i, j). Many matrix functions such as multiplication, ad-
dition, transpose, can be defined using λ terms, avoiding the need for separately
defined function symbols. For example At = λij〈c(A), r(A), e(A, j, i)〉 defines the
transpose of A .

Lines in an LAp proof are Gentzen-style sequents α1, . . . , αk → β1, . . . , β`
with the usual meaning

∧
αi ⊃

∨
βj . The logical axioms and rules are those

of Gentzen’s system LK (minus the quantifier rules). The nonlogical axioms are
numbered A1 through A36. There are two nonlogical rules: one for induction
(9) and one for matrix equality (10).

3.1 Interpreting LAp into V ⊕L

Here we interpret the field F in the semantics of LAp to be Z2. We will describe
the interpretation so that each formula α of LAp is translated into a formula ασ

of V⊕L. Here ασ is in ΣB
0 (LF⊕L), so by Theorem 4 and part (v) of Proposition

2, ασ is equivalent to a ΣB
1 formula (ασ)′ of V⊕L. The translation preserves

provability (sequent theorems are translated to sequent theorems) and it also
preserves truth in our intended standard models: (N,Z2,matrices over Z2) for
LAp and (N,finite subsets of N) for V⊕L.

Each index term m (resp. matrix term T) of LAp is translated to a number
term mσ (resp. string term Tσ) of V⊕L. Since we represent elements of Z2 by
Boolean values in V⊕L, each field term t is translated to a ΣB

0 (LF⊕L) formula
tσ. These translations are described in detail in [Fon].

The translation of terms involving matrices is complicated. Every matrix
of LAp has three attributes: number of rows, number of columns, and matrix
entries (field elements). Each matrix term is translated to a string term which
codes all of these. Thus an a × b matrix A is interpreted as a string Aσ such
that Aσ(0, 〈a, b〉) is true, and for all i, j with 1 ≤ i ≤ a and 1 ≤ j ≤ b and
e(A, i, j) = Aij = 1, the bit Aσ(i, j) is true. All other bits of Aσ are false.

We will use a ΣB
0 formula isMatrix 2(X), which asserts that the string X

properly encodes a matrix as above. We allow the number of rows and/or columns
to be 0, but any entry out of bounds is 0 (a false bit).

The V⊕L functions fr(X) and fc(X) extract the number of rows and columns
of the matrix coded by X, and are used to translate the LAp terms r(T) and

12 Stephen Cook and Lila Fontes

c(T). These have defining equations

fr(X) = z ↔ (¬isMatrix 2(X) ∧ z = 0) ∨
(
isMatrix 2(X) ∧ ∃y ≤ |X|X(0, 〈z, y〉)

)
fc(X) = z ↔ (¬isMatrix 2(X) ∧ z = 0) ∨

(
isMatrix 2(X) ∧ ∃y ≤ |X|X(0, 〈y, z〉)

)
The matrix term λij〈m,n, t〉 is interpreted by the V⊕L term Ftσ (mσ, nσ).

Here Ftσ (x, y) is a string function, which has additional arguments corresponding
to any free variables in tσ other than the distinguished variables i, j (we interpret
iσ = i and jσ = j). The bit defining formula for Ftσ is

Ftσ (x, y)(b)↔ b = 〈0, 〈x, y〉〉 ∨ ∃i ≤ x∃j ≤ y(i > 0 ∧ j > 0 ∧ b = 〈i, j〉 ∧ tσ(i, j))
(7)

where we have written tσ(i, j) to display the distinguished variables i, j. Then
isMatrix 2(Ftσ (mσ, nσ)) is always true.

A matrix power term p(m,T) is translated Fp(mσ, Tσ) where Fp(i,X) is
a suitable version of a matrix powering function in V⊕L. It is related to the
straightforward function Pow2(n, i,X) = Xi defined from PowSeq2 in the defin-
ing axiom for V⊕L, but complicated by the fact that the string Aσ translating
an LAp matrix A codes row and column numbers along with matrix entries. See
[Fon] for the definition of Fp(i,X).

Atomic formulas involving = and ≤ are translated in the obvious way, except
T =matrix U translates into the formula

(r(T) = r(U))σ ∧ (c(T) = c(U))σ ∧ ∀i, j ≤ (|Tσ|+ |Uσ|) (e(i, j, T) = e(i, j, U))σ

(8)
which asserts that the row number, column number, and entries of T and U are
the same.

For general formulas, the connectives ∧,∨,¬ translate to themselves, and
sequents translate to formulas in the usual way.

It remains to show that theorems of LAp translate into theorems of V⊕L
(and hence further translate into theorems of V⊕L). The underlying logic used
by LAp is Gentzen’s propositional sequent system, in which all axioms are valid
sequents and for each rule, the bottom sequent is a logical consequence of the top
sequents. Since formulas of LAp are quantifier free, and the connectives ∧,∨,¬
translate to themselves, it follows that logical axioms translate to valid formulas,
and the translated rules preserve logical consequence.

In addition to the logical axioms, LAp has 36 (nonlogical) axioms A1,A2,...,A36
and two nonlogical rules. The translation of each axiom is a theorem of V⊕L.
This is easy to show for every axiom, with the exception of A32, A33, and A36.
The first two of these help define

∑
(A) to be the sum of all entries of the matrix

A (see below), and the third gives the recursive step in the definition of power-
ing: p(n + 1, A) = p(n,A) × A. Correctness proofs for the axioms are given in
[Fon].

Axiom A33 gives the inductive step in the definition of
∑

(A). It is
1 < r(A), 1 < c(A) →

∑
(A) = e(A, 1, 1) +

∑
(R(A)) +

∑
(S(A)) +

∑
(M(A))

where

Formal Theories for Linear Algebra 13

R(A): = λij〈1, c(A)− 1, e(A, 1, i+ 1)〉
S(A): = λij〈r(A)− 1, 1, e(A, i+ 1, 1)〉
M(A): = λij〈r(A)− 1, c(A)− 1, e(A, i+ 1, j + 1)〉

e R

S M

This breaks the matrix A into four parts as indicated on the right, and sums
them separately (a similar recursive step is used in Berkowitz’s algorithm for
computing the characteristic polynomial of a matrix). Correctness of the trans-
lation of this axiom involves proving in V⊕L that the parity of the matrix is the
sum (mod 2) of the four parities. This is done by considering a submatrix of A
consisting of the first i rows together with the first j entries of row i + 1, and
arguing by induction first on i and then on j. The second induction step uses
the lemma stating that if two strings differ by exactly one bit, then they have
opposite parities.

The first nonlogical rule is induction:

Γ, α(i)→ α(i+ 1), ∆
Γ, α(0)→ α(n), ∆

(9)

By Theorem 4 and part (iv) of Proposition 2 it follows that V⊕L proves that the
translation of the bottom follows from the translation of the top, as required.

The second rule is the Matrix Equality Rule:

S1 S2 S3

Γ → ∆,T =matrix U
where

S1 : Γ → ∆, e(T, i, j) = e(U, i, j)
S2 : Γ → ∆, r(T) = r(U)
S3 : Γ → ∆, c(T) = c(U)

(10)

It is immediate that the translation of the bottom follows from the translation
of the top by the way T =matrix U is translated (8).

It follows that

Theorem 5. Theorems of LAp translate to theorems of V⊕L.

3.2 Interpreting LAp into V #L

Now we interpret the ‘field’ F in the semantics of LAp to be the ring Z of
integers. Of course Z is not a field, so we cannot translate the axiom A21 a 6=
0 → a ∗ (a−1) = 1 for field inverses. However according to the footnote on
page 283 of [SC04], this axiom is not used except in the proof of Lemma 3.1
and Theorem 4.1. The latter theorem states that LAp proves that the Cayley-
Hamilton theorem implies the hard matrix identities (3). However it is not hard
to see that Theorem 4.1 does hold for integral domains, because the field inverse
axiom can be replaced by the cancellation law a 6= 0, a ∗ b = a ∗ c → b = c.
Hence LAp with this axiom replacing A21 does prove that the Cayley-Hamilton
theorem implies the hard matrix identities. It follows from our interpretation of
LAp into V#L that V#L proves that the Cayley-Hamilton Theorem implies
the hard matrix identities over Z (see Theorem 2).

The interpretation of LAp into V#L is similar to the interpretation into
V⊕L. We first translate LAp into V#L, and then into V#L, using Theorem

14 Stephen Cook and Lila Fontes

4 and part (v) of Proposition 2. As before, terms of type index are translated
into number terms. However elements of type field (integers) are translated into
strings representing the integers in binary. Binary (rather than unary) notation
for integers is chosen to match the axiom for matrix powering in V#L (see the
end of the first paragraph in Section 2.4). Elements of type matrix are translated
into strings representing arrays of binary integers. We define string functions +Z
and ×Z in V TC0 representing integer plus and times, and FP(X) for iterated
integer sum. See [Fon] for more details.

4 Conclusion

There are two general motivations for associating theories with complexity classes.
The first is that of reverse mathematics: determining the complexity of concepts
needed to prove various theorems, and in particular whether the correctness of
an algorithm can be proved with concepts of complexity comparable to that of
the algorithm. The second motivation comes from propositional proof complex-
ity: determining the proof lengths of various tautology families in various proof
systems.

Both of these motivations are relevant to the earlier open questions of whether
LAp can prove properties of the determinant such as the Cayley-Hamilton theo-
rem, and hence the hard matrix identities (3). Now we can refine these questions
and apply them to the two complexity classes ⊕L and DET . It is possible that
V⊕L and V#L could prove these properties for their associated rings Z2 and Z
by methods not available to LAp. For example V⊕L might take advantage of the
simplicity of Z2, or V#L might be able use the algorithmic strength of integer
matrix powering (as opposed to matrix powering over an unspecified field) to
prove correctness of the dynamic programming algorithm for the determinant in
[MV97]. This algorithm is based on a combinatorial characterization of det(A)
using clow (closed walk) sequences in the edge-labeled graph specified by the
matrix A.

Over the field Z2 the hard matrix identities translate naturally to a family
of propositional tautologies (and over Z they translate into another family of
tautologies). The original motivation for studying these identities was to give
further examples of tautology families (like those in [BBP94]) that might be hard
for the class of propositional proof systems known as Frege systems. There is a
close connection between the strength of a theory needed to prove these identities
(or any ΣB

0 formula) and the strength of the propositional proof system required
for their propositional translations to have polynomial size proofs. (Chapter 10
of [CN10] gives propositional proof systems corresponding in this way to five of
the theories in (2).)

In particular, the fact that the hard matrix identities are provable in V P
shows that their propositional translations have polynomial size proofs in Ex-
tended Frege systems. If the identities were provable in V NC1 then the tautolo-
gies would have polynomial size Frege proofs. If the identities turn out to be
provable in one of our new theories, then the tautologies would have polynomial

Formal Theories for Linear Algebra 15

size proofs in proof systems (yet to be defined) of strength intermediate between
Frege and Extended Frege systems.

Finally, we point out a lesser open problem. The main axiom for our new
theory V#L asserts that integer matrix powers exist, where integers are repre-
sented in binary. As explained at the beginning of Section 2.4, integer matrix
powering is complete for the complexity class DET even when restricted to 0-1
matrices, because the binary case is AC0-reducible to the 0-1 case. It would be
interesting to investigate whether the nontrivial reduction (see [Fon09]) can be
proved correct in the base theory V TC0, so that V#L could equivalently be
axiomatized by the axiom for the 0-1 case rather than the binary case.

References

[All04] Eric Allender. Arithmetic Circuits and Counting Complexity Classes. In
Jan Krajicek, editor, Complexity of computations and proofs, pages 33–72.
Quaderni di Matematica, 2004.

[AO96] Eric Allender and Mitsunori Ogihara. Relationships Among PL, #L, and
the Determinant. RAIRO - Theoretical Informatics and Applications, 30:1–
21, 1996.

[BBP94] Maria Luisa Bonet, Samuel R. Buss, and Toniann Pitassi. Are there hard
examples for frege systems? In P. Clote and J. B. Remmel, editors, Feasible
Mathematics II, pages 30–56. Birkhauser, 1994.

[BDHM92] Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf, and Christoph
Meinel. Structure and Importance of Logspace-MOD Class. Mathemati-
cal Systems Theory, 25:223–237, 1992.

[Ber84] S. J. Berkowitz. On computing the determinant in small parallel time using
a small number of processors. Information Processing Letters, 18:147–150,
1984.

[BKR09] Mark Braverman, Raghav Kulkarni, and Sambuddha Roy. Space-Efficient
Counting in Graphs on Surfaces. Computational Complexity, 18:601–649,
2009.

[CN10] Stephen Cook and Phuong Nguyen. Logical Foundations of Proof Com-
plexity. Cambridge University Press, 2010. Draft available from URL
http://www.cs.toronto.edu/~sacook.

[Coo85] S. A. Cook. A Taxonomy of Problems with Fast Parallel Algorithms. In-
formation and Control, 64:2–22, 1985.

[Fon] Lila Fontes. Interpreting LAp into V⊕L and V #L. Draft available at
www.cs.toronto.edu/~fontes.

[Fon09] Lila Fontes. Formal Theories for Logspace Counting. Master’s thesis, Uni-
versity of Toronto, 2009. Available at http://arxiv.org/abs/1001.1960.

[Imm99] Neil Immerman. Descriptive Complexity. Springer, 1999.
[MV97] Meena Mahajan and V. Vinay. Determinant: Combinatorics, Algorithms,

and Complexity. Chicago Journal of Theoretical Computer Science, 5, 1997.
[SC04] Michael Soltys and S. A. Cook. The Proof Complexity of Linear Algebra.

Annals of Pure and Applied Logic, 130:277–323, 2004.
[SK01] Michael Soltys-Kulinicz. The Complexity of Derivations of Matrix Identi-

ties. PhD thesis, University of Toronto, 2001.

