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Communication complexity

Two-player model

each player has a private input (Alice has x ∈ X , Bob has y ∈ Y )

players communicate over a channel

players follow a protocol to compute f : X × Y → Z

the last message sent is the value f (x , y) = z

The communication cost of a protocol is the worst-case length of the full
transcript.
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Communication complexity The model

Matrix Mf has entries Mf [x , y ] = f (x , y).

A submatrix is monochromatic if f is constant on inputs in the submatrix.
A deterministic protocol computing f repeatedly partitions Mf into
rectangles (submatrices) until every rectangle is monochromatic.

Vickrey auction

The 2-player Vickrey auction is defined as f : X × Y → Z where

X = Y = [2n], Z = [2n+1] and f (x , y) =

{
(x ,B), if x ≤ y
(y ,A) if y < x
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Regions (preimages)

region Rx ,y ={
(x ′, y ′) ∈ X × Y |

f (x , y) = f (x ′, y ′)
}

defined by function −→

Rectangles

rectangle Px ,y ={
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f (x , y) = f (x ′, y ′)

and
π(x , y) = π(x ′, y ′)}

defined by protocol
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Perfect privacy

Privacy against eavesdroppers

Can an eavesdropper learn about x and y , aside from z = f (x , y)?
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Perfect privacy

Privacy against eavesdroppers

Can an eavesdropper learn about x and y , aside from z = f (x , y)?

Ascending English bidding.
Lila Fontes (University of Toronto) 3 / 12



Perfect privacy

Perfect privacy

A protocol for 2-player function f : X × Y → Z is perfectly private if
every two inputs in the same region are partitioned into the same
rectangle.

Characterizing perfect privacy (Kushilevitz ’89)

The perfectly private functions of 2 inputs are fully characterized
combinatorially. A private deterministic protocol for such functions is given
by “decomposing” Mf .
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Approximate privacy

Privacy approximation ratio (Feigenbaum Jaggard Schapira ’10)

A protocol for f has worst-case privacy approximation ratio:

worst-case PAR = max
(x ,y)

|Rx ,y |
|Px ,y |

average-case PAR = E(x ,y)
|Rx ,y |
|Px ,y |

over distribution U

worst-case PAR = 10
average-case PAR = 2

Lila Fontes (University of Toronto) 5 / 12



Approximate privacy

Privacy approximation ratio (Feigenbaum Jaggard Schapira ’10)

A protocol for f has worst-case privacy approximation ratio:

worst-case PAR = max
(x ,y)

|Rx ,y |
|Px ,y |

average-case PAR = E(x ,y)
|Rx ,y |
|Px ,y |

over distribution U

worst-case PAR = 10
average-case PAR = 2

Lila Fontes (University of Toronto) 5 / 12



Approximate privacy

Privacy approximation ratio (Feigenbaum Jaggard Schapira ’10)

A protocol for f has worst-case privacy approximation ratio:

worst-case PAR = max
(x ,y)

|Rx ,y |
|Px ,y |

average-case PAR = E(x ,y)
|Rx ,y |
|Px ,y |

over distribution U

worst-case PAR = 10
average-case PAR = 2

Lila Fontes (University of Toronto) 5 / 12



Approximate privacy

Privacy approximation ratio (Feigenbaum Jaggard Schapira ’10)

A protocol for f has worst-case privacy approximation ratio:

worst-case PAR = max
(x ,y)

|Rx ,y |
|Px ,y |

average-case PAR = E(x ,y)
|Rx ,y |
|Px ,y |

over distribution U

worst-case PAR = 10
average-case PAR = 2

Lila Fontes (University of Toronto) 5 / 12



Approximate privacy

Privacy approximation ratio (Feigenbaum Jaggard Schapira ’10)

A protocol for f has worst-case privacy approximation ratio:

worst-case PAR = max
(x ,y)

|Rx ,y |
|Px ,y |

average-case PAR = E(x ,y)
|Rx ,y |
|Px ,y |

over distribution U

worst-case PAR = 10
average-case PAR = 2

Lila Fontes (University of Toronto) 5 / 12



Approximate privacy

Two-player Vickrey auction

Bisection protocol
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Approximate privacy

Upper bounds (Feigenbaum Jaggard Schapira ’10)

English bidding bisection protocol

communication cost 2n O(n)
worst-case PAR 1 2n

average-case PAR 1 O(1)

Lila Fontes (University of Toronto) 7 / 12



Our contributions

Theorem 1: worst-case lower bound

For all n, for all p, 2 ≤ p ≤ n/4, any deterministic protocol for the n-bit
two-player Vickrey auction obtaining PAR less than 2p−2 has length at
least 2n/4p.

Theorem 2: average-case lower bound

For all n, r ≥ 1, any deterministic protocol of length at most r for the n-bit
two-player Vickrey auction has average-case PAR greater than Ω( n

log(r/n) ).
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Our contributions

Privacy against players

Can Bob learn anything about Alice’s private input x , beyond the fact that
z = f (x , y)? Can Alice learn anything about Bob’s private input y?

Subjective regions

region RA
x ,y ={

(x , y ′) ∈ X × Y |
f (x , y) = f (x , y ′)

}
defined by function
Alice sees

Subjective rectangles

rectangle PB
x ,y ={

(x , y ′) ∈ X × Y |
f (x , y) = f (x , y ′),
π(x , y) = π(x , y ′)}

defined by protocol
Alice sees

Subjective privacy approximation ratio (Feigenbaum Jaggard Schapira ’10)

average-case PARsub = max
v=A,B

E(x ,y)

|Rv
x ,y |
|Pv

x ,y |
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Our contributions

Theorem (Braverman ’11): IC(DISJ)= Ω(n).

information cost IC

IC = I (X : ΠP(X,Y)|Y) + I (Y : ΠP(X,Y)|X)}

informational privacy PRIVD (Klauck ’02)

PRIVD(P) = max{I (X : ΠP(X,Y)|Y, f (X,Y)), I (Y : ΠP(X,Y)|X, f (X,Y))}

Theorem: PRIVD − log |Z | ≤ IC ≤ 2(PRIVD + log |Z |)
Theorem: PRIVD(P) ≤ log(avgD PARsub(P))

Theorem 3

Any protocol P computing the n-bit Set Intersection INTERSECn has
exponential average-case subjective PAR:

avgU PAR
sub(P) = 2Ω(n)

Lila Fontes (University of Toronto) 10 / 12



Our contributions Worst-case tradeoff

Theorem 1: worst-case lower bound

For all n, for all p, 2 ≤ p ≤ n/4, any deterministic protocol for the n-bit
two-player Vickrey auction problem obtaining PAR less than 2p−2 has
length at least 2n/4p.

progress:
steps that
look like
bisection.

useless:
steps that
look like
English
bidding.
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Conclusion

Future directions

a “good” unified definition of privacy

length-privacy tradeoffs for other functions

general results for length-privacy tradeoffs

randomized protocols

protocols with error

approximate privacy hierarchy?

more than 2 players

privacy against coalitions?

Lila Fontes (University of Toronto) 12 / 12



Extra slides Average-case tradeoff

Ball Partition Problem

For integers N and r ≥ 1, there are N balls and r rounds. All of the balls
begin in one big set. In each round, the balls in each current set are
partitioned into (at most) two new sets. The cost of partitioning the balls
in any set S into sets S1 and S2 is min(|S1|, |S2|). After r rounds, each of
the N balls shall be in a singleton set. The total cost of the game is the
sum of the cost, over all r rounds, of every partition made during each
round. We denote the minimal possible cost by B(N, r).

Theorem 17

For the Ball Partition Problem, B(N, r) ≥ N log N
4 log( 4r

log N
)
.

Lila Fontes (University of Toronto) 13 / 12



Extra slides Average-case tradeoff

Average-case PAR

We define it slightly differently.

Theorem 2: average-case lower bound

For all n, r ≥ 1, any deterministic protocol of length at most r for the
n-bit two-player 2n-Vickrey auction problem has average-case PAR greater
than Ω( n

log(r/n) ) (over the uniform distribution of inputs).

Proof: The Ball Partition problem simplifies the analysis of arbitrary
protocols to an analysis of protocol trees and probability.

Lila Fontes (University of Toronto) 14 / 12



Extra slides Set intersection

Answered Feigenbaum conjecture about set intersection:

Theorem 3

For all n ≥ 1, and any protocol P computing the Set Intersection
INTERSECn the average-case subjective PAR is exponential in n under the
uniform distribution:

avgU PAR
sub(P) = 2Ω(n)

Relating PAR to info measures. Definitions of mutual information
measures of privacy (nice because info=0 corresponds to perfect privacy)
[Kla02, Bra11]. Theorem 21 Info theoretic privacy ≤ log of average PAR.

PRIVD(P) ≤ log(avgD PARsub(P))

Lila Fontes (University of Toronto) 15 / 12



Extra slides Set intersection
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