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Abstract—In 1989 Kushilevitz [1] initiated the study of  honest but curious. Honest, because they obey the rules of

information-theoretic privacy within the context of communi- the game. Curious, as they do not miss any opportunity to
cation complexity. Unfortunately, it has been shown that most gain knowledge about others’ input.

interesting functions are not privately computable [1], [2]. The o o ) )
unattainability of perfect privacy for many functions motivated In 1989, Kushilevitz [1] initiated the study afformation-

the study of approximate privacy In [5], [7], they define  theoretic privacy in communication complexity, which is
notions of worst-case as well as average-case approximate 5p appealing direction because it does not rely on compu-

privacy, and present several interesting upper bounds, and : : . .
some open problems for further study. In this paper, we obtain tational assumptions discussed above. Informally, a multi

asymptotically tight bounds on the tradeoffs between both the ~ Player communication protocol for computing a function
worst-case and average-case approximate privacy of prototo  f(z,y) is private if each player does not learn any addi-
and their communication cost for Vickrey-auctions. tional information (in an information theoretic sense) tey
Further, we relate the notion of average-case approximate \hat follows from knowing his/her private input, and the
privacy to other measures based on information cost of proto- function value f(z,y). A complete characterization of the

cols. This enables us to prove exponential lower bounds on the . I ble f ) . b f
subjective approximate privacy of protocols for computing the ~ Privately computable functions was given, but unfortufyate

Intersection function, independent of its communication cost. ~€arly work ruled out private protocols for most interesting
This proves a conjecture of Feigenbaum et al. functions [1], [2]. For example, second-price auctionsrare

Keywords-privacy, communication complexity, Vickrey auc- _poss_it_)Ie with more than tvyo participants, and are extremely
tions inefficient even in the setting of two bidders [3], [2].
The unattainability of perfect privacy for many functions
I. INTRODUCTION motivated the study odipproximateprivacy. Most relevant to
our work is the study of Klauck [4] and the more recent work
of Feigenbaum, Jaggard and Schapira [5]. The relaxation
from perfect to approximate privacy is appealing because
it renders more functions computable privately, and more

Privacy in a distributed setting is an increasingly impotta
problem. A key application is the setting of combinatorial
auctions where many agents have private information (e.g

their preferences) but would like to compute a function Ofclosely mirrors real-world situations in whicgomeprivacy

t_helr Inputs \.N'thOUt revealing any of their prlvat_e_mformg loss may be acceptable. On the other hand, it is more subtle
tion. There is a large body of research examining which

functions can be computed securely, and how. Many o{o capture the notion of approximate privacy. While most

) . reasonable definitions of perfect privacy turn out to beequi
these results rely on an assumption, such as a computation o . : . :

) . . alent, this is not quite the case with approximate privaay. |
complexity assumption, or the assumption that more than

some fixed fractionn of the players are trustworthy, or the particular, the measures of Klauck [4] and Feigenbaum et

assumption that the auctioneer ¥4 party) is trustworthy. al. [5] are different and each has its own advantage and

These assumptions limit the usefulness of such study. Agharacterlsncs. Our work ‘here is primarily motivated by

Brandt and Sandholm point out, privacy which is basedrecent work [5], [6]. A second motivation is to understand

on an assumption of hardness can easily become outdat(ta%e connections between the two.

as computers become faster and more powerful; security !N the two player setting, lef(x,y) be a function, and let
parameters (like key length) need to be continuously upUateP be a two-player deterministic communication protocol for
to cope with increasing computational power [2]. Auctions /- The privacy loss (or privacy approximation ratio, PAR) on
are a natural setting where we would doubt the trustworthithe input(z,y) with respect toP is defined to be the size
ness of fellow participants or an auctioneer. We neversisele Of the monochromatic region containiri@, y) divided by
would like to compute on the internet. In this work, we the size of the protocol-induced rectangle containingy):
focus on situations where each player is deterministic and’PAR(z,y) = % The worst-case privacy loss of



protocol P is the maximum privacy loss over all inputs problem has average-case PAR at léast /) (over the
(z,y), and the worst-case privacy loss of the functifn uniform distribution of inputs}.
is then the minimum privacy loss over all protocols for , ,
Perfect privacy of a protocol (as defined in 1989) requires ©Ur lower bounds show that the approximate privacy
that the privacy approximation ratio (PAR) is 1 for all input of any polynomial length protopol is still as large as
(This definition easily extends to the multi-player setfjng $2(/(logn)). Indeed, such superlinear protocols have been
Under this relaxed notion of privacy, things are muchd€vised by Klauck [4] who proved upper bounds for his mea-
more interesting [5], [7], [6]. For example, Feigenbaum etSure of approxmate—pnvacy. To lthe best of our knowledge,
al. study the Vickrey auction problem, and reveal a possibld "€0rém 2 provides the first (tight) lower bounds on the
inherenttradeoff between privacy and communication com-Sommunication cost of achieving good approximate privacy
plexity: they describe a family of protocols such that thefor Vickrey auctions. The proof of the theorem relates the

privacy loss approaches 1 (perfect privacy) as the length 0I]oss of privacy to a certain Ball Partition Problem that may

the protocol approaches exponential. They also studyzs;leverbe of independent inter(_ast. .
prominent boolean functions with respect to approximate " urthermore, we modify the average-case privacy approx-
privacy. imation measure of Feigenbaum et al. Our modification

Feigenbaum et al. consider @verage-casenotion of provides a rather natural measure that was disregarded in

approximate privacy as well. In this setting, we are integs [2): Put coincides with that of Feigenbaum et al. in the
in the average privacy loss over a distribution on inputseHe case of uniform distribution on the inputs. Our modified
they describe a protocol for Vickrey auction that achievegneasure has several advantages. It allows natural alternat

exponentially smaller average-case PAR than the worst-ca$haracterizations, and it can be directly related to theapyi
PAR achievable by any known protocol. A similar protocol measure of Klauck. We can quantitatively connect Klauck’s

was described by Klauck [4]. privgcy measure to WeI_I stgdied notion_s (Mtemal) infor-
mation costin communication complexity. This allows us
Our Contributions to prove a new lower bound on the average-case subjective
In this paper, we present several new lower bounds omyrivacy approximation measure of Feigenbaum et al. [5], and
the communication cost for achieving privacy and establishainswers affirmatively a conjecture from their paper.

relationships between approximate privacy and severakroth _ )
known measures. Theorem 3:For alln > 1, and any protocoP computing

First, we prove that there is an inherent tradeoff betwee1® Set Intersection INTERSEGhe average-case subjective

privacy and communication complexity, by proving a pri- PAR is exponential im under the uniform distribution:
vacy/communication complexity tradeoff lower bound for avgy PARS?(P) = 2%,
the Vickrey auction problem. This shows that the upper

bounds presented in [5] are essentially tight. [5] provided \we contend that any of the mentioned measures could

a lower bound only for the special case of bisection-typeserye as a reasonable measure of privacy. Indeed, each of

protocols. the measures seems to exhibit advantages over the other
Theorem 1:For all n, for all p, 2 < p < n/4, any Ones in some scenario so each of the measures captures

deterministic protocol for the two-player Vickrey auction Certain aspect of privacy. For example, the English auction

problem on inputs of length obtaining privacy loss (PAR) Protocol for Vickrey auction achieves perfect privacy (end
less thar2P=2 has length at least?s . any measure) but at exponential communication cost. On the

. ) ] . . . _other hand, the Bisection protocol achieves linear average
This lower bound is technically interesting as it deals with .56 PAR with merely linear communication cost. However
super-linear communication protocols. The usual communiyhe gifference between these two protocols is not reflected
cation complexity techniques aim at protocols that are afyg| in Klauck’s privacy measure, where both protocols lose

most linear in their input size. o constant number of bits on the average.
Our second contribution demonstrates a similar type of

tradeoff for the case of average-case approximate privacyutline of Paper

We prove an asymptotica”y t|ght lower bound on the In Section II, we prOVide our basic notation and back-
average-case approximate privacy of the Vickrey auctiorground on information theory. In Section I, we review the
pr0b|em' Showing that the upper bounds from [5] are esnotion of privacy apprOXimation ratio, and in Section Il|-A
sentially tight. This generalizes the result of [6] for Viek ~ We review the Vickrey auction problem. In Section IlI-B, we

auctions. Again, [5] provided lower bounds only for the Present our lower bound tradeoff for worst-case privacy of
Specia| case of bisection_type protoco]s_ ViCkrey auctions. In Section IV, we present our lower bound

o on average-case PAR for Vickrey auctions, and discuss
Theorem 2:For all n,» > 1, any deterministic protocol

of length at most- for the two-player2™-Vickrey auction 1Under the original definition [5] or our alternate Definitidd.



the relationship between average-case PAR and informatiostraightforward to verify that mutual information is a sym-

cost, deriving several new results from this relationship.

Il. PRELIMINARIES

metric quantity, i.e/(X : Y) = H(X) - HX][Y) =
H(Y)—-H(Y|X) =I1(Y : X). Fact 4 implies that mutual
information between two random variables is always non-

In this section, we review our basic notations and conyegative. Just like entropy, one can define the conditional

cepts. For a positive integédr, we let [k] = {1,2,...,k}.

mutual information between random variables: #&tbe

We assume that the reader is familiar with communicationynother random variable with range

complexity (see [8] for more background.) We will use the
following notation. Givenf : X x Y — Z, each input
(x,y) is associated with theegion R, , of all inputs in
the preimage off(z,y), i.e.,, R, = {(z/,¥') € X X
Y|f(z,y) f(@',y")}. For any valuez € Z we let
R. = f~(z) be the preimage of. The set of all regions
of function f is R(f) = {R.y : (z,y) € X xY}. Let P
be a communication protocol for the functigh For inputs
(z,y) € X xY we letIlp(z,y) denote the transcript of
the protocol on input: given to Alice andy given to Bob.
We associate the inputz,y) with the protocol-induced
rectangle P, , of all inputs which yield the same transcript:
Py ={("y) e X xY : IIp(z,y) = p(2’,y’)}. Note
that P, , C R, , as we assume thdt correctly computes
I
A. Information theoretic notions

Information theory provides a highly intuitive and power-

I(X:Y|Z)

H(X|Z) - HX|Y,Z)
E,,[I(X: Y|Z=2)].

We will also need the following simple claim:

Claim 5: Let X,Y,Z, W be any random variables.
Then, |I(X : YIW) - I(X : Y |W,Z)| < H(Z).

Proof: First, notice that/(X : Y|W) - I(X :
Y|W,Z) = (HX|W)-H(X|W,Z)) - (HX|W,Y)-
H(X|Y,W,Z)). Using symmetry of information, the first
bracketed quantity i8(X : Z | W) < H(Z), and the second
bracketed quantity i&,,, [I(Z: X|W,Y =y)| < H(Z).

[

IIl. WORSTFCASE PRIVACY APPROXIMATION RATIO

In this paper, we are concerned with privacy-preserving
communication complexity. A perfectly private communica-
tion protocol for f will reveal only the output off and no

ful calculus to reason about random variables. We need thadditional information. Every two input&e, y) and (z/,y’)

following basic notions from this theory whose proofs cansuch thatf(z,y)

f(z',y") should be indistinguishable

be found in any standard textbook on the subject (see fofrom each other [1], [10]. Approximate privacy provides

example Cover and Thomas [9]).

For any random variabl&, we denote its probability
distribution over its ranget by px. The entropy ofX,
denoted byH (X), is defined as follows:

© Y Pr, [X = ] log, (Pr,,,x X — :z:])

TeEX
—Epuy [log(px (x))]

Let Y be another random variable. For apyn the range
of Y, H(X|Y = y) is defined as just the entropy &f under
the conditional distribution, i.eH (X|Y = y) =qet

—;Pr[X:ﬂY:y]log(Pr[X:x|Y:y]>.

H(X)

a measure of how much indistinguishability has been lost.
These notions are formalized as follows.

The following definition captures the privacy loss of
a communication protocol with respect to a third party
observer (eavesdropper) who overhears the messages sent
between the players. This measure is referred tibgestive.

Definition 6: [5] For an input(z,y), its privacy approx-
imation ratio isPAR(P, z,y) % A protocol P for
a function f on X x Y hasworst-case objective privacy
approximation ratio (PAR) defined by

PAR(P) = I(na))( PAR(P, z,y).
‘T’y
Often we do not specify the protoc#! when it is clear from
context.

Extending the above naturally, we define the notion of

conditional entropyH (X|Y) as
H(X[Y) =¢er Euy, [HX|Y =y)].

As intuition suggests, conditioning a random varialXle
on another random variab¥ cannot increase its uncertainty
on the average. Formally,

Fact 4. For any two random variablesX and Y,
H(X|Y) < H(X).

The mutual information betweeiX and Y, denoted
by I(X Y), is defined asH(X) — H(X]Y). It is

The PAR measure of privacy can be extendedubjec-
tive PAR, which measures the privacy that the players lose
to each other

Definition 7: [5] A protocol P for a function f on X x
Y hasworst-case subjective privacy approximation ratio
(PARS"") defined by:

o Ry 0 X x )
(z,v) |Pm,y NX x {y}‘ ’

s s ) V1
(z,y) |Pz’y N {LC} X Y|

PARS“’(P) = max{




acterization of the functiong which are computable with

perfect privacyPAR = 1 [1]. This set unfortunately ex- /O\
y#1

Previous work by Kushilevitz gave a combinatorial char- / \
x=1 r#£1

cludes most auctions [2], as well as many basic functions y=1

of interest in theoretical computer science, e.g., grahgm /O

[11] and set intersection and disjointness [7]. r=2 \,ﬁ
O

As many functions are not computable with perfect /

privacy, it is natural to investigate the following general y=2

guestion for a functionf: is f privately computable, and @ o
how much communication is necessary to achieve PAR less S 7/ \M{Q,_l

than some number? In the next section, we focus on the

case of Vickrey auctions which is one of the most studied
functions in this context. Figure 2. The protocol tree for an English auction computfag

A. Vickrey auctions

Vickrey auctions (also known known a¥'%-price auc-  rounds for the2"-Vickrey auction, and is known to be the
tions) arise in mechanism design, and are a canonical enly protocol which obtains perfect privadgAR = 1 for
ample of atruthful mechanism: neither player has incentive Vickrey auctions [1].
to cheat, as long as the auction is computed correctly. For a Notice that the range of is of size2"*! and thatf is

positive integerN, the N-Vickrey auction is defined ag :  surjective, so that there must be at le2ist! distinct leaves
XxY = Zx{A,B}whereX =Y =7 ={1,2,...,N}  in any protocol tree forf. Thus any protocol forf requires
and at leastn + 1 rounds. An example of such a protocol is

flz,y) = { (2, B), !f TSy the Bisection Protocol that proceeds by binary search on an
(y,4) ify<az interval containing the smaller input [5]. Bisection Proib

Two players, Alice and Bob, have private valuesand v, obtainsPAR = 2", the worst possible loss of privacy for
respectively. These private values indicate the amount ofis function.
money that the item is worth to each of them.af< y, These two extremes — on the one hatdR = 1 at expo-
then Bob wins, and the price that he paysais (Thus, nhential communication cost, and on the other, exponential
f(z,y) = (x, B) means that Bob wins and paysfor the = PAR at linear communication cost — suggest that there is
item.) Similarly, if z > y, then Alice wins, and the price a tradeoff between privacy and communication for Vickrey
that she pays ig. This mechanism is also calle@™-price  auctions. The structure of the function itself suggests thi
auction” because the winner’s price is th&-highest bid. tradeoff as well. Any move which differs from the English
Vickrey auctions remain truthful for more than two players, protocol must divide some monochromatic region into two
but are not computable with perfect privadgAR = 1) [2]  pieces. Thus inputs in the same monochromatic region are

for more than two players. distinguishable by the protocol, and some privacy is lost.
The matrix M of the 2"-Vickrey auction looks like: Different PAR is achievable depending on the nature
of the protocol. Feigenbaum et al. examine a family of
L 2 3 1 -1 Bisection-type protocols [5] and use average-case PAR to
L[4y B (LB LB (1.B) (L.B) differentiate amongst them. Such protocols obtain waoasec
2 (A 2R) A (%) %B) &5 PAR varying from1 to 27, inversely related to their length.
3 (1,A) [ (2,A) [ 3.B) (3,B) 3,B) 3,B) . . . .
+ low|es GoTas ] ] This observation inspired the results below.
‘ ‘ : ‘ ‘ ' B. Worst-case lower bound for Vickrey auction
23 ' ;1 j; :: j ; 4; ;i ji The two algorithms discussed in the previous section

suggest that any protocol computing Vickrey auctions sthoul
Figure 1. The matrix\; for 2™-Vickrey auction. have a tradeoff between length and privacy. Protocol steps
which resemble those of the ascending English bidding
Perfect privacy for two-player Vickrey auctions is protocol partition the inputs in an unbalanced way, so that
achieved by the successive English bidding protocol, irmost inputs follow one branch of the protocol tree, and few
which bids start at and increase by in each round, and the inputs follow the other branch. Such steps preserve privacy
first player to drop out of bidding reveals his entire privatebut do not make much progress. (In an imbalanced partition,
value. (Note that this incurs no loss of privacy, since thaton the larger side the protocol still has a lot of work to do in
value is part of the function output.) The protocol tree fororder to compute the function.) On the other hand, protocol
this protocol is given in Figure 2. This protocol tak&is! steps that resemble binary search partition the inputs in a



nearly balanced way. Such steps make good progress, butLet M denote the matrix corresponding to the Vickrey
are bad for privacy. (Dividing the remaining inputs in half auction problem, as drawn in Figure 1. Bob wins for
increases the PAR by a factor @f) This is the intuition inputs in the horizontal regions; Alice wins for inputs in
behind Theorem 1, stated again below. the vertical regions. Fix a communication protocol, and

Theorem 1:For everyn andp, 2 < p < n/4, every de- corresponding protocol tree?. For every nodev in P

terministic protocol for2-player Vickrey auctions obtaining that.our adeersary Lstrategy Selects, we will maintain three
PAR < 2P2 must be of length at leagt? . sgts.S(p),A (v),B (v) < [2"]. At nodev, the adversary
) ~will be interested in tracking the privacy loss on the set of
Here the variablep serves as a parameter, explicitly inputs 5(v) x S(v). The privacy loss for these inputs will

linking the protocol length to the achievable PAR. For pe measured with the help of the two auxiliary sdts(v)
instance, if we pup = v/, then we conclude by Theorem 1 anqg B~ (), respectively.

that either the protocol communﬁcatéé’(ﬁ) bits in the Initially, at the rootr of the protocol treeS (r) = [277].
worst case, or the worst-case privacy |°S§%ﬁ)- This  This initial set of inputsS(r) x S(r) are the “small” inputs
theorem shows that for Vlckre)_/ auctions, there is an _mherenthat sit in the upper left submatrix dff. As we move down
tradeoff between communication complexity and privacy. e protocol tree, we will updat§(v) so that it is always
Proof: We will assume without loss of generality that a subset of2"~?] N Ty (v) N Tr(v). We are interested in

in the protocol, the players take turns and send one bit paghese small inputs since the regions that they are contained
message. (Any protocol can be put into this form by at mosin are very large, and thus have the potential to incur a large
doubling the length of the protocol.) Moreover, our protoco (exponential) privacy loss.
is assumed to be deterministic and to have zero error. The setA%(v) is a subset of4 (v) , and similarly BL (v)

The Vickrey auction function has a corresponding matrixis a subset of 3 (v). The setsA”(r) and BL(r) are initially
M such that entry(z, y) of the matrix is the value of the [2"]\[2"7], the “large” inputs. At vertex, the setA” (v)
Vickrey auction on inputyz,y) (Figure 1). A submatrix describes the set of large inputs of Alice that have survived
of M is called arectangle a rectangle is “monochromatic” so far; thusAZ (v) = T4 (v) N[27]\[2"~P]. Similarly, B (v)
if the matrix is constant on inputs in that submatrix. Ev- describes the set of large inputs of Bob that have survived so
ery communication protocol can be visualized as a binaryfar; thus BL (v) = Tz(v) N [2"]\[2"~?]. As we traverse the
decision tree [12]. Each node of the tree is associated protocol tree, these sets track the loss of privacy for Alice
with a rectangle (submatrixy'(v) = Ta(v) x T(v) C  and Bob (respectively) on inputs i§i(v) x S(v).
X x Y. The root node- is associated with the entire matrix ~ We can measure the loss of priveay farin the protocol.
Ta(r) x Tp(r) = X xY = M. Each leaf nodel is For any(z,y) € T(v),
associated with a monochromatic submaffix(l) x Ts(1).

Each internal node has two childrenwy, and v,. If the PAR,(x,y) = M
protocol calls for Alice to speak at node then the bit sent |Rey NT(v)]
by Alice atv induces a partition of 4 (v) into two pieces, If vis a leaf, then for anyz,y) € T(v), PAR,(z,y) =

Ta(vo) and T4 (v1). The submatrix associated withy i pAR(z,y). The following simple claim will be useful:
Ta(vo) x Tp(v), and the submatrix associated with is

Ta(v1) x Tg(v). Similarly if Bob speaks at node, then Claim 8: V(z,y) € T(v), PAR(z,y) > PARy(z,y).
the submatrix associated withy is T4 (v) x Ts(vo) and the
submatrix associated witty is T4 (v) x T(v1).

Traversing the tree from the root to a lgafjenerates a
transcript of the bits of communication sent for some input
(z,y) € Ta(l) x Tp(l). The depth of the tree is the worst-
case communication cost of the protocol.

Any deterministic protocol consists of a series of parti-
tions of the matrix\/ into rectangles. The resulting protocol- This holds becausgi,, , | > 2" —2""7 and|R,, , N T'(v)] <
induced tiling of the matrix\/ is a partition into monochro- |AL_(“)| + 2777, Similarly, if (z,y) € S(r) x 5(r) is in a
matic rectangles, which are precisely the rectangles assod'0rizontal region £ < y, a win for Bob), then
ated with the leaves of the protocol’s decision tree. gn _ on—p

For every correct communication protocol, we describe an ~ PAR(z,y) > PAR,(z,y) > [BE@)[ + 27
adversary strategy that follows a path through the protocol
tree and finds some inpute,y) such that either: (i) the The above inequality shows how! (v) and BL(v) track
privacy loss of(z,y) is large i.e.,PAR(x,y) > 2P=2, or  the privacy loss of inputsS(v) x S(v): for those inputs
(i) the communication protocol ofiz,y) requires at least (x,y) € S(v) x S(v) where Alice wins, the privacy loss
(In2)(% — p)2"/*? bits to compute. for (z,y) increases asi”(v) decreases, and similarly for

In particular the following fact is crucial to our argument.
For any(z,y) in S(r)x S(r)NT (v), if (z,y) isin a vertical
region / < z, a win for Alice), then

| Re | i

PAR(z,y) = P 2 PARy (7.y) 2 T anr



those inputs where Bob wins, the privacy loss increases ag, , > 2" — 2”7 and |AX(r)| = 2" — 2"~P. Let ¢ be the
BT (v) decreases. path in the protocol tree fromto v that our strategy chooses

A trat ¢ ibe th _such that Alice takep progress steps along. Consider
dversary StrategyWe are now ready to describe the ad apy pair of adjacent nodes, w in path ¢ such that Alice

versary strategy. There are two cases, depending on wheth : : o

it is Alice’s or Bob’s turn to send a message. We will first makes progress |rL1 going fr?m£° w. Then, by cgeﬂmtlon
describe the case where at nagét is Alice’s turn to speak. °1f Oqu strategy,| 4 (w.)| < 3l4 (u.)|' HLence,\AL(v)| =
Alice sends Bob some bib which partitions her inputs 57 |A7(r)|. Thus, fpr mputs(x,y) |n.A (U). x A .(v) g
T (v) into two pieces. Sinces(v) and AL(v) are always S(v) x S(v) on which Alice would win, claim 8 yields:

subsets off4 (v), this induces a partition of (v) into Sy(v) gn _ gn—p _—
and S; (v) and Afgv) into AOL(v). anq Ak (v). PAR,(z,y) > zn_zgpin—p pT— >2
Leta =1 — 27 . We determine if a step mageogress
or wasuselessn the following way: The analysis when Bob makes progress steps proceeds
e If (1 - a)|S@)| < |So(v)| < a|S()| (hence(1 —  Very similarly. u
a)|S()] < [S1(v)] < alS(v)]), then we say this step Proof of Lemma 10: The strategy reaches a leaf node

madgprogrgss on S(v). In this case, the seﬁ'(v) is traversing a pathp, and [S(v)| = 1. (If [S(v)| > 1,
partitioned into roughly balanced pieces. Selestich  {hen there is more than one possible answer, and so the

that | A} (v)] < 5]A(v)]. _ computation is not yet finished.) In this case, Alice and Bob
« Otherwise, picki such that|S;(v)| > a|S(v)|. In this  each took fewer thap progress steps. Let be the total
case, we call it aiselessstep. number of useless steps followed to getitdThe protocol

We update sets in the obvious way:uf is the new node s at most2p + ¢ long.) On each progress stép,w) in
in the protocol tree that we traverse to, th€tw) = S;(v)  path ¢, by definition, |S(w)| > (1 — a)|S(u)|. On each
and A" (w) = A} (v). useless stegu, w), the updated size dfS(w)| > «|S(u)).

The second case is when it is Bob's turn to speak. Ourhis gives a lower bound on the size of s#tv). Hence
adversary strategy is entirely symmetric. Ndls(v) is  |S(v)| > 2" P(1 — a)?Pal.

partitioned into two pieces, inducing a partition.®fv) into Assume that; < 277. Then|S(v)| > 2" ?(1 —a)2Pad >
So(v) and Sy (v), and a partition ofB*(v) into By (v) and 1, contradicting the fact that is a leaf node where the
Bf (v). We picki as above, but with} replaced withB/*.  protocol ends. -

The strategy continues as described above, traversing the . o
protocol tree until one of the two events happens for the first Thus the strategy proves Theorem 1, either by finding

time: some large loss of privacy or by finding an input on which
. Alice (or Bob) has made progress steps, sd’(v) the protocol takes exponentially many steps. [ |
(or B-(v)) has been halved at leastimes. Note. The tradeoff of Theorem 1 holds for both the

. The strategy reaches a leaf node, and can go no furthepPiective PAR and subjective PAR. For Vickrey auctions
This completes the description of the strategy they coincide, because all regions are rectangles withhwidt

The following are the two main ideas in analyzing our ©' depth one.

strategy. IV. AVERAGE-CASE PAR

Lemma 9:Let our strategy reach nodeand find Alice
(or Bob) tookp progress steps on the way. Then, for each
(z,y) € S(v) x S(v) such thatz > y (or z < y)
PAR, (z,y) > 2P~2.

We can exit our strategy at this point and invoke Claim 8 Ro|
to finish the argument. In the other case, we make the avg PAR(P) :ED{ Y }
following claim: [Py

Lemma 10:1f our strategy reaches a leaf nodavithout In t_hi_s_ paper we will also consider the following alternativ
Alice or Bob takingp progress steps, then for evefy,y) ¢~ definition.

T'(v), the protocol communicates at le@st*? bits. Definition 11: For a probability distributionD on X x

Thus, we would conclude that in this case the cost of thé” and a protocolP for a function f : X x Y — Z, let
protocol is larger tham2"/#7. Hence, all that remains to the average-case objective privacy approximation ratio
finish our argument is to prove Lemma 9 and Lemma 10. of protocol P for function f be:

Proof of Lemma 9: Let r be the root node of our
protocol tree. For each inpyt, y) € S(r) x S(r), note that

In this section we consider the average-case privacy ap-
proximation ratio. For a probability distributioR on X xY
and a protocoP for a functionf : X xY — Z, Feigenbaum
et al. [5] define the average-case PAR as follows:

R,
avgp PAR(P) = E(z e [ ’y|D] ,

|Pr,y|D



where for S C X x Y, |S|]p = > 2)€S D(z,y). Proposition 13: For any probability distributionD on
Furthermore, we let th@verage-case subjective privacy [2"]x [2"], the Bisection Protocol for th#-Vickrey auction
approximation ratio of protocol P for function f be: satisfies:

R:y N X x{y}lp PAR(Bisection Protocgl < 1
PA sub P _ E - | Y anD ( Q_n"l‘ .
avgp PAR™(P) max{ (my)éﬂ{ 1P, N X x {y}lp )

“ |Rzy N{z} xY|p Proof: Each regionR of the 2"-Vickrey auction is
(@web | Tp, ‘n{z} xY|p | [~ covered by at most+1 rectangles induced by the Bisection
) Protocol, i.e.,cutgisection ProtocdR) < n -+ 1. The claim
As opposed to Feigenbaum et al. we measure the size dbllows by the previous proposition. ]
subsets ofX x Y relative to the measur®. This definition For the uniform distribution we can prove the following
coincides with the definition of Feigenbaum et al. for thetradeoff between the length and average-case PAR of any
uniform distribution [5]. Their paper does not give any protocol. This is one of our main results.
results for distributions other than uniform, so our dei@mit
is consistent with their results. Similarly, most of ouruks
for concrete functions are for the uniform distribution, so
they hold under both definitions.
Definition 11 is motivated by an attempt to prove Theorem
2, and will be convenient and useful in that proof (see This bound is asymptotically tight for uniform distribu-
Proposition 12). Both measures have advantages and disagbn (then /r-Bisection Protocol achieves asymptotically the
vantages; in various scenarios, one may be preferred to theame upper-bound). Our lower bound holds only for the
other. However, our definition has interesting mathemhticauniform distribution on inputs. This is not surprising; ifet
properties and (as we will see in a moment) it is related tadistribution is concentrated say on a single input one shoul
other known measures. For further discussion of alteraativnot expect large loss of privacy.

definitions of average-case PAR, see section 8.1 of [5]. h ¢ thi . b . is d d
One benefit of Definition 11 is that one can relate average- The rest of this section (up to subsection IV-A) is devote

case PAR to another natural measure on protocols. Consigl§ the proof of Theorem 2. Pr_oposition 12 characterizes the

a protocol P for a function f. For a regionR € R(f) average-case PAR as the weighted sumwf>(R) over all

we let cutp(R) = |{P,,|(z,y) € R}| be the number regionsR of the function. We will use this characterization
- x,y 1)

of protocol-induced rectangles contained within The but S|mpl|f.y the calculation a I't.tle bit. )
following statement is implicit in Feigenbaum et al. [5] for + We will sum only over regions?, , for z,y < 2",

Theorem 2:For all n,r» > 1, any deterministic protocol
of length at most- for the two-player2™-Vickrey auction
prc_)blem h.as.ave.rage—c.ase PAR at I@(s{tm) (over the
uniform distribution of inputs).

the case of uniform distribution and objective PAR. Call this collection of regiond.. These are the largest
N ) regions inX x Y, and together covefI the area of
Proposition 12:For any functionf : X xY — Z, X x Y. Hence the loss of privacy on these regions will
protocol P for f and any probability distributiod» on X x Y’ be significant. Each of the regions is of size between
—1
avg, PAR(P) = Z IR|p - cutp(R) 2"+ and 2™ so up-to a factor of at most 2 they all

have the same weight.

RERLD « To estimatecutp(R) for various regionsk we will
andavgp, PARS“”(P) = track only the set of “diagonal” inputsDiag =
{(z,x) | = € [271]} as they progress in the pro-
m&X{ > IRNX x{y}p - cutp(RNX x {y}) tocol tree, and count protocol-induced rectangles that
yEY,RER(f) intersect regions?, , and Ry ;1.
Combining these two simplifications gives a lower bound on
Z (BN} > Yp - cutp (R0 {z} Y)}' the average—case PAR fo? the unifor?n distribution:
z€X,RER(S)
2n71
Proposition 12 holds by easy manipulation of the defini- 4 Z cutp(R). )
tions. ReL

In the setting of our definition, this characterization of Note that each input paifz,z) € Diag must finish the
average-case PAR provides a simple answer to the conjectupgotocol in a separate induced rectangle.
[5] that for any probability distributionD on inputs, there The problem of counting the cuts of interest (in order
is a protocol that has average-case PAR at mofdr the  to get a lower bound) can be abstracted away into the Ball
2™-Vickrey auction. Recall that the Bisection Protocol for Partition Problem. By Lemma 16, a lower bound on the Ball
the Vickrey auction proceeds by binary search on the inpuPartition Problem will yield a lower bound on the average-
domain [5]. case PAR for the uniform distribution on Vickrey auctions.



Definition 14 (Ball Partition Problem):For integers N
andr > 1, there areN balls andr rounds. All of the balls

protocol-induced rectangle of the leaf. Notidg, C L. It is
easy to see by induction on the level of the tree that Bgts

begin in one big set. In each round, the balls in each currerdassociated with nodes at the same level partifigp2] and
set are partitioned into (at most) two new sets. The cost ohence, setd., associated with nodes at the same level are

partitioning the balls in any sef into setsS; and S; is
min(]S1], |S2]). After r rounds, each of thé balls shall be

disjoint. Letv be a node at level, 0 < t < r, with D,, # ().
Let v; andwvs be its two children. IfD,, # 0 # D,, then

in a singleton set. The total cost of the game is the sum of theve claim that

cost, over allr rounds, of every partition made during each

round. We denote the minimal possible costByN, r).

The interesting values af lie in a particular range. For

r < log, N, the game cannot be finished at any cost. Fo
r > N, the game can easily be finished with minimal cost

B(N,r) = N — 1: cut away1 ball from the largest set
at every round. However, for intermediate valleg N <

r < N, one might ask: what is the smallest possible cost
achievable in- rounds?

Theorem 15:For the Ball Partition ProblemB(N,r) >
N log N

4log( 7101’N )"

Z cutp(R,t+1) >
ReL,

Z cutp(R,t)
REL,
+min(|Dy, [, | Dy, [) - 1.

[

We prove the claim. Assume thatis a node where Alice
speaks. HenceTa(v) = Ta(vi)UTa(vz2) and Tg(v)
TB(U]_) = TB(UQ). Clearly, D, = DUlUsz' Let x,
max(D,,) and 2 = max(D,,). WLOG, z; < xzs. For
everyy € D, ,y # z1, (1,y) € Ry+1,, N T (v1) and also
(x2,y) € Ryt1,4 N T(v2), SO both are non-empty. Hence,
cutp(Ryt1,4y,t + 1) > cutp(Ry4+1,4,t) + 1. As there are
|D,, | — 1 suchy’s, the claim follows in this case.

If vis a node where Bob speaks, the argument is similar.

The above lower bound is asymptotically optimal. (A [ gt y1 = max(D,,) and yo = max(D,,), and assume
vl v2 /)1

matching upper bound is obtained by splittit®(n/r)-
fraction of balls from each set at every round.)

WLOG y; < yo. Then for everyz € D,,, (z,y1) €
R, . NT(v1) and also(z,y2) € Ry N T(v2). Thus in
i

Lemma 16 relates a lower bound for the Ball Partitionhis case one does not even lose the additive term.

Problem (V balls in r» rounds) to a lower bound for the
average-case Vickrey auction on the uniform distributityh (
possible inputs for each player antits of communication).

Lemma 16:Let N,r > 1 be integers wheréV is even.
Let B(N,r) be the minimal cost of the Ball Partition Prob-
lem on N balls inr rounds. Then for any deterministiebit
protocol P for 2-player N-Vickrey auction, the average-
case PAR isavg PAR(P) > w under the uniform
distribution.

Proof of Lemma 16: Our goal is to establish that
> rer cutp(R) > B(N,r). The lemma easily follows from
this since each regio® in L contains probability mass at
least1/2N under the uniform distribution.

The Ball Partition Problem is an abstraction of the cal-

Hence, each node for which D, is split into two
non-empty setsD,, and D,, contributes by at least
min(| Dy, [, |Dy,|) — 1 to the increase off . ; cutp(R)
overall. There are exactliy — 1 nodes like that a&D,ot| =
N. These setd,, constitute a solution to the Ball Partition
Problem inr rounds, and given the cost function for the Ball
Partition Problem it is immediate that the overall increake
> rercutp(R)is thus at leasB(N,r) — (N —1) as the-1
terms add up taV — 1. Since) ., cutp(R,0) = N — 1
we get) .., cutp(R) > B(N,r). |

All that remains to prove the lower bound on average-case
PAR for Vickrey auctions (Theorem 2) is to prove the lower
bound on the Ball Partition Problem (Theorem 15).

Proof of Theorem 15: We will examine the entropy

culation of average-case PAR for Vickrey auctions. Recalbf the partitions at each round. This permits an abstraction

the following notation used in the proof of Theorem 1.

away from a particular ball-partitioning instance, in artie

Protocol P is associated with a protocol tree where eachobtain general properties. This will lead to a lower bound on

node v corresponds to a combinatorial rectanglév) =
Ta(v) xTp(v) C X xY.Fort=0,...,r, let R(P,t) be
the set of rectangles associated with nodes at lewélthe
tree, level O consisting of the root. Fdt C X x Y, let
cutp(R,t) = |{S € R(P,t); SN R # 0}| be the number
of rectangles intersecting after roundt¢ of the protocol.
Clearly, cutp(R,r) = cutp(R). We want to estimate from
below Y cutp(R) overR € L.

We associate every nodeof the protocol tree also with
setsD, = [N/2]NT4(v) NTg(v) and L, = {R; ,;x <
y,z,y € D,}. For each leaf node, |D,| < 1 as no two
distinct inputs (x,z) and (2’,2’) can finish in the same

the objective functiorB (N, r), the cost of the Ball Partition
Problem.

It will be useful to associate with the Ball Partition
Problem inr rounds a full binary tree of depthwhere each
set obtained at roundis associated to a distinct node at level
t, and remaining nodes are associated with the empty set.
The association should be so that a node associated with a set
S has its children associated with sefs and S, obtained
from S during the partitioning. We label each nodeby
the size of the associated s§f, and we label edges by the
fraction of balls that travel “over” that edge from the paren
to the child node. (See Figure 3: a node labellédwith



children labelledc; V; and (1 — ¢;)N; will have edges to
those children labelled; and1 — ¢;, respectively.)

cl./@\lci

Figure 3. An arbitrary node in the ball-partitioning tree.

The tree’s root node is labellel’; each leaf is labelled

or 0. (TheO leaves are a result of assuming the binary tree i

full; if some ball is partitioned into a singleton set in raln

i < r, then in each subsequent round it is “partitioned” into

two sets: the singleton set and the empty set.)

cost of a cut isc <

S

log N
4r log( lo‘gN '

log N H H
for x = =2=. Combining equation (4) and

™

This ¢ can be rewritten

asc = —=

—logx

Lemma 18 (below),

log N
r

< H(c) :H(

)<4x:4logN _ log N
4r

—logx r

The inequality makes this a contradiction. Therefore every
tree of depth< r must incur cost>

N log N
4log(i2ry)” .

log

Lemma 18:For 0 < 2 <

H(fligw) < 4.

1, the binary entropy

Proof: For 0 < z < £, log: > 1 so clearly0 <
) < % Lety = —%

—logx*

(—ligw

Expanding,

1 1
H(y) =ylog—+ (1 —y)log
(v) = ylog -+ (1= y)log T—

Remark 17:At each level of the tree, the sum of the node For 0 < y < 1, itis not difficult to see that-log(1 —y) <
labels= N. Thus the sum of labels of all the non-leaf nodes2y and1 — y < 1.

in the tree isrN.

Consider the path followed by any ballfrom the root
to a leaf. It traverses edges labellé}] d5, ..., d%, where
H::1 d? = %

Multiplying this number for all balls gives a nice sym-
metrization which is true for all trees representing solosi
to the Ball Partition Problem.

II IT<

1 N
N ,
b a balli=1

Consider some non-leaf nodeof the tree, with edges
to its children labelled:; and 1 — ¢; (Figure 3). Together,
these edges contribute; )" (1 — ¢;)(1=¢)N: to the right-
hand side of equation (2). (; = 0 this term equald by
definition.) WLOG assume each < 1/2. Equation (2) can
be rewritten as:

(+)

—Nlog N

(2)

(CZ_)C@Ni (1 _ ci)(l_ci)Ni

I1

non-leaf nodei

ZNi(—H(Ci))

3)

Where H (x)
entropy ofz.

zlogl + (1 — 2)log L is the binary

1 1
H(y) Sylog§+(1—y)2y<y10g§+2y

Substituting fory and expanding,

1 1
H() <x(1°g10%w) +x(1°ga;) +2x(11)
log < log = log < log

Examination reveals that far < = < % the parenthesized
coefficients are eack 1. HenceH(logl) < 4z [ |

Note. As in the case of worst-case PAR, for the Vickrey
auction problem it is not hard to show that subjective averag
case PAR and objective average case PAR are equivalent
to within a factor of two, and thus our average case lower
bound in this section extends to subjective average case PAR

as well.

A. Mutual information

The definition of average-case PAR is closely related to
previously studied concepts in communication complexity
such as information content [13] and (information-theigjet
privacy [4]. The main distinction is that these concepts
measure in terms of bits, and PAR does not. Next we
recapitulate some of these measures, show their relatpnsh

Since the leaf nodes are not included in the sumyg the average-case PAR, and use this connection to prove

cilNi

> nondeaf node; Vi = IV (by Remark 17). Let = ), %+

new lower bounds for the average-case PAR.

be the average cost of a cut in the Ball Partition Problem. among these notions, Klauck’s privacy measure [4] is

Then the cost of the entire tree (N, r) = ¢rN. SinceH

is concavey", M-H(c;) < H(Y, “Rt) = H(c).
Ni fe) < PN H(e) (4)

NlogN =rN
o8 " ;rN
For the sake of contradiction, suppose that the cost

the tree B(N,r) = erN < %ﬂ). Then the average
log N

most closely related to average-case PAR. [&tbe a
probability distribution onX x Y. Let (X,Y) ~ D be
the random variable obtained by sampling accordingto
Recall, for a functionf on X x Y, its protocol P, and
inputs (z,y) € X xY, we letllp(x,y) be the transcript of

Ofhe protocol on inputz, y). ThenIlp(X,Y) is the random

variable obtained by sampling a random input according to



D. Klauck [4] gives the following definition of privacy of a value of the function whered€’ is not. Whenf is a Boolean

protocol. function, they are asymptotically identical.
PRIVp(P) = max{I(X : IIp(X, Y)Y, f(X,Y)), Proposition 20: For any probability distributionD on
I(Y : Ip(X, Y)|X, £(X,Y)}. X x Y and any protocoP for a functionf : X x Y — Z:

The relationship between this measure and our average-caB&®IV p(P)—log |Z| <ICp(P)<2-(PRIVp(P)+log|Z]).
PAR is given by the following theorem.

Theorem 19:For a probability distributionD on X x Y’ The proposition follows from Claim 5. This relation-
and a protocolP for a function f : X x Y — Z, the Ship together with the known lower bounds on internal
following holds: information cost of DIS] allow us to prove one of the

conjectures of Feigenbaum et al. [5] for the intersection
PRIV p(P) < log(avg, PAR™(P)). function INTERSEG. Function INTERSEG : {0,1}" x
{0,1}" — P([n]) on inputsz,y € {0,1}" gives the set
Proof: By symmetry, it suffices to show that(X :  {i ¢ [n];z; = y; = 1}.
Ip(X, Y)Y, f(X,Y)) < log(avg, PAR™(P)). Feigenbaum et al. conjecture that the average-case sub-
I(X : p(X, Y)Y, £(X,Y)) jgctiye P_'AR_ for the inte_rsgction _function under the _uniform
distribution is exponential in. This can be proven using the

< HIp(X, Y)Y, f(X,Y)) above tools and the following result, which strengthens an

< Z IR, N X x{y}|p -log(cutp(R, N X x {y})) earlier work by Bar-Yossef et al. [15]. Let be the uniform
yeY,zeZ distribution supported o#(0, 1), (1,0), (0,0)}. Let 7 be the

< log(avgp pARsub(p))’ distribution generated by taking thefold product ofv. In

o _ ) other words; is the uniform distribution supported on pairs
The first inequality holds by simple algebra. The secondyf strings that are disjoint.

inequality holds because, for agye Y andz € Z, Pr[Y =

y, f(X,Y) =z] = |R.NX x{y}|p and H(IIp(X,Y)|Y = Theorem 21:[16] Let P be any randomized protocol that
y, f(X,Y) = 2) < log(cutp(R. N X x {y})). The final computes disjointness DISvith error probability < 1/3.
inequality follows from concavity of logarithm. m  ThenIC; (P) = Q(n).

Hence, one can use lower bounds BRIV to derive
lower bounds for average-case PAR. For example, consid%
the function DIS,] : {0,1}"™ x {0,1} — {0,1} on
inputs z,y € {0,1}", which is defined to be one ifi Theorem 22:Let P be any deterministic protocol that
[n];z; = y; = 1} is empty and zero otherwise. Klauck [4] computes set intersection INTERSECThen, fori/ the
shows that for any protocdP for the disjointness problem, uniform distribution, PRIV, (P) = Q(n).

PRIV (P) € Q(y/n/logn), whereD is uniform on strings

of hamming weight,/7. Using the above lower bound, we Proof of Theorem 22\We prove this by a contradiction.
immediately obtainavg,, PAR®*(P) € 22(v7/logn) for Assume that we have a protocsl! to solve INTERSEG,

any protocolP for DISJ,. on m-bit inputs with little privacy loss under the uniform

There are two other well studied measures that are closeffistribution. The main idea of the argument is to come up
related to our average-case PAR: ternaland internal  With an appropriate reduction from set disjointness QI3
information cost(IC°** and IC, resp.). The external infor- " bits to set intersection INTERSEC This reduction will

mation cost was defined in [14] where the internal cost wad'€€d (0 satisfy the following features: solving intersecti
also used implicitly. Later, using this measure, Bar-Ybsse on the reduced instance should solve set-disjointnesseon th
al. [15] obtained2(n) lower bounds on the randomized com- original input instance. The reduced instance should not

munication complexity of DIS,) The internal information blow up too much in size, i.em = @(@). Finally, and
cost was formalized in [13]. For a protoc# for function most importantly, distribution on input instances to set-

f:X xY — Z and a distributionD on X x Y, they are disjointness should generate by our reduction the uniform
defined respectively as follows: ’ distribution on Intersection. This last step seems difficul

to do via a deterministic reduction. So we aim to get a
ICH (P) = I(X,Y : IIp(X,Y)) workaround as follows.

. ) . Let IT be the random variable denoting the transcript
ICp(P) = I(X: Lp(X, Y)IY) + I(Y : TP (X, Y)[X). generated byP. Then, our assumption o gives the
As one can see the internal information cost is closelffollowing for some constantt which we fix at the end:
related to the privacy measufRIV of Klauck. The only 3 m > (X : II|Y,INTERSEQX,Y)) + I (Y
substantial difference is th@RIV is conditioned on the II|X,INTERSEGX,Y)).

Using the above theorem, we show the following bound
r Intersection.



The uniformly distributed pairs ofn-bit random strings result for any fixed constant PAR, or perhaps as the PAR
(X,Y) can be alternatively generated by first selecting arequirement is relaxed, the two sets gradually differ.
random subsefA of [m] where each element is in the set
independently with probability /4. For eachi € A, we set
(X;,Y;) = (1,1). Then, for each coordinate € A°¢ = [1] E. Kushilevitz, “Privacy and communication complexity,”
[m] — A, (X;,Y;) is picked independently according to 30th FOCSpp. 416-421, 1989.

v. Let (X4,Y4) denote pair of random variables that are
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