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Abstract—In 1989 Kushilevitz [1] initiated the study of
information-theoretic privacy within the context of communi-
cation complexity. Unfortunately, it has been shown that most
interesting functions are not privately computable [1], [2]. The
unattainability of perfect privacy for many functions motivated
the study of approximate privacy. In [5], [7], they define
notions of worst-case as well as average-case approximate
privacy, and present several interesting upper bounds, and
some open problems for further study. In this paper, we obtain
asymptotically tight bounds on the tradeoffs between both the
worst-case and average-case approximate privacy of protocols
and their communication cost for Vickrey-auctions.

Further, we relate the notion of average-case approximate
privacy to other measures based on information cost of proto-
cols. This enables us to prove exponential lower bounds on the
subjective approximate privacy of protocols for computing the
Intersection function, independent of its communication cost.
This proves a conjecture of Feigenbaum et al.
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I. I NTRODUCTION

Privacy in a distributed setting is an increasingly important
problem. A key application is the setting of combinatorial
auctions where many agents have private information (e.g.,
their preferences) but would like to compute a function of
their inputs without revealing any of their private informa-
tion. There is a large body of research examining which
functions can be computed securely, and how. Many of
these results rely on an assumption, such as a computational
complexity assumption, or the assumption that more than
some fixed fractionm of the players are trustworthy, or the
assumption that the auctioneer (a3rd party) is trustworthy.
These assumptions limit the usefulness of such study. As
Brandt and Sandholm point out, privacy which is based
on an assumption of hardness can easily become outdated
as computers become faster and more powerful; security
parameters (like key length) need to be continuously updated
to cope with increasing computational power [2]. Auctions
are a natural setting where we would doubt the trustworthi-
ness of fellow participants or an auctioneer. We nevertheless
would like to compute on the internet. In this work, we
focus on situations where each player is deterministic and

honest but curious. Honest, because they obey the rules of
the game. Curious, as they do not miss any opportunity to
gain knowledge about others’ input.

In 1989, Kushilevitz [1] initiated the study ofinformation-
theoretic privacy in communication complexity, which is
an appealing direction because it does not rely on compu-
tational assumptions discussed above. Informally, a multi-
player communication protocol for computing a function
f(x, y) is private if each player does not learn any addi-
tional information (in an information theoretic sense) beyond
what follows from knowing his/her private input, and the
function valuef(x, y). A complete characterization of the
privately computable functions was given, but unfortunately,
early work ruled out private protocols for most interesting
functions [1], [2]. For example, second-price auctions arenot
possible with more than two participants, and are extremely
inefficient even in the setting of two bidders [3], [2].

The unattainability of perfect privacy for many functions
motivated the study ofapproximateprivacy. Most relevant to
our work is the study of Klauck [4] and the more recent work
of Feigenbaum, Jaggard and Schapira [5]. The relaxation
from perfect to approximate privacy is appealing because
it renders more functions computable privately, and more
closely mirrors real-world situations in whichsomeprivacy
loss may be acceptable. On the other hand, it is more subtle
to capture the notion of approximate privacy. While most
reasonable definitions of perfect privacy turn out to be equiv-
alent, this is not quite the case with approximate privacy. In
particular, the measures of Klauck [4] and Feigenbaum et
al. [5] are different and each has its own advantage and
characteristics. Our work here is primarily motivated by
recent work [5], [6]. A second motivation is to understand
the connections between the two.

In the two player setting, letf(x, y) be a function, and let
P be a two-player deterministic communication protocol for
f . The privacy loss (or privacy approximation ratio, PAR) on
the input(x, y) with respect toP is defined to be the size
of the monochromatic region containing(x, y) divided by
the size of the protocol-induced rectangle containing(x, y):
PAR(x, y) = |f−1(x,y)|

|P (x,y)| . The worst-case privacy loss of



protocol P is the maximum privacy loss over all inputs
(x, y), and the worst-case privacy loss of the functionf
is then the minimum privacy loss over all protocols forf .
Perfect privacy of a protocol (as defined in 1989) requires
that the privacy approximation ratio (PAR) is 1 for all inputs.
(This definition easily extends to the multi-player setting.)

Under this relaxed notion of privacy, things are much
more interesting [5], [7], [6]. For example, Feigenbaum et
al. study the Vickrey auction problem, and reveal a possible
inherenttradeoff between privacy and communication com-
plexity: they describe a family of protocols such that the
privacy loss approaches 1 (perfect privacy) as the length of
the protocol approaches exponential. They also study several
prominent boolean functions with respect to approximate
privacy.

Feigenbaum et al. consider anaverage-casenotion of
approximate privacy as well. In this setting, we are interested
in the average privacy loss over a distribution on inputs. Here
they describe a protocol for Vickrey auction that achieves
exponentially smaller average-case PAR than the worst-case
PAR achievable by any known protocol. A similar protocol
was described by Klauck [4].

Our Contributions
In this paper, we present several new lower bounds on

the communication cost for achieving privacy and establish
relationships between approximate privacy and several other
known measures.

First, we prove that there is an inherent tradeoff between
privacy and communication complexity, by proving a pri-
vacy/communication complexity tradeoff lower bound for
the Vickrey auction problem. This shows that the upper
bounds presented in [5] are essentially tight. [5] provided
a lower bound only for the special case of bisection-type
protocols.

Theorem 1:For all n, for all p, 2 ≤ p ≤ n/4, any
deterministic protocol for the two-player Vickrey auction
problem on inputs of lengthn obtaining privacy loss (PAR)
less than2p−2 has length at least2

n
4p .

This lower bound is technically interesting as it deals with
super-linear communication protocols. The usual communi-
cation complexity techniques aim at protocols that are at
most linear in their input size.

Our second contribution demonstrates a similar type of
tradeoff for the case of average-case approximate privacy.
We prove an asymptotically tight lower bound on the
average-case approximate privacy of the Vickrey auction
problem, showing that the upper bounds from [5] are es-
sentially tight. This generalizes the result of [6] for Vickrey
auctions. Again, [5] provided lower bounds only for the
special case of bisection-type protocols.

Theorem 2:For all n, r ≥ 1, any deterministic protocol
of length at mostr for the two-player2n-Vickrey auction

problem has average-case PAR at leastΩ( n
log(r/n) ) (over the

uniform distribution of inputs).1

Our lower bounds show that the approximate privacy
of any polynomial length protocol is still as large as
Ω(n/(log n)). Indeed, such superlinear protocols have been
devised by Klauck [4] who proved upper bounds for his mea-
sure of approximate-privacy. To the best of our knowledge,
Theorem 2 provides the first (tight) lower bounds on the
communication cost of achieving good approximate privacy
for Vickrey auctions. The proof of the theorem relates the
loss of privacy to a certain Ball Partition Problem that may
be of independent interest.

Furthermore, we modify the average-case privacy approx-
imation measure of Feigenbaum et al. Our modification
provides a rather natural measure that was disregarded in
[5], but coincides with that of Feigenbaum et al. in the
case of uniform distribution on the inputs. Our modified
measure has several advantages. It allows natural alternative
characterizations, and it can be directly related to the privacy
measure of Klauck. We can quantitatively connect Klauck’s
privacy measure to well studied notions of(internal) infor-
mation costin communication complexity. This allows us
to prove a new lower bound on the average-case subjective
privacy approximation measure of Feigenbaum et al. [5], and
answers affirmatively a conjecture from their paper.

Theorem 3:For alln ≥ 1, and any protocolP computing
the Set Intersection INTERSECn the average-case subjective
PAR is exponential inn under the uniform distribution:

avgU PARsub(P ) = 2Ω(n).

We contend that any of the mentioned measures could
serve as a reasonable measure of privacy. Indeed, each of
the measures seems to exhibit advantages over the other
ones in some scenario so each of the measures captures
certain aspect of privacy. For example, the English auction
protocol for Vickrey auction achieves perfect privacy (under
any measure) but at exponential communication cost. On the
other hand, the Bisection protocol achieves linear average-
case PAR with merely linear communication cost. However,
the difference between these two protocols is not reflected
well in Klauck’s privacy measure, where both protocols lose
constant number of bits on the average.

Outline of Paper
In Section II, we provide our basic notation and back-

ground on information theory. In Section III, we review the
notion of privacy approximation ratio, and in Section III-A,
we review the Vickrey auction problem. In Section III-B, we
present our lower bound tradeoff for worst-case privacy of
Vickrey auctions. In Section IV, we present our lower bound
on average-case PAR for Vickrey auctions, and discuss

1Under the original definition [5] or our alternate Definition11.



the relationship between average-case PAR and information
cost, deriving several new results from this relationship.

II. PRELIMINARIES

In this section, we review our basic notations and con-
cepts. For a positive integerk, we let [k] = {1, 2, . . . , k}.
We assume that the reader is familiar with communication
complexity (see [8] for more background.) We will use the
following notation. Givenf : X × Y → Z, each input
(x, y) is associated with theregion Rx,y of all inputs in
the preimage off(x, y), i.e., Rx,y = {(x′, y′) ∈ X ×
Y |f(x, y) = f(x′, y′)}. For any valuez ∈ Z we let
Rz = f−1(z) be the preimage ofz. The set of all regions
of function f is R(f) = {Rx,y : (x, y) ∈ X × Y }. Let P
be a communication protocol for the functionf . For inputs
(x, y) ∈ X × Y we let ΠP (x, y) denote the transcript of
the protocol on inputx given to Alice andy given to Bob.
We associate the input(x, y) with the protocol-induced
rectanglePx,y of all inputs which yield the same transcript:
Px,y = {(x′, y′) ∈ X × Y : ΠP (x, y) = ΠP (x

′, y′)}. Note
that Px,y ⊆ Rx,y as we assume thatP correctly computes
f .

A. Information theoretic notions

Information theory provides a highly intuitive and power-
ful calculus to reason about random variables. We need the
following basic notions from this theory whose proofs can
be found in any standard textbook on the subject (see for
example Cover and Thomas [9]).

For any random variableX, we denote its probability
distribution over its rangeX by µX . The entropy ofX,
denoted byH(X), is defined as follows:

H(X) = −
∑

x∈X
PrµX

[

X = x
]

log2

(

PrµX

[

X = x
]

)

= −EµX

[

log(µX(x))
]

Let Y be another random variable. For anyy in the range
of Y, H(X|Y = y) is defined as just the entropy ofX under
the conditional distribution, i.e.H(X|Y = y) ≡def

−
∑

x∈X
Pr

[

X = x |Y = y
]

log

(

Pr
[

X = x |Y = y
]

)

.

Extending the above naturally, we define the notion of
conditional entropyH(X|Y) as

H(X|Y) ≡def EµY

[

H(X|Y = y)
]

.

As intuition suggests, conditioning a random variableX

on another random variableY cannot increase its uncertainty
on the average. Formally,

Fact 4: For any two random variablesX and Y,
H
(

X|Y
)

≤ H
(

X
)

.

The mutual information betweenX and Y, denoted
by I(X : Y), is defined asH(X) − H(X|Y). It is

straightforward to verify that mutual information is a sym-
metric quantity, i.e.I(X : Y) = H(X) − H(X|Y) =
H(Y)−H(Y|X) = I(Y : X). Fact 4 implies that mutual
information between two random variables is always non-
negative. Just like entropy, one can define the conditional
mutual information between random variables: letZ be
another random variable with rangeZ.

I(X : Y |Z) = H(X |Z) − H(X |Y,Z)

= EµZ

[

I(X : Y |Z = z)
]

.

We will also need the following simple claim:

Claim 5: Let X,Y,Z,W be any random variables.
Then,

∣

∣I(X : Y|W)− I(X : Y |W,Z)
∣

∣ ≤ H(Z).
Proof: First, notice thatI(X : Y |W) − I(X :

Y |W,Z) =
(

H(X|W)−H(X|W,Z)
)

−
(

H(X|W,Y)−
H(X|Y,W,Z)

)

. Using symmetry of information, the first
bracketed quantity isI(X : Z | W) ≤ H(Z), and the second
bracketed quantity isEµY

[

I(Z : X |W,Y = y)
]

≤ H(Z).

III. W ORST-CASE PRIVACY APPROXIMATION RATIO

In this paper, we are concerned with privacy-preserving
communication complexity. A perfectly private communica-
tion protocol forf will reveal only the output off and no
additional information. Every two inputs(x, y) and (x′, y′)
such thatf(x, y) = f(x′, y′) should be indistinguishable
from each other [1], [10]. Approximate privacy provides
a measure of how much indistinguishability has been lost.
These notions are formalized as follows.

The following definition captures the privacy loss of
a communication protocol with respect to a third party
observer (eavesdropper) who overhears the messages sent
between the players. This measure is referred to asobjective.

Definition 6: [5] For an input(x, y), its privacy approx-
imation ratio isPAR(P, x, y) =

|Rx,y|
|Px,y| . A protocol P for

a functionf on X × Y hasworst-case objective privacy
approximation ratio (PAR) defined by

PAR(P ) = max
(x,y)

PAR(P, x, y).

Often we do not specify the protocolP when it is clear from
context.

The PAR measure of privacy can be extended tosubjec-
tive PAR, which measures the privacy that the players lose
to each other.

Definition 7: [5] A protocol P for a functionf on X ×
Y hasworst-case subjective privacy approximation ratio
(PARsub) defined by:

PARsub(P ) = max

{

max
(x,y)

|Rx,y ∩X × {y}|
|Px,y ∩X × {y}| ,

max
(x,y)

|Rx,y ∩ {x} × Y |
|Px,y ∩ {x} × Y |

}

.



Previous work by Kushilevitz gave a combinatorial char-
acterization of the functionsf which are computable with
perfect privacyPAR = 1 [1]. This set unfortunately ex-
cludes most auctions [2], as well as many basic functions
of interest in theoretical computer science, e.g., greaterthan
[11] and set intersection and disjointness [7].

As many functions are not computable with perfect
privacy, it is natural to investigate the following general
question for a functionf : is f privately computable, and
how much communication is necessary to achieve PAR less
than some numberc? In the next section, we focus on the
case of Vickrey auctions which is one of the most studied
functions in this context.

A. Vickrey auctions

Vickrey auctions (also known known as2nd-price auc-
tions) arise in mechanism design, and are a canonical ex-
ample of atruthful mechanism: neither player has incentive
to cheat, as long as the auction is computed correctly. For a
positive integerN , theN -Vickrey auction is defined asf :
X ×Y → Z ×{A,B} whereX = Y = Z = {1, 2, . . . , N}
and

f(x, y) =

{

(x,B), if x ≤ y
(y,A) if y < x

Two players, Alice and Bob, have private valuesx and y,
respectively. These private values indicate the amount of
money that the item is worth to each of them. Ifx ≤ y,
then Bob wins, and the price that he pays isx. (Thus,
f(x, y) = (x,B) means that Bob wins and paysx for the
item.) Similarly, if x > y, then Alice wins, and the price
that she pays isy. This mechanism is also called “2nd-price
auction” because the winner’s price is the2nd-highest bid.
Vickrey auctions remain truthful for more than two players,
but are not computable with perfect privacy (PAR = 1) [2]
for more than two players.

The matrixMf of the 2n-Vickrey auction looks like:

Figure 1. The matrixMf for 2n-Vickrey auction.

Perfect privacy for two-player Vickrey auctions is
achieved by the successive English bidding protocol, in
which bids start at1 and increase by1 in each round, and the
first player to drop out of bidding reveals his entire private
value. (Note that this incurs no loss of privacy, since that
value is part of the function output.) The protocol tree for
this protocol is given in Figure 2. This protocol takes2n+1

Figure 2. The protocol tree for an English auction computingf .

rounds for the2n-Vickrey auction, and is known to be the
only protocol which obtains perfect privacyPAR = 1 for
Vickrey auctions [1].

Notice that the range off is of size2n+1 and thatf is
surjective, so that there must be at least2n+1 distinct leaves
in any protocol tree forf . Thus any protocol forf requires
at leastn + 1 rounds. An example of such a protocol is
the Bisection Protocol that proceeds by binary search on an
interval containing the smaller input [5]. Bisection Protocol
obtainsPAR = 2n, the worst possible loss of privacy for
this function.

These two extremes – on the one handPAR = 1 at expo-
nential communication cost, and on the other, exponential
PAR at linear communication cost – suggest that there is
a tradeoff between privacy and communication for Vickrey
auctions. The structure of the function itself suggests this
tradeoff as well. Any move which differs from the English
protocol must divide some monochromatic region into two
pieces. Thus inputs in the same monochromatic region are
distinguishable by the protocol, and some privacy is lost.

Different PAR is achievable depending on the nature
of the protocol. Feigenbaum et al. examine a family of
Bisection-type protocols [5] and use average-case PAR to
differentiate amongst them. Such protocols obtain worst-case
PAR varying from1 to 2n, inversely related to their length.
This observation inspired the results below.

B. Worst-case lower bound for Vickrey auction

The two algorithms discussed in the previous section
suggest that any protocol computing Vickrey auctions should
have a tradeoff between length and privacy. Protocol steps
which resemble those of the ascending English bidding
protocol partition the inputs in an unbalanced way, so that
most inputs follow one branch of the protocol tree, and few
inputs follow the other branch. Such steps preserve privacy
but do not make much progress. (In an imbalanced partition,
on the larger side the protocol still has a lot of work to do in
order to compute the function.) On the other hand, protocol
steps that resemble binary search partition the inputs in a



nearly balanced way. Such steps make good progress, but
are bad for privacy. (Dividing the remaining inputs in half
increases the PAR by a factor of2.) This is the intuition
behind Theorem 1, stated again below.

Theorem 1:For everyn and p, 2 ≤ p ≤ n/4, every de-
terministic protocol for2-player Vickrey auctions obtaining
PAR < 2p−2 must be of length at least2

n
4p .

Here the variablep serves as a parameter, explicitly
linking the protocol length to the achievable PAR. For
instance, if we putp =

√
n, then we conclude by Theorem 1

that either the protocol communicates2Ω(
√
n) bits in the

worst case, or the worst-case privacy loss is2Ω(
√
n). This

theorem shows that for Vickrey auctions, there is an inherent
tradeoff between communication complexity and privacy.

Proof: We will assume without loss of generality that
in the protocol, the players take turns and send one bit per
message. (Any protocol can be put into this form by at most
doubling the length of the protocol.) Moreover, our protocol
is assumed to be deterministic and to have zero error.

The Vickrey auction function has a corresponding matrix
M such that entry(x, y) of the matrix is the value of the
Vickrey auction on inputs(x, y) (Figure 1). A submatrix
of M is called arectangle; a rectangle is “monochromatic”
if the matrix is constant on inputs in that submatrix. Ev-
ery communication protocol can be visualized as a binary
decision tree [12]. Each nodev of the tree is associated
with a rectangle (submatrix)T (v) = TA(v) × TB(v) ⊆
X×Y . The root noder is associated with the entire matrix
TA(r) × TB(r) = X × Y = M . Each leaf nodel is
associated with a monochromatic submatrixTA(l)× TB(l).
Each internal nodev has two children,v0 and v1. If the
protocol calls for Alice to speak at nodev, then the bit sent
by Alice at v induces a partition ofTA(v) into two pieces,
TA(v0) and TA(v1). The submatrix associated withv0 is
TA(v0) × TB(v), and the submatrix associated withv1 is
TA(v1) × TB(v). Similarly if Bob speaks at nodev, then
the submatrix associated withv0 is TA(v)×TB(v0) and the
submatrix associated withv1 is TA(v)× TB(v1).

Traversing the tree from the root to a leafl generates a
transcript of the bits of communication sent for some input
(x, y) ∈ TA(l)× TB(l). The depth of the tree is the worst-
case communication cost of the protocol.

Any deterministic protocol consists of a series of parti-
tions of the matrixM into rectangles. The resulting protocol-
induced tiling of the matrixM is a partition into monochro-
matic rectangles, which are precisely the rectangles associ-
ated with the leaves of the protocol’s decision tree.

For every correct communication protocol, we describe an
adversary strategy that follows a path through the protocol
tree and finds some input(x, y) such that either: (i) the
privacy loss of(x, y) is large i.e.,PAR(x, y) ≥ 2p−2, or
(ii) the communication protocol on(x, y) requires at least
(ln 2)(n2 − p)2n/4p bits to compute.

Let M denote the matrix corresponding to the Vickrey
auction problem, as drawn in Figure 1. Bob wins for
inputs in the horizontal regions; Alice wins for inputs in
the vertical regions. Fix a communication protocol, and
corresponding protocol tree,P . For every nodev in P
that our adversary strategy selects, we will maintain three
sets:S(v), AL(v), BL(v) ⊆ [2n]. At nodev, the adversary
will be interested in tracking the privacy loss on the set of
inputsS(v) × S(v). The privacy loss for these inputs will
be measured with the help of the two auxiliary setsAL(v)
andBL(v), respectively.

Initially, at the rootr of the protocol tree,S(r) = [2n−p].
This initial set of inputsS(r)×S(r) are the “small” inputs
that sit in the upper left submatrix ofM . As we move down
the protocol tree, we will updateS(v) so that it is always
a subset of[2n−p] ∩ TA(v) ∩ TB(v). We are interested in
these small inputs since the regions that they are contained
in are very large, and thus have the potential to incur a large
(exponential) privacy loss.

The setAL(v) is a subset ofTA(v) , and similarlyBL(v)
is a subset ofTB(v). The setsAL(r) andBL(r) are initially
[2n]\[2n−p], the “large” inputs. At vertexv, the setAL(v)
describes the set of large inputs of Alice that have survived
so far; thusAL(v) = TA(v)∩ [2n]\[2n−p]. Similarly,BL(v)
describes the set of large inputs of Bob that have survived so
far; thusBL(v) = TB(v) ∩ [2n]\[2n−p]. As we traverse the
protocol tree, these sets track the loss of privacy for Alice
and Bob (respectively) on inputs inS(v)× S(v).

We can measure the loss of privacyso far in the protocol.
For any(x, y) ∈ T (v),

PARv(x, y) =
|Rx,y|

|Rx,y ∩ T (v)| .

If v is a leaf, then for any(x, y) ∈ T (v), PARv(x, y) =
PAR(x, y). The following simple claim will be useful:

Claim 8: ∀(x, y) ∈ T (v), PAR(x, y) ≥ PARv(x, y).

In particular the following fact is crucial to our argument.
For any(x, y) in S(r)×S(r)∩T (v), if (x, y) is in a vertical
region (y < x, a win for Alice), then

PAR(x, y) =
|Rx,y|
|Px,y|

≥ PARv(x, y) ≥
2n − 2n−p

|AL(v)|+ 2n−p
.

This holds because|Rx,y| ≥ 2n−2n−p and|Rx,y∩T (v)| ≤
|AL(v)| + 2n−p. Similarly, if (x, y) ∈ S(r) × S(r) is in a
horizontal region (x ≤ y, a win for Bob), then

PAR(x, y) ≥ PARv(x, y) ≥
2n − 2n−p

|BL(v)|+ 2n−p
.

The above inequality shows howAL(v) andBL(v) track
the privacy loss of inputsS(v) × S(v): for those inputs
(x, y) ∈ S(v) × S(v) where Alice wins, the privacy loss
for (x, y) increases asAL(v) decreases, and similarly for



those inputs where Bob wins, the privacy loss increases as
BL(v) decreases.

Adversary Strategy:We are now ready to describe the ad-
versary strategy. There are two cases, depending on whether
it is Alice’s or Bob’s turn to send a message. We will first
describe the case where at nodev, it is Alice’s turn to speak.
Alice sends Bob some bitb which partitions her inputs
TA(v) into two pieces. SinceS(v) and AL(v) are always
subsets ofTA(v), this induces a partition ofS(v) into S0(v)
andS1(v) andAL(v) into AL

0 (v) andAL
1 (v).

Let α = 1− 2
−n
4p . We determine if a step madeprogress

or wasuselessin the following way:
• If (1 − α)|S(v)| ≤ |S0(v)| ≤ α|S(v)| (hence(1 −

α)|S(v)| ≤ |S1(v)| ≤ α|S(v)|), then we say this step
madeprogress on S(v). In this case, the setS(v) is
partitioned into roughly balanced pieces. Selecti such
that |AL

i (v)| ≤ 1
2 |AL(v)|.

• Otherwise, picki such that|Si(v)| ≥ α|S(v)|. In this
case, we call it auselessstep.

We update sets in the obvious way: ifw is the new node
in the protocol tree that we traverse to, thenS(w) = Si(v)
andAL(w) = AL

i (v).
The second case is when it is Bob’s turn to speak. Our

adversary strategy is entirely symmetric. NowTB(v) is
partitioned into two pieces, inducing a partition ofS(v) into
S0(v) andS1(v), and a partition ofBL(v) into BL

0 (v) and
BL

1 (v). We pick i as above, but withAL
i replaced withBL

i .
The strategy continues as described above, traversing the

protocol tree until one of the two events happens for the first
time:

• Alice (or Bob) has madep progress steps, soAL(v)
(or BL(v)) has been halved at leastp times.

• The strategy reaches a leaf node, and can go no further.
This completes the description of the strategy.

The following are the two main ideas in analyzing our
strategy.

Lemma 9:Let our strategy reach nodev and find Alice
(or Bob) tookp progress steps on the way. Then, for each
(x, y) ∈ S(v) × S(v) such thatx > y (or x ≤ y)
PARv(x, y) ≥ 2p−2.

We can exit our strategy at this point and invoke Claim 8
to finish the argument. In the other case, we make the
following claim:

Lemma 10:If our strategy reaches a leaf nodev without
Alice or Bob takingp progress steps, then for every(x, y) ∈
T (v), the protocol communicates at least2n/4p bits.

Thus, we would conclude that in this case the cost of the
protocol is larger thann2n/4p. Hence, all that remains to
finish our argument is to prove Lemma 9 and Lemma 10.

Proof of Lemma 9: Let r be the root node of our
protocol tree. For each input(x, y) ∈ S(r)×S(r), note that

Rx,y ≥ 2n − 2n−p and |AL(r)| = 2n − 2n−p. Let ϕ be the
path in the protocol tree fromr to v that our strategy chooses
such that Alice takesp progress steps alongϕ. Consider
any pair of adjacent nodesu,w in pathϕ such that Alice
makes progress in going fromu to w. Then, by definition
of our strategy,|AL(w)| ≤ 1

2 |AL(u)|. Hence,|AL(v)| ≤
1
2p |AL(r)|. Thus, for inputs(x, y) in AL(v) × AL(v) ⊆
S(v)× S(v) on which Alice would win, claim 8 yields:

PARv(x, y) ≥
2n − 2n−p

2n−2n−p

2p + 2n−p
≥ 2p−2

The analysis when Bob makesp progress steps proceeds
very similarly.

Proof of Lemma 10:The strategy reaches a leaf node
v traversing a pathϕ, and |S(v)| = 1. (If |S(v)| > 1,
then there is more than one possible answer, and so the
computation is not yet finished.) In this case, Alice and Bob
each took fewer thanp progress steps. Letq be the total
number of useless steps followed to get tov. (The protocol
is at most2p + q long.) On each progress step(u,w) in
path ϕ, by definition, |S(w)| ≥ (1 − α)|S(u)|. On each
useless step(u,w), the updated size of|S(w)| ≥ α|S(u)|.
This gives a lower bound on the size of setS(v). Hence
|S(v)| ≥ 2n−p(1− α)2pαq.

Assume thatq < 2
n
4p . Then|S(v)| ≥ 2n−p(1−α)2pαq ≥

1, contradicting the fact thatv is a leaf node where the
protocol ends.

Thus the strategy proves Theorem 1, either by finding
some large loss of privacy or by finding an input on which
the protocol takes exponentially many steps.

Note. The tradeoff of Theorem 1 holds for both the
objective PAR and subjective PAR. For Vickrey auctions
they coincide, because all regions are rectangles with width
or depth one.

IV. AVERAGE-CASE PAR

In this section we consider the average-case privacy ap-
proximation ratio. For a probability distributionD onX×Y
and a protocolP for a functionf : X×Y → Z, Feigenbaum
et al. [5] define the average-case PAR as follows:

avg PAR(P ) = ED

[ |Rx,y|
|Px,y|

]

.

In this paper we will also consider the following alternative
definition.

Definition 11: For a probability distributionD on X ×
Y and a protocolP for a function f : X × Y → Z, let
the average-case objective privacy approximation ratio
of protocolP for function f be:

avgD PAR(P ) = E(x,y)∈D

[ |Rx,y|D
|Px,y|D

]

,



where for S ⊆ X × Y , |S|D =
∑

(x,y)∈S D(x, y).
Furthermore, we let theaverage-case subjective privacy
approximation ratio of protocolP for function f be:

avgD PARsub(P )=max

{

E(x,y)∈D

[ |Rx,y ∩X × {y}|D
|Px,y ∩X × {y}|D

]

,

E(x,y)∈D

[ |Rx,y ∩ {x} × Y |D
|Px,y ∩ {x} × Y |D

]}

.

As opposed to Feigenbaum et al. we measure the size of
subsets ofX ×Y relative to the measureD. This definition
coincides with the definition of Feigenbaum et al. for the
uniform distribution [5]. Their paper does not give any
results for distributions other than uniform, so our definition
is consistent with their results. Similarly, most of our results
for concrete functions are for the uniform distribution, so
they hold under both definitions.

Definition 11 is motivated by an attempt to prove Theorem
2, and will be convenient and useful in that proof (see
Proposition 12). Both measures have advantages and disad-
vantages; in various scenarios, one may be preferred to the
other. However, our definition has interesting mathematical
properties and (as we will see in a moment) it is related to
other known measures. For further discussion of alternative
definitions of average-case PAR, see section 8.1 of [5].

One benefit of Definition 11 is that one can relate average-
case PAR to another natural measure on protocols. Consider
a protocolP for a function f . For a regionR ∈ R(f)
we let cutP (R) = |{Px,y | (x, y) ∈ R}| be the number
of protocol-induced rectangles contained withinR. The
following statement is implicit in Feigenbaum et al. [5] for
the case of uniform distribution and objective PAR.

Proposition 12: For any functionf : X × Y → Z,
protocolP for f and any probability distributionD onX×Y

avgD PAR(P ) =
∑

R∈R(f)

|R|D · cutP (R)

andavgD PARsub(P ) =

max

{

∑

y∈Y,R∈R(f)

|R ∩X × {y}|D · cutP (R ∩X × {y})

∑

x∈X,R∈R(f)

|R ∩ {x} × Y |D · cutP (R ∩ {x} × Y )

}

.

Proposition 12 holds by easy manipulation of the defini-
tions.

In the setting of our definition, this characterization of
average-case PAR provides a simple answer to the conjecture
[5] that for any probability distributionD on inputs, there
is a protocol that has average-case PAR at mostn for the
2n-Vickrey auction. Recall that the Bisection Protocol for
the Vickrey auction proceeds by binary search on the input
domain [5].

Proposition 13: For any probability distributionD on
[2n]×[2n], the Bisection Protocol for the2n-Vickrey auction
satisfies:

avgD PAR(Bisection Protocol) ≤ n+ 1.

Proof: Each regionR of the 2n-Vickrey auction is
covered by at mostn+1 rectangles induced by the Bisection
Protocol, i.e.,cutBisection Protocol(R) ≤ n + 1. The claim
follows by the previous proposition.

For the uniform distribution we can prove the following
tradeoff between the length and average-case PAR of any
protocol. This is one of our main results.

Theorem 2:For all n, r ≥ 1, any deterministic protocol
of length at mostr for the two-player2n-Vickrey auction
problem has average-case PAR at leastΩ( n

log(r/n) ) (over the
uniform distribution of inputs).

This bound is asymptotically tight for uniform distribu-
tion (then/r-Bisection Protocol achieves asymptotically the
same upper-bound). Our lower bound holds only for the
uniform distribution on inputs. This is not surprising; if the
distribution is concentrated say on a single input one should
not expect large loss of privacy.

The rest of this section (up to subsection IV-A) is devoted
to the proof of Theorem 2. Proposition 12 characterizes the
average-case PAR as the weighted sum ofcutP (R) over all
regionsR of the function. We will use this characterization
but simplify the calculation a little bit.

• We will sum only over regionsRx,y for x, y ≤ 2n−1.
Call this collection of regionsL. These are the largest
regions inX × Y , and together cover34 the area of
X×Y . Hence the loss of privacy on these regions will
be significant. Each of the regions is of size between
2n−1 and 2n so up-to a factor of at most 2 they all
have the same weight.

• To estimatecutP (R) for various regionsR we will
track only the set of “diagonal” inputsDiag =
{(x, x) | x ∈ [2n−1]} as they progress in the pro-
tocol tree, and count protocol-induced rectangles that
intersect regionsRx,x andRx,x+1.

Combining these two simplifications gives a lower bound on
the average-case PAR for the uniform distribution:

2n−1

4n

∑

R∈L

cutP (R). (1)

Note that each input pair(x, x) ∈ Diag must finish the
protocol in a separate induced rectangle.

The problem of counting the cuts of interest (in order
to get a lower bound) can be abstracted away into the Ball
Partition Problem. By Lemma 16, a lower bound on the Ball
Partition Problem will yield a lower bound on the average-
case PAR for the uniform distribution on Vickrey auctions.



Definition 14 (Ball Partition Problem):For integers N
andr ≥ 1, there areN balls andr rounds. All of the balls
begin in one big set. In each round, the balls in each current
set are partitioned into (at most) two new sets. The cost of
partitioning the balls in any setS into setsS1 and S2 is
min(|S1|, |S2|). After r rounds, each of theN balls shall be
in a singleton set. The total cost of the game is the sum of the
cost, over allr rounds, of every partition made during each
round. We denote the minimal possible cost byB(N, r).

The interesting values ofr lie in a particular range. For
r < log2 N , the game cannot be finished at any cost. For
r > N , the game can easily be finished with minimal cost
B(N, r) = N − 1: cut away1 ball from the largest set
at every round. However, for intermediate valueslogN ≤
r ≤ N , one might ask: what is the smallest possible costc
achievable inr rounds?

Theorem 15:For the Ball Partition Problem,B(N, r) ≥
N logN

4 log( 4r
log N

)
.

The above lower bound is asymptotically optimal. (A
matching upper bound is obtained by splittingΘ(n/r)-
fraction of balls from each set at every round.)

Lemma 16 relates a lower bound for the Ball Partition
Problem (N balls in r rounds) to a lower bound for the
average-case Vickrey auction on the uniform distribution (N
possible inputs for each player andr bits of communication).

Lemma 16:Let N, r ≥ 1 be integers whereN is even.
Let B(N, r) be the minimal cost of the Ball Partition Prob-
lem onN balls inr rounds. Then for any deterministicr-bit
protocol P for 2-player N -Vickrey auction, the average-
case PAR isavg PAR(P ) ≥ B(N,r)

2N under the uniform
distribution.

Proof of Lemma 16: Our goal is to establish that
∑

R∈L cutP (R) ≥ B(N, r). The lemma easily follows from
this since each regionR in L contains probability mass at
least1/2N under the uniform distribution.

The Ball Partition Problem is an abstraction of the cal-
culation of average-case PAR for Vickrey auctions. Recall
the following notation used in the proof of Theorem 1.
ProtocolP is associated with a protocol tree where each
node v corresponds to a combinatorial rectangleT (v) =
TA(v) × TB(v) ⊆ X × Y . For t = 0, . . . , r, let R(P, t) be
the set of rectangles associated with nodes at levelt of the
tree, level 0 consisting of the root. ForR ⊆ X × Y , let
cutP (R, t) = |{S ∈ R(P, t);S ∩ R 6= ∅}| be the number
of rectangles intersectingR after roundt of the protocol.
Clearly, cutP (R, r) = cutP (R). We want to estimate from
below

∑

cutP (R) overR ∈ L.
We associate every nodev of the protocol tree also with

setsDv = [N/2] ∩ TA(v) ∩ TB(v) and Lv = {Rx,y;x ≤
y, x, y ∈ Dv}. For each leaf nodev, |Dv| ≤ 1 as no two
distinct inputs (x, x) and (x′, x′) can finish in the same

protocol-induced rectangle of the leaf. Notice,Lv ⊆ L. It is
easy to see by induction on the level of the tree that setsDv

associated with nodes at the same level partition[N/2] and
hence, setsLv associated with nodes at the same level are
disjoint. Letv be a node at levelt, 0 ≤ t < r, with Dv 6= ∅.
Let v1 and v2 be its two children. IfDv1

6= ∅ 6= Dv2
then

we claim that
∑

R∈Lv

cutP (R, t+ 1) ≥
∑

R∈Lv

cutP (R, t)

+min(|Dv1
|, |Dv2

|)− 1.

We prove the claim. Assume thatv is a node where Alice
speaks. Hence,TA(v) = TA(v1) ˙

⋃

TA(v2) and TB(v) =
TB(v1) = TB(v2). Clearly, Dv = Dv1

˙⋃Dv2
. Let x1 =

max(Dv1
) and x2 = max(Dv2

). WLOG, x1 < x2. For
everyy ∈ Dv1

, y 6= x1, (x1, y) ∈ Ry+1,y ∩ T (v1) and also
(x2, y) ∈ Ry+1,y ∩ T (v2), so both are non-empty. Hence,
cutP (Ry+1,y, t + 1) ≥ cutP (Ry+1,y, t) + 1. As there are
|Dv1

| − 1 suchy′s, the claim follows in this case.
If v is a node where Bob speaks, the argument is similar.

Let y1 = max(Dv1
) and y2 = max(Dv2

), and assume
WLOG y1 < y2. Then for everyx ∈ Dv1

, (x, y1) ∈
Rx,x ∩ T (v1) and also(x, y2) ∈ Rx,x ∩ T (v2). Thus in
this case one does not even lose the−1 additive term.

Hence, each nodev for which Dv is split into two
non-empty setsDv1

and Dv2
contributes by at least

min(|Dv1
|, |Dv2

|) − 1 to the increase of
∑

R∈L cutP (R)
overall. There are exactlyN−1 nodes like that as|Droot| =
N . These setsDv constitute a solution to the Ball Partition
Problem inr rounds, and given the cost function for the Ball
Partition Problem it is immediate that the overall increaseof
∑

R∈L cutP (R) is thus at leastB(N, r)−(N−1) as the−1
terms add up toN − 1. Since

∑

R∈L cutP (R, 0) = N − 1
we get

∑

R∈L cutP (R) ≥ B(N, r).

All that remains to prove the lower bound on average-case
PAR for Vickrey auctions (Theorem 2) is to prove the lower
bound on the Ball Partition Problem (Theorem 15).

Proof of Theorem 15: We will examine the entropy
of the partitions at each round. This permits an abstraction
away from a particular ball-partitioning instance, in order to
obtain general properties. This will lead to a lower bound on
the objective functionB(N, r), the cost of the Ball Partition
Problem.

It will be useful to associate with the Ball Partition
Problem inr rounds a full binary tree of depthr where each
set obtained at roundt is associated to a distinct node at level
t, and remaining nodes are associated with the empty set.
The association should be so that a node associated with a set
S has its children associated with setsS1 andS2 obtained
from S during the partitioning. We label each nodei, by
the size of the associated setNi, and we label edges by the
fraction of balls that travel “over” that edge from the parent
to the child node. (See Figure 3: a node labelledNi with



children labelledciNi and (1 − ci)Ni will have edges to
those children labelledci and1− ci, respectively.)

Ni

ciNi

ci

(1− ci)Ni

1− ci

Figure 3. An arbitrary node in the ball-partitioning tree.

The tree’s root node is labelledN ; each leaf is labelled1
or 0. (The0 leaves are a result of assuming the binary tree is
full; if some ball is partitioned into a singleton set in round
i < r, then in each subsequent round it is “partitioned” into
two sets: the singleton set and the empty set.)

Remark 17:At each level of the tree, the sum of the node
labels= N . Thus the sum of labels of all the non-leaf nodes
in the tree isrN .

Consider the path followed by any ballb from the root
to a leaf. It traverses edges labelleddb1, db2, . . . , dbr, where
∏r

i=1 d
b
i =

1
N .

Multiplying this number for all balls gives a nice sym-
metrization which is true for all trees representing solutions
to the Ball Partition Problem.

(

1

N

)N

=
∏

b a ball

r
∏

i=1

dbi (2)

Consider some non-leaf nodei of the tree, with edges
to its children labelledci and 1 − ci (Figure 3). Together,
these edges contribute(ci)ciNi(1− ci)

(1−ci)Ni to the right-
hand side of equation (2). (Ifci = 0 this term equals1 by
definition.) WLOG assume eachci ≤ 1/2. Equation (2) can
be rewritten as:

(

1

N

)N

=
∏

non-leaf nodei

(ci)
ciNi(1− ci)

(1−ci)Ni

−N logN =
∑

i

Ni(−H(ci)) (3)

Where H(x) = x log 1
x + (1 − x) log 1

1−x is the binary
entropy ofx.

Since the leaf nodes are not included in the sum,
∑

non-leaf nodei Ni = rN (by Remark 17). Letc =
∑

i
ciNi

rN
be the average cost of a cut in the Ball Partition Problem.
Then the cost of the entire tree isB(N, r) = crN . SinceH
is concave,

∑

i
Ni

rNH(ci) ≤ H(
∑

i
ciNi

rN ) = H(c).

N logN = rN
∑

i

Ni

rN
H(ci) ≤ rNH(c) (4)

For the sake of contradiction, suppose that the cost of
the treeB(N, r) = crN < N logN

4 log( 4r
log N

)
. Then the average

cost of a cut isc < logN
4r log( 4r

log N
)
. This c can be rewritten

as c = x
− log x for x = logN

4r . Combining equation (4) and
Lemma 18 (below),

logN

r
≤ H(c) = H

( x

− log x

)

< 4x = 4
logN

4r
=

logN

r

The inequality makes this a contradiction. Therefore every
tree of depth≤ r must incur cost≥ N logN

4 log( 4r
log N

)
.

Lemma 18:For 0 < x ≤ 1
2 , the binary entropy

H
(

x
− log x

)

< 4x.

Proof: For 0 < x ≤ 1
2 , log 1

x ≥ 1 so clearly 0 <
(

x
− log x

)

≤ 1
2 . Let y = x

− log x .
Expanding,

H(y) = y log
1

y
+ (1− y) log

1

1− y

For 0 < y ≤ 1
2 , it is not difficult to see that− log(1− y) ≤

2y and1− y < 1.

H(y) ≤ y log
1

y
+ (1− y)2y < y log

1

y
+ 2y

Substituting fory and expanding,

H

(

x

log 1
x

)

< x

(

log log 1
x

log 1
x

)

+ x

(

log 1
x

log 1
x

)

+ 2x

(

1

log 1
x

)

Examination reveals that for0 < x ≤ 1
2 , the parenthesized

coefficients are each≤ 1. HenceH( x
log 1

x

) < 4x.
Note. As in the case of worst-case PAR, for the Vickrey

auction problem it is not hard to show that subjective average
case PAR and objective average case PAR are equivalent
to within a factor of two, and thus our average case lower
bound in this section extends to subjective average case PAR
as well.

A. Mutual information

The definition of average-case PAR is closely related to
previously studied concepts in communication complexity
such as information content [13] and (information-theoretic)
privacy [4]. The main distinction is that these concepts
measure in terms of bits, and PAR does not. Next we
recapitulate some of these measures, show their relationship
to the average-case PAR, and use this connection to prove
new lower bounds for the average-case PAR.

Among these notions, Klauck’s privacy measure [4] is
most closely related to average-case PAR. LetD be a
probability distribution onX × Y . Let (X,Y) ∼ D be
the random variable obtained by sampling according toD.
Recall, for a functionf on X × Y , its protocolP , and
inputs(x, y) ∈ X × Y , we letΠP (x, y) be the transcript of
the protocol on input(x, y). ThenΠP (X,Y) is the random
variable obtained by sampling a random input according to



D. Klauck [4] gives the following definition of privacy of a
protocol.

PRIVD(P ) = max{I(X : ΠP (X,Y)|Y, f(X,Y)),

I(Y : ΠP (X,Y)|X, f(X,Y))}.
The relationship between this measure and our average-case
PAR is given by the following theorem.

Theorem 19:For a probability distributionD on X × Y
and a protocolP for a function f : X × Y → Z, the
following holds:

PRIVD(P ) ≤ log(avgD PARsub(P )).

Proof: By symmetry, it suffices to show thatI(X :
ΠP (X,Y)|Y, f(X,Y)) ≤ log(avgD PARsub(P )).

I(X : ΠP (X,Y)|Y, f(X,Y))

≤ H(ΠP (X,Y)|Y, f(X,Y))

≤
∑

y∈Y,z∈Z

|Rz ∩X × {y}|D · log(cutP (Rz ∩X × {y}))

≤ log(avgD PARsub(P )),

The first inequality holds by simple algebra. The second
inequality holds because, for anyy ∈ Y andz ∈ Z, Pr[Y =
y, f(X,Y) = z] = |Rz∩X×{y}|D andH(ΠP (X,Y)|Y =
y, f(X,Y) = z) ≤ log(cutP (Rz ∩ X × {y})). The final
inequality follows from concavity of logarithm.

Hence, one can use lower bounds onPRIV to derive
lower bounds for average-case PAR. For example, consider
the function DISJn : {0, 1}n × {0, 1}n → {0, 1} on
inputs x, y ∈ {0, 1}n, which is defined to be one if{i ∈
[n];xi = yi = 1} is empty and zero otherwise. Klauck [4]
shows that for any protocolP for the disjointness problem,
PRIVD(P ) ∈ Ω(

√
n/ log n), whereD is uniform on strings

of hamming weight
√
n. Using the above lower bound, we

immediately obtainavgD PARsub(P ) ∈ 2Ω(
√
n/ logn) for

any protocolP for DISJn.
There are two other well studied measures that are closely

related to our average-case PAR: theexternaland internal
information cost(ICext and IC, resp.). The external infor-
mation cost was defined in [14] where the internal cost was
also used implicitly. Later, using this measure, Bar-Yossef et
al. [15] obtainedΩ(n) lower bounds on the randomized com-
munication complexity of DISJn. The internal information
cost was formalized in [13]. For a protocolP for function
f : X × Y → Z and a distributionD on X × Y , they are
defined respectively as follows:

ICext
D (P ) = I(X,Y : ΠP (X,Y))

ICD(P ) = I(X : ΠP (X,Y)|Y) + I(Y : ΠP (X,Y)|X).

As one can see the internal information cost is closely
related to the privacy measurePRIV of Klauck. The only
substantial difference is thatPRIV is conditioned on the

value of the function whereasIC is not. Whenf is a Boolean
function, they are asymptotically identical.

Proposition 20: For any probability distributionD on
X × Y and any protocolP for a functionf : X × Y → Z:

PRIVD(P )−log |Z|≤ ICD(P )≤2·(PRIVD(P )+log |Z|).

The proposition follows from Claim 5. This relation-
ship together with the known lower bounds on internal
information cost of DISJn allow us to prove one of the
conjectures of Feigenbaum et al. [5] for the intersection
function INTERSECn. Function INTERSECn : {0, 1}n ×
{0, 1}n → P([n]) on inputsx, y ∈ {0, 1}n gives the set
{i ∈ [n];xi = yi = 1}.

Feigenbaum et al. conjecture that the average-case sub-
jective PAR for the intersection function under the uniform
distribution is exponential inn. This can be proven using the
above tools and the following result, which strengthens an
earlier work by Bar-Yossef et al. [15]. Letν be the uniform
distribution supported on{(0, 1), (1, 0), (0, 0)}. Let τ be the
distribution generated by taking then-fold product ofν. In
other words,τ is the uniform distribution supported on pairs
of strings that are disjoint.

Theorem 21:[16] Let P be any randomized protocol that
computes disjointness DISJn with error probability< 1/3.
Then,ICτ

(

P
)

= Ω(n).

Using the above theorem, we show the following bound
for Intersection.

Theorem 22:Let P be any deterministic protocol that
computes set intersection INTERSECn. Then, for U the
uniform distribution,PRIVU

(

P
)

= Ω(n).

Proof of Theorem 22:We prove this by a contradiction.
Assume that we have a protocolP to solve INTERSECm
on m-bit inputs with little privacy loss under the uniform
distribution. The main idea of the argument is to come up
with an appropriate reduction from set disjointness DISJn on
n bits to set intersection INTERSECm. This reduction will
need to satisfy the following features: solving intersection
on the reduced instance should solve set-disjointness on the
original input instance. The reduced instance should not
blow up too much in size, i.e.m = Θ(n). Finally, and
most importantly, distributionτ on input instances to set-
disjointness should generate by our reduction the uniform
distribution on Intersection. This last step seems difficult
to do via a deterministic reduction. So we aim to get a
workaround as follows.

Let Π be the random variable denoting the transcript
generated byP . Then, our assumption onP gives the
following for some constantβ which we fix at the end:
β m > IU

(

X : Π |Y, INTERSEC(X,Y)
)

+ IU
(

Y :
Π |X, INTERSEC(X,Y)

)

.



The uniformly distributed pairs ofm-bit random strings
(X,Y) can be alternatively generated by first selecting a
random subsetA of [m] where each element is in the set
independently with probability1/4. For eachi ∈ A, we set
(Xi,Yi) = (1, 1). Then, for each coordinatei ∈ A

c =
[m] − A, (Xi,Yi) is picked independently according to
ν. Let (XA,YA) denote pair of random variables that are
distributed according toX,Y conditioned onA as above
and the underlying distribution on this pair be denoted by
τA. Thus, our assumption becomes equivalently:

EµA

[

IτA

(

X
A : Π |YA

)

+ IτA

(

Y
A : Π |XA

)

]

< βm,

whereµA is the distribution onA. Applying the Chernoff
bound on the deviation of|A| from its expectation, one
concludes:(βm)/

(

1− exp(−Ω(m))
)

>

EµA

[

IτA

(

X
A : Π |YA

)

+IτA

(

Y
A : Π |XA

)

∣

∣

∣

∣

|A| ≤ m/2

]

Thus, there exists some fixed seta of size at mostm/2
such that

Iτa

(

Xa : Π |Y a
)

+ Iτa

(

Y a : Π |Xa
)

< β′m. (5)

This seta is going to provide us with the workaround
needed for the deterministic reduction. We define our re-
duction now w.r.ta. Set n = m − |a| ≥ m/2. Let P ′

be a protocol that solves set-disjointness as follows: Given
two n-bit strings (u, v), protocol P ′ first embedsu and
v naturally into ac = [m] − a. Let the embedded strings
be calledX(u) and Y (v) which each player can generate
privately on its own. Then, the players run the protocol
P on

(

X(u), Y (v)
)

. Let J be the intersection set thatP
returns. Clearly, DISJn(u, v) = 1 iff |J | = |a|. Finally, note
if (U,V) are generated according toτ , then the mapped
strings

(

X(U),Y(V)
)

∼ (Xa,Ya). Hence, (5) implies
that ICτ (P ) ≤ β′m ≤ 2β′n. By settingβ′ to be a small
enough constant, we derive a contradiction to Theorem 21.
This completes the argument.

By using Theorem 19, this immediately yields the follow-
ing theorem, conjectured by Feigenbaum et al. [7].

Theorem 3 (Conjectured by Feigenbaum et al.):3 For
all n ≥ 1, and any protocolP computing the Set
Intersection INTERSECn the average-case subjective
PAR is exponential inn under the uniform distribution:
avgU PARsub(P ) = 2Ω(n).

V. CONCLUSION

These techniques hold the promise of similar length-
privacy tradeoffs for other functions. Further, it seems that
one can readily extend this work to include randomized and
ǫ-error settings. With the restriction of perfect privacy for
two-player functions, [1] shows that the set of functions
with deterministic protocols and the set of functions with
randomized protocols are the same. Perhaps there is a similar

result for any fixed constant PAR, or perhaps as the PAR
requirement is relaxed, the two sets gradually differ.
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[10] B. Chor, M. Geŕeb-Graus, and E. Kushilevitz, “On the struc-
ture of the privacy hierarchy,”Journal of Cryptology, vol. 7,
no. 1, pp. 53–60, 1994.

[11] A. C.-c. Yao, “Protocols for Secure Computations,”Proceed-
ings of the 23rd FOCS, pp. 160–164, 1982.

[12] A. C.-c. Yao, “Some Complexity Questions Related to Dis-
tributive Computing,”11th ACM STOC, pp. 209–213, 1979.

[13] B. Barak, M. Braverman, X. Chen, and A. Rao, “How
to compress interactive communication,”42nd ACM STOC,
2010.

[14] A. Chakrabarti, A. Wirth, A. Yao, and Y. Shi, “Informational
complexity and the direct sum problem for simultaneous
message complexity,”42nd IEEE FOCS, pp. 270–278, 2001.

[15] Z. Bar-Yossef, T. Jayram, R. Kumar, and D. Sivakumar, “An
information statistics approach to data stream and communi-
cation complexity,”JCSS, vol. 68, no. 4, pp. 702–732, 2004.

[16] M. Braverman, “Interactive information complexity,”ECCC
18: 123, 2011.


