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Abstract— The potential benefits of model-free reinforcement
learning to real robotics systems are limited by its uninformed
exploration that leads to slow convergence, lack of data-
efficiency, and unnecessary interactions with the environment.
To address these drawbacks we propose a method that combines
reinforcement and imitation learning by shaping the reward
function with a state-and-action-dependent potential that is
trained from demonstration data. We show that this accelerates
policy learning by specifying high-value areas of the state and
action space that are worth exploring first. Unlike the majority
of existing methods that assume optimal demonstrations and
incorporate the demonstration data as hard constraints on
policy optimization, we instead incorporate demonstration data
as advice in the form of a reward shaping potential trained
as a generative model of states and actions. In particular, we
use normalizing flows and Generative Adversarial Networks to
represent these potentials. We show that, unlike existing ap-
proaches that incorporate demonstrations as hard constraints,
our approach is unbiased even in the case of sub-optimal
and noisy demonstrations. We present an extensive range of
simulations, as well as experiments on the Franka Emika 7DOF
arm, to demonstrate the practicality of our method.

I. INTRODUCTION

Model-free reinforcement learning has been making sig-
nificant progress in complex sensorimotor control problems,
particularly when optimizing end-to-end vision-based poli-
cies [1]. The lack of need for a dynamics model has never-
theless incurred a significant cost in the form of long training
times, large number of interactions with the environment,
and uninformed exploration. These drawbacks often make
model-free reinforcement learning impractical and unsafe to
apply to real robotic systems.

We propose a method that combines reinforcement learn-
ing (RL) with demonstrations and imitation learning (IL)
in order to address these issues and accelerate the policy
optimization process. Our method improves upon, and pro-
vides an alternative to, existing methods that combine RL
with demonstrations, by gracefully handling the case of sub-
optimal and noisy demonstrations. We do this by shaping
the reward function to incorporate user demonstrations in
the form of advice [2] that biases the optimization process
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Fig. 1. Snapshots of the trained peg in hole policy after 30, 60, and 150
minutes on the Franka Emika Panda arm. On the first column, the policy
has been trained using reinforcement learning. On the right column, the
policy has been trained through reinforcement learning and reward shaping,
such that the shaping potential is a generative model that describes the
demonstration data. Code and videos are available at: http://www.cs.
toronto.edu/˜florian/rl_with_shaping

towards areas of the state-action space that the demonstrator
deems high-value, without biasing the learned policy away
from the optimal one. Our shaping potential is learned from
a small number of demonstrations using either normalizing
flows [3] or Generative Adversarial Networks [4], [5].

The vast majority of existing works that combine RL with
demonstrations [6], [7], [8] implicitly assume optimality of
demonstrations, or lack of bias in the off-policy data. If the
demonstration dataset is D = {(si, ai), i = 1...N} these
methods typically solve a variant of the following problem:

max
θ
Vπθ (s0) subject to πθ(si) = ai ∀i (1)

where Vπθ (s0) = Eπθ [
∑∞
t=0 γ

tr(st, at) | s0] is the value
function corresponding to the policy πθ and the fixed starting
state s0. This problem ends up being converted to one that
instead has a soft regularization term for the demonstrations:

max
θ
Vπθ (s0)− λ

∑
(si,ai)∈D

(πθ(si)− ai)2 (2)

There are a number of drawbacks to these formulations:
(a) They assume optimal demonstrations, which is often

not a realistic assumption, particularly when sub-optimal
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actions occur at states near which optimal trajectories need
to pass through. In another instance of this same issue,
a number of recent works, for example [6], [7], include
the demonstrations permanently in the replay buffer for
off-policy RL methods, which again assumes optimality of
the demonstrations. Sub-optimality could be a result of the
demonstrator not optimizing the same underlying reward
as the RL problem, or not being an expert. Both of these
possibilities are unaccounted for by the formulations in
Eqns. 1 and 2 and can bias the learned policy away from
the optimal policy.

(b) A number of recent papers, for example [9], address
(a) by reducing the effect of the demonstrations over time,
by replacing λ with a decreasing sequence λt such that
limt→∞ λt = 0. While this addresses the issue of sub-
optimality and eventually forgets the demonstrations, it intro-
duces another design parameter, namely the speed at which
the demonstrations will be forgotten.

(c) The formulations in Eqns. 1 and 2 cannot gracefully
handle multi-modal action distributions at a given state. If the
dataset includes (si, ai) and (si, aj) then the policy is forced
to compromise by selecting the average action, which might
be neither desirable nor safe. Multi-modal policies avoid this
issue, but deterministic or unimodal policies do not.

Our method addresses the issues above and brings the
following advantages:
• It does not make any assumptions about optimality of

the demonstrations, and it does not allow the demon-
strations to introduce bias to the learned policy.

• It does not require a forgetting schedule for the demon-
strations.

• It can handle multi-modal demonstrations gracefully.
We demonstrate these properties via an extensive range of
simulations as well as via real robot experiments on the
Franka Emika 7DOF compliant arm.

II. RELATED WORK
There is a large number of methods that combine rein-

forcement learning with demonstrations, many of them in the
realm of discrete MDPs and game playing. In the last decades
there have been significant results in trying to combine
reinforcement and imitation learning for robotics applications
and continuous dynamics. Although an exhaustive list is too
large to include, we mention a few representative papers.

RL + Shaping: Our work builds upon Wiewiora et al. [2],
who showed that a state-action potential biases the Q-
function of the original MDP, by the exact amount of the
shaping potential. They introduce the notion of advice for an
RL agent. The class of shaping potentials they considered,
however, was limited to discrete action and state spaces,
and was not applicable to robotics, or high-dimensional
systems. Our work addresses this setting by using shaping
potentials that are directly trained from demonstration data
via generative models. Also related is the seminal work of
Ng et al. [10], that introduced the notion of reward shaping
and the conditions under which policy invariance holds when
rewards are modified. It is worth mentioning that aside

from state-action potentials, there are other possible shaping
formulations that are time-dependent [11].

Our work extends Brys, Harutunyan et al. [12], who
incorporate demonstrations via shaping potentials that, unlike
the ones we propose here, are not suited for handling images
or other high-dimensional objects. In contrast, we propose
to use shaping potentials that are in the form of deep
generative models, such as normalizing flows and Generative
Adversarial Networks, which can represent high-dimensional
random variables.

RL + Demonstrations: Among the papers that combine
reinforcement learning with demonstration data, we note
Deep Q-Learning from Demonstrations [6] and DDPG from
Demonstrations [7], both of which implicitly assume opti-
mality of the demonstrations data, unlike our work herein. In
fact, [7] assumes that the demonstration data are in the form
(s, a, r, s′), which severely constrains the type of interactions
that the demonstrator can have with the robot. Having access
to the reward, in addition to states and actions, is problematic
in scenarios where the robot is not aware of the task that the
demonstrator is executing. It is also very restrictive, in the
sense that it does not easily allow extensions, where only
the states are given but not the actions. We therefore avoid
assuming imitation data in that form and opt for tuples (s, a)
as the demonstration dataset. The notion of advice assumes
other forms, for example high-level Linear Temporal Logic
formulas that guide the (discrete) RL process, as was done
in [13]. Other papers in this category include [8], [9]. The
latter is one of the few papers that impose a schedule for
forgetting the demonstrator. Optimization eventually focuses
on the RL objective, but only after the policy has been
initialized with behavioral cloning. SQIL [14] incorporates
demonstrations in the replay buffer and assigns a reward of
+1 to them. AC-Teach [15] handle the case of suboptimal
demonstrations using an ensemble of demonstrators and
Bayesian actor-critic methods. Nair et al. [16] provide an-
other way of not assuming optimal demonstrations, called Q-
Filtering, whereby they only keep the terms of the behavioral
cloning loss for which the demonstrated action has higher Q-
value than the action returned by the policy.

In [17] the case of failed demonstrations is considered,
enabling the robot to learn from both successful and unsuc-
cessful demonstrations. TAMER [18] and other interactive
RL approaches assume a continuous user feedback mecha-
nism that supplements the RL reward. The required feedback
stream is a significant burden on the user.

Finally, it is worth mentioning a representative body of
work in off-policy reinforcement learning [19], [20], which
aim to constrain the effect of Q overestimation away from
the collected data. Importance sampling is a commonly used
way to do this, as long as one has access to the behavioral
policy or can approximate it [21], [22], [23], which may lead
to issues of lack of scalability in high dimensions.



III. METHODOLOGY

A. State-Action, Potential-Based Reward Shaping

Given a Markov Decision Process (MDP) M =
(S,A, T , r, γ), reward shaping, as introduced in the seminal
work by Ng et al [10] refers to modifying the (often sparse)
reward function in order to solve another MDP M̃ =
(S,A, T , r̃, γ) such that:

r̃t = r(st, at, st+1) + γΦ(st+1)− Φ(st) (3)

The function Φ is called a shaping potential, and it is meant
to make sparse reward functions more dense by providing
more reward signal for the recursive computation of the state-
action value function Q(s, a). Ng et al. showed that the
optimal value functions between the original and modified
MDPs satisfies the following equation:

Q̃∗(s, a) + Φ(s) = Q∗(s, a) (4)

Every optimal policy corresponding to these state-action
value functions will satisfy π∗(s) = argmaxaQ

∗(s, a) =
argmaxaQ̃

∗(s, a) = π̃∗(s). In other words, every optimal
policy for M will be optimal for M̃ and vice versa, so the
optimal behavior is not affected by the shaping function, even
though the value function is.

Wiewiora et al. [24] showed that the shaping potential did
not need to depend only on states, it could also depend on
actions. The modified reward then becomes:

r̃t = r(st, at, st+1) + γΦ(st+1, at+1)− Φ(st, at) (5)

which gives rise to the following state-action value function:

Q̃∗(s, a) + Φ(s, a) = Q∗(s, a) (6)

In this case of state-action shaping potentials, there are no
guarantees about the preservation of the optimal policy of
the original MDP to the modified MDP. In fact, the optimal
policy of the original MDP is

π∗(s) = argmaxa
[
Q̃∗(s, a) + Φ(s, a)

]
(7)

while the optimal policy of the modified MDP is π̃∗(s) =

argmaxa
[
Q̃∗(s, a)

]
, which is in general different.

Wiewiora et al. [24] demonstrated potential functions for
discrete state and action spaces, that were constrained to low-
dimensional discrete planning problems, which are not appli-
cable to robotics. Our paper analyzes the case where the state
and action space is high-dimensional and continuous, and the
shaping potential is trained via generative models, in order
to support many types of demonstration data and improve
the convergence properties of imitation-guided model-free
RL. As long as we are able to optimally solve Eqn. 7 and
Q̃∗(s, a) is well estimated, the learned policy incorporates
advice Φ(s, a), without imposing the demonstrations as hard
constraints, and without introducing bias compared to the
optimal policy.

B. Potentials Based On Normalizing Flows

One of the types of state-action shaping poten-
tials that we consider herein is a trained function
Φψ,c(s, a) = c log pψ(s, a) on demonstration data D =
{(si, ai), i = 1...N}. One class of generative models that
have emerged in the last few years, that is able to directly
optimize this log-density objective on a given dataset are
normalizing flows.

The main idea behind this class of models is that we
can use the change-of-variables formula for probabilistic
distributions to transform a normal distribution (a distribution
that is easy to sample) to an arbitrary distribution (from
which it is difficult to sample). Given a random variable
z0 ∈ Rd, such that z0 ∼ p0(z0) = N (0, Id), and an
invertible, smooth function f : Rd → Rd with z1 = f(z0),
the change of variables formula for distributions is:

p1(z1) = p0(z0)

∣∣∣∣det
(
Jf (z0)−1

) ∣∣∣∣ (8)

= p0(z0)

∣∣∣∣det (Jf (z0))

∣∣∣∣−1

(9)

Rezende and Mohamed [3] chained multiple of these bijec-
tive transformations to create a normalizing flow:

z0 ∼ p0(z0) (10)
zK = fK ◦ fK−1 ◦ ... ◦ f1(z0) (11)

pK(zK) = p0(z0)

K∏
k=1

∣∣∣∣det (Jfk(zk−1))

∣∣∣∣−1

(12)

where ◦ denotes function composition. The vast majority of
the recent literature on normalizing flows concerns itself with
different ways to parameterize bijective functions fψi(z) in a
way that chaining multiple of them results in an expressive
enough output distribution. We follow Papamakarios et al
[25] and we use the same bijective transformation as Masked
Autoregressive Flow (MAF):

z
(1)
k = µwk1 + exp(αvk1 )z

(1)
k−1

z
(i)
k = µwki (z

(1:i−1)
k ) + exp(αvki (z

(1:i−1)
k ))z

(i)
k−1 (13)

Here, the superscript i ≤ d indexes the dimensions of
the random variable zk ∈ Rd, and makes the ith entry
of the output variable depend only on entries 1...i of the
input variable. This preserves the triangular structure of the
Jacobian matrix, so the determinant remains easy to compute.
The parameters of the transform fψk(zk−1) described in Eqn.
13 are ψk = (wk1 , vk1 , ..., wkd , vkd). The exponential term
for the scaling factor is meant to ensure the positivity of
standard deviation.

Training a normalizing flow is typically done via max-
imum likelihood estimation, by optimizing the parameters
ψ = (ψ1, ψ2, ..., ψK), so that the log likelihood of the points
in the sample dataset is maximized. In our case, we treat
zK = (s, a), since we assume kinesthetic teaching and not
high-dimensional image data. The log-likelihood objective



we want to maximize is:

L(ψ,D) = −
∑

(si,ai)∈D

K∑
k=1

log
∣∣∣∣det

(
Jfψk (zk−1)

) ∣∣∣∣ (14)

In order to avoid learning density functions pK(zK) that
exhibit large changes whenever zK = (s, a) changes slightly,
we regularize the Jacobian of the learned density with respect
to its input zK . Our final training cost for the shaping
potential based on normalizing flows is:

Lflow(ψ,D) = L(ψ,D) + η||∇zK log pK(zK)||2 (15)

Once the optimal parameters ψ∗ are identified from the
training process, we use the following shaping potential:

Φψ∗,c(s, a) = c log (pψ∗(s, a) + ε) (16)

with zK = (s, a), c ∈ R+ a hyperparameter, and ε is a small
constant to prevent numerical issues and the log probability
from going to negative infinity.

Scalability: We note that if we had chosen to make the
policy input be high-dimensional, for example image-based,
our current model with zK = (s, a) would be very slow
to train due to the cost of evaluating the Jacobian in Eqn.
16 and the autoregressive structure of the flow transform in
Eqn. 13. That said, as we will see in the experimental results
section, we have used normalizing flow shaping potentials
with dimension of s, a being around 30 without any issues.

C. Potentials Based On Generative Adversarial Networks

The second type of state-action shaping potentials that we
consider in this paper are functions Φψ,c(s, a) = c Dψ(s, a),
trained on demonstration data D = {(si, ai), i = 1...N},
where Dψ(s, a) is the discriminator of a Generative Ad-
versarial Network (GAN) [4]. These models also include
a generative model Gφ(z) = x̃ that accepts a noise input
z ∼ N (0, Id) and transforms it into a more structured
random variable x̃ ∈ Rd.

Training the generator and the discriminator is not done
via maximum likelihood in this case, but through a minimax
optimization problem. Let pr(x) be the real distribution of
the random variable x and pφ(x) is the distribution induced
by the generator. The end goal of the training process is to
optimize the parameters of the generator, so that the distance
between the real distribution and the generated distribution
is minimized. The discriminator parameters are optimized
so that its output is high on real samples and low on (fake)
generated samples.

We follow Arjovsky et al. [26] and Gulrajani et al [27]
to estimate the Wasserstein-1, or Earth Mover’s distance,
in order to evaluate the cost of the optimal transport plan
between two probability distributions pr and pφ:

W (pr, pφ) = inf
γ∈Π(pr,pφ)

E(x,y)∼γ(x,y) [||x− y||] (17)

where γ(x, y) indicates how much mass needs to be trans-
ported from x to y to transform the distribution pr to pφ, and
Π(pr, pφ) is the set of all joint distributions, whose marginals

are pr and pφ. Given a fixed generator Gφ, the intractable
definition above is equivalent to the more tractable one:

W (pr, pφ) = sup
D∈F

[
Ex∼pr [D(x)]− Ex̃∼pφ [D(x̃)]

]
(18)

where F = {D : Rd → R such that ||D||L ≤ 1} is the set of
discriminator functions with Lipschitz constant 1. Sampling
from pφ is done by z ∼ N (0, Id) and x̃ = Gφ(z). To
impose the Lipschitz constant of 1 on the discriminator we
follow WGAN-GP in Gulrajani et al. [27], and impose a
soft constraint to its gradient. The approximate Wasserstein
distance can be computed this way:

L1(ψ, φ) = Ex∼pr [Dψ(x)]− Ex̃∼pφ [Dψ(x̃)] (19)

L2(ψ, φ) = Ex̂∼pφ
[
(||∇x̂Dψ(x̂)|| − 1)2

]
(20)

W̃ (pr, pφ) = max
ψ

L1(ψ, φ)− αL2(ψ, φ) (21)

where x̂ = εx+ (1− ε)x̃ with ε ∼ U [0, 1], x ∼ pr, x̃ ∼ pφ is
used to enforce the Lipschitz constraint on samples between
the real distribution and the generated distribution, since the
Lipschitz constant needs to be 1 for every possible input to
the discriminator.

The approximate Wasserstein distance in Eqn. 21 corre-
sponds to a fixed generator. For the generator to improve and
minimize this distance, we solve the following problem:

ψ∗, φ∗ = argmin
φ

max
ψ

L1(ψ, φ)− αL2(ψ, φ) (22)

The shaping potential then becomes:

Φψ∗,c(s, a) = c Dψ∗(s, a) (23)

Scalability: Unlike the potential based on Masked Autore-
gressive Flows, in this case, training the potential on high-
dimensional demonstration data is scalable as GAN training
has been demonstrated to produce realistic images of faces
at high resolution [28].

D. Combining Reinforcement and Imitation Learning via
Shaping

We now show how to integrate the learned shaping po-
tentials in a model-free reinforcement learning method. We
use Twin Delayed Deterministic Policy Gradient (TD3) [29]
since it is one of the best performing model-free RL methods
at the time of writing. That said, our potential-based shaping
method is agnostic to the RL method used.

TD3 is an actor-critic method that maintains two critic
networks for the Q function and one actor network for
the deterministic policy. The use of the double-Q networks
helps by reducing overestimation bias in the Q-function,
which leads to sub-optimality in the learned policy. TD3 also
updates the policy network less frequently than the Q value
network to minimize error in Q value estimation. This is
done by updating the policy after every d updates of the value
network. In addition, TD3 smooths the Q value estimation
by adding a small amount of noise ε to the target policy.



Algorithm 1 TD3 with Demonstrations via Reward Shaping
Offline pre-training

1: Collect demonstrations D = {(si, ai), i = 1...N}
2: Train shaping potential Φψ∗,c(s, a) from Eqn. 16 or 23

3: Given MDPM = (S,A, T , r, γ)

4: Consider MDP M̃ = (S,A, T , r̃, γ) from Eqn. 5 with
r̃t = r(st, at, st+1)+γΦψ∗,c(st+1, at+1)−Φψ∗,c(st, at)

TD3 ([29]) training with shaping
5: Initialize two critic networks for M̃ : Q̃θ1 , Q̃θ2
6: Initialize actor network πφ
7: Initialize target networks θ

′

1 ← θ1, θ
′

2 ← θ2, φ
′ ← φ

8: Initialize replay buffer B to empty
9: while not converged do

10: for episode e = 1...E do
11: for step t = 1...T do
12: Apply action a = πφ(s) + ε, ε ∼ N (0, σ)
13: Observe reward r and new state s′ fromM
14: Store transition tuple (s, a, r, s′) in B
15: for batch b = 1...B do
16: Sample mini-batch Bb of (s, a, r, s′) from B
17: Sample mini-batch Db of (sd, ad) from D
18: a′ ← πφ′(s

′) + ε, ε ∼ clip(N (0, σ′),−δ, δ)
19: Target value

y = r̃ + γmin{Q̃θ′1(s′, a′), Q̃θ′2(s′, a′)}
20: Update critics θi ← argminθi

∑
(y − Q̃θi(s, a))2

21: if b mod d then
22: Update policy
23: φ← argmaxφ

∑
s∈Bb∪Db [Q̃θ1(s, πφ(s))+

Φψ∗,c(s, πφ(s))]

24: Update target networks
25: θ′i ← τθi + (1− τ)θ′i
26: φ′ ← τφ+ (1− τ)φ′

IV. EVALUATION

We evaluate our method both in simulation and on a real
robot. Our aim is to clarify the following questions:

A) Does our method exceed the performance of (a) be-
havioral cloning and (b) pure RL?

B) Is our method robust to random seeds?
C) Is our method robust to sub-optimal demonstrations?

In particular, does it do better than RL with behavioral
cloning, as formulated in Eqn. 2?

D) Is our method practical on a real robot?
We answer all these questions in the affirmative and we
analyse our experimental results below.

A. Robustness to Random Seeds

The issue of robustness of policies learned via reinforce-
ment is intricately linked to the choice of random seeds,
which determine the sequence of pseudorandom number
generation that will drive the exploration process, as well
as the random dynamics of the environment. Henderson
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Fig. 2. GAN and Normalizing Flow (NF) shaping and baseline results for
peg insertion and pick and place tasks on the Fetch environment adopted
from OpenAI Gym. The initial position of the gripper is selected randomly
but at a certain distance away from the hole, and demonstrations are near-
optimal. In both cases, both RL + shaping methods converge to the optimal
policy. TD3 fail to converge due to insufficient exploration, i.e. it never
finds the goal state. Behavioral Cloning (BC) only succeeds when the arm
is initialized to certain states. The empirical mean has been computed from
5 random seeds, and the error bars represent 1σ standard deviation.

et al [30] showed that many recent deep RL methods are
extremely sensitive to the selection of random seeds.

We evaluated our method on complex manipulation tasks
of pick and place and peg insertion in simulation.

(1) peg insertion: the end effector of the robot arm is
initialized at a random location that is at a certain distance
away from the hole, holding the peg. The location and
orientation of the hole is fixed. A reward of 0 is given when
more than half of the peg is inserted in the hole and −1
otherwise.

(2) pick and place: the object is placed at a random
location that is at a certain distance away from both the end
effector of the arm and the goal. The initial pose of the robot
arm and the goal location are fixed. A reward of 0 is given



when the object is within a small threshold around the goal
location and −1 otherwise.

For both environments, the episode length is set to 40, and
the environment dos not terminate early.

Fig. 2 shows our method and baseline results for peg
insertion and pick and place tasks. We consider two baselines
for all experiments, namely Behavioral Cloning (BC), which
is pure supervised learning, and pure model-free RL (TD3)
without demonstrations. All empirical results are presented
with empirical mean and a single standard deviation across
5 random seeds. The demonstration data for Fig. 2 are near
optimal with no additional noise having been added.

Fig. 2 shows that while the two RL with shaping methods
converge to goal, the Behavioral Cloning and pure RL
method fail to explore sufficiently to find the goal area. The
GAN shaping method converged to 4/5 seeds, so the lower
mean and the higher variance is due to that.

B. Robustness to Sub-Optimal Demonstrations

To illustrate the sensitivity of TD3+BC to noise, we
simplified the peg insertion task by fixing the initial pose of
the robot arm and limiting the state space to a 2D plane as
shown in Figure 3. We provided sub-optimal demonstration
data that encourages the agent to lift the peg to a high
location and then perform the insertion, shown as red arrows.
In addition, we also included demonstration data that pushes
the learned policy away from the optimal trajectory, shown as
green arrows. More crucially, these sub-optimal actions are
given in areas of the state space where the optimal trajectory
passes through, so the imitation objective is directly clashing
with the RL objective.

The effect of these sub-optimal demonstrations is shown in
Fig. 4. In particular, we see that the RL + shaping methods
converge to the optimal policy, regardless of whether the
demonstration data is near-optimal or not. On the other
hand, the RL + Behavioral Cloning (with constraints, such
as in Eqn. 2), is sensitive to the relative weight of the
RL vs the imitation objective. When the role of the RL
objective gets reduced by λ = 0.0001 compared to the
imitation objective, the learned policy does not manage to
find the optimal solution, while for other such settings (e.g.
λ = 0.01) it does. This sensitivity to the relative weighting
of the RL and imitation objective is undesirable, as it will
affect any demonstrator forgetting schedule that adjusts this
weight over time. GAIL [5], one of the leading imitation
learning methods, is unable to solve the task in the presence
of imperfect demonstrations.

C. Real Robot Experiments

For real robot experiments, we use a Franka Emika Panda
7DOF arm to perform the peg insertion task similar to
the experiments in simulation as discussed in section A.
The learned policy controls the end effector of the robot
in Cartesian velocity control mode. In order to encourage
faster convergence, we fixed the initial pose of the arm and
modified the reward structure such that a reward of 0 is given
when the peg is inside the hole, −0.5 is given when the

Learned Trajectory
GAN Shaping
λTD3+BC, λ=0.0001
λTD3+BC, λ=0.01

Demonstrations

Fig. 3. Illustration of our method’s robustness to noisy demonstration data.
The top figure shows the provided demonstration data to all 3 methods:
TD3 with GAN shaping and λTD3 + BC for λ = 0.0001 and λ = 0.01,
which refers to the relative weight of the RL objective compared to
the Behavioral Cloning (BC) objective. In this dataset, sub-optimality in
the demonstration data is introduced by exaggerating the lift of the peg.
Crucially, the suboptimal demonstrations are in an area of the state space
where the optimal trajectory needs to pass through, so the two objectives will
clash. The green curve shows the performance of the policy trained with one
choice of λ which in turns puts more emphasis on the demonstration data,
which leads to convergence to a sub-optimal policy. With careful tuning of
λ, TD3 + BC can achieve better performance, whereas with GAN Shaping,
the policy performs optimally.

agent is holding the peg above the hole, and −1 otherwise.
During training, the number of episode steps is set to 100
and episodes do not terminate early.

The success rates of our method and the baselines on the
peg insertion task on the real robot arm are presented in
Fig. 5, where we compare pure RL and RL with GAN shap-
ing. The failure of TD3 to discover the goal area inside the
peg holder is not surprising given the long horizon and sparse
rewards involved in the task. To generate demonstration data,
a near-optimal predefined trajectory was used.

Fig. 5 shows the average return from 5 episodes. Since
the episode length is set to 100, and the agent receives −1
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Fig. 4. Comparison of our method that involve TD3 with shaping vs λTD3
+ BC with various λ weights, in the case of optimal demonstrations (top)
and sub-optimal demonstrations (bottom). The latter are shown in Fig. 3.
The hyperparameter λ refers to the relative weighting of the RL objective
vs the behavioral cloning objective. These results show that TD3+BC is
sensitive to this hyperparameter. For example, λ = 0.0001 does not find
the optimal policy, whereas the other methods do. Both shaping methods
outperform TD3 + BC and require minimal tuning and no relative weighting
of objectives. GAIL, an imitation learning method, is not able to solve the
task, neither with optimal nor with sub-optimal demonstrations.

when the peg is not above or in the hole, an average reward
of −100 means the robot received no reward throughout the
entire episode. We can see that with our method, RL with
GAN Shaping, the robot is able to collect rewards in 20 steps.
Note that the agent does not have access to this cumulative,
dense reward during training. This dense return is used here
for evaluation purposes only.

V. CONCLUSION

This paper addressed the problem of combining reinforce-
ment learning with sub-optimal demonstrations. We made
use of results from reward shaping and state-action potentials
in order to model the demonstration data as advice, and not
as a set of constraints, which is the most popular method
currently in practice. We modeled the demonstration data
as deep generative models, based on normalizing flows or
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Fig. 5. Comparison of TD3 with TD3 with shaping from a GAN potential,
trained from demonstrations on a peg insertion task. Our method finds a
good policy in about 200 episodes. The performance reduction after that is
due to the RL objective trying to optimize the trajectory of the peg so as to
minimize time to arrive to the bottom of the hole. As it tries to optimize and
straighten the trajectory, the peg starts hitting the holder more frequently,
which delays the learning. To address this the reward can be modified to
penalize contact with the holder.

Generative Adversarial Networks, and we showed that when
used RL with generative model shaping is typically more
robust than RL with behavioral cloning constraints, even in
the presence of sub-optimal data. We showed that our method
is practical on a real robot arm, in addition to validating our
method in simulation.
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