
STATE ESTIMATION FOR AN

UNDERWATER ROBOT USING VISUAL AND

INERTIAL CUES

Florian Shkurti

School of Computer Science

McGill University, Montréal

October 2011

A Thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfilment of the requirements for the degree of

Master of Science

c© Florian Shkurti, 2011

Abstract

This thesis addresses the problem of 3D position and orientation (pose) estimation us-

ing measurements from a monocular camera and an inertial measurement unit (IMU).

While the algorithmic formulation of the problem is generic enough to be applied to

any intelligent agent that moves in 3D and possesses the sensor modalities mentioned

above, our implementation of the solution is particularly targeted to robots operating

in underwater environments. The algorithmic approach used in this work is based

on statistical estimators, and in particular the extended Kalman filter (EKF) formu-

lation, which combines measurements from the camera and the IMU into a unique

position and orientation estimate, relative to the starting pose of the robot. Aside

from estimating the relative 3D trajectory of the robot, the algorithm estimates the

3D structure of the environment. We present implementation trade-offs that affect

estimation accuracy versus real-time operation of the system, and we also present an

error analysis that describes how errors induced from any component of the system

affect the remaining parts. To validate the approach we present extensive experimen-

tal results, both in simulation and in datasets of real-world underwater environments

accompanied by ground truth, which confirm that this is a viable approach in terms

of accuracy.

Résumé

Cette thèse aborde le problème d’estimation de la position et de l’orientation 3D

(pose) en utilisant des mesures provenant d’une caméra monoculaire et d’une unité

de mesure inertielle (IMU). Tandis que la formulation algorithmique de ce problème

est suffisamment générique pour être appliquée aux tous les agents intelligents qui

se déplacent en 3D et possèdent les mêmes capteurs mentionnés ci-dessus, notre

implémentation s’addresse en particulier des robots fonctionnant dans des environ-

nements sous-marins. L’approche algorithmique utilisée dans ce thèse est basée sur

des estimateurs statistiques et en particulier le Extended Kalman Filter (EKF), qui

combine les mesures provenant de la caméra et de l’IMU dans une estimation de

position et d’orientation unique, relative à la pose de départ du robot. En plus de

l’estimation de la trajectoire relative du robot en 3D, l’algorithme estime la struc-

ture 3D de l’environnement. Nous présentons des compromis d’implementation qui

affectent la précision d’estimation en fonction de l’utilisation du système en temps

réel, et nous présentons aussi une analyse des erreurs qui décrit comment les erreurs

introduites par un composant du système affectent les parties restantes. Pour valider

l’approche, nous présentons des nombreux résultats expérimentaux, tant en matière

de simulation et de banque de données des environnements sous-marins accompagnée

de réalité de terrain, qui confirme que cette approche est viable en termes de précision.

Acknowledgements

My immediate family, Tasim, Adriana and my awesome sister Vjosana have always

supported and encouraged me. Without my parents’ bravery to immigrate to Canada

at an age when people seek stability and stillness, most of the opportunities my sister

and I enjoy today would have been impossible.

Some of the people who have influenced me the most happened to be teachers and

professors who loved what they were doing. To my supervisors at McGill, Gregory

Dudek and Ioannis Rekleitis: I thank you both, for your advice, feedback, enriching

discussions, your regular help with experiments, as well as your very helpful comments

on this thesis. Likewise for Greg Wilson, who was my advisor at the University of

Toronto, and taught me among other things the discipline required for coding prop-

erly. Leoni Dalla, who taught me Analysis, managed to replace my fear of math with

fascination. Spyros Papadakis, Kostas Efkarpidis, Kostas Bougesis, Stelios Kokkos,

and Dimitris Bizelis were by far the most thought-provoking and enthusiastic teachers

I have had in my high-school years. Anastasios Mourikis and Stergios Roumeliotis

also deserve many thanks for their continued patience in answering my questions on

pose estimation.

Without my labmates the entire grad school experience would have been much

poorer, both in terms of fun, and in terms of sharing technical knowledge. So, thank

you (like a G6) Junaed Sattar, Bir Bikram Dey, Anqi Xu, Yogesh Ghirdhar, Philippe

Giguére, Malika Meghjani, wise and powerful Chris Prahacs, Nicolas Plamondon,

Yasmina Schoueri, Amjad Mahairi, Milena Scaccia, and last but certainly not least,

ACKNOWLEDGEMENTS

may-the-force-be-with-you-and-live-long-and-prosper Patrick Virie. My labmates, to-

gether with Rosemary Ferrie and Marinos Rekleitis assisted me in collecting the un-

derwater datasets used in the experimental section, and provided helpful comments

for this thesis.

Finally, to my friends outside the lab and especially my roommates: you are

amazing people.

iv

TABLE OF CONTENTS

Abstract . i

Résumé . ii

Acknowledgements . iii

LIST OF FIGURES . viii

LIST OF TABLES . xii

CHAPTER 1. INTRODUCTION . 1

1.1. Outline . 1

1.1.1. Range-based localization . 2

1.1.2. Vision-based localization . 4

1.2. Objectives . 5

1.3. Contributions . 7

CHAPTER 2. BACKGROUND . 8

2.1. Basic concepts . 8

2.1.1. Feature tracking . 9

2.1.2. Kalman Filters . 9

2.1.3. What does an IMU measure and in what frame of reference? . . . 14

2.2. Related work . 15

2.2.1. Large-scale estimation . 16

2.2.2. Small-scale estimation . 17

TABLE OF CONTENTS

STATE ESTIMATION . 19

2.3. Preliminaries . 19

2.3.1. Rotation representation . 19

2.3.2. Error quaternion . 22

2.3.3. Camera-IMU transformation . 24

2.4. Extended Kalman Filter . 25

2.4.1. Propagation . 28

2.4.2. Augmentation . 32

2.4.3. 3D position estimation of observed landmarks 34

2.4.4. Vision-based update . 36

2.4.5. Depth-based update . 39

CHAPTER 3. FEATURE TRACKING . 41

3.1. Feature detectors and descriptors . 42

3.1.1. Feature matching . 43

3.1.2. Outlier detection . 43

3.2. Experimental evaluation of feature trackers 45

3.2.1. Underwater camera and IMU datasets 45

3.2.2. Feature track lengths . 46

3.2.3. False positive matches . 46

3.2.4. Running time . 47

3.2.5. Swapping feature trackers . 47

CHAPTER 4. EXPERIMENTAL EVALUATION 56

4.1. Simulation . 56

4.1.1. Error propagation from the 3D feature estimation to the velocity

estimate . 61

4.2. Underwater Robot . 63

4.3. Experiments on underwater datasets 65

4.4. Discussion of results . 68

vi

TABLE OF CONTENTS

4.5. Time synchronization between camera and IMU 76

CHAPTER 5. CONCLUSIONS . 78

5.1. Summary . 78

5.2. Critique And Shortcomings . 78

5.3. Potential Pitfalls . 79

5.4. Opportunities For Future Work . 80

5.4.1. Possibilities for speed-ups . 80

5.4.2. Bundle adjustment . 81

5.4.3. Unscented Kalman Filter . 82

5.5. Final remarks . 82

REFERENCES . 83

APPENDIX A. 94

A.1. Classical Rodriguez Parameters and Quaternions 94

A.2. Modified Rodriguez Parameters and Quaternions 94

A.3. Derivative of the IMU state error . 94

A.4. Derivative of the continuous-time covariance matrix 95

A.5. IMU-Camera covariance propagation 96

A.6. Covariance augmentation . 96

A.7. Linearization of vision-based residual 98

vii

LIST OF FIGURES

1.1 The particular IMU sensor that we are using, the MicroStrain 3DM-GX1,

incorporates a MEMS (microelectromechanical system) accelerometer, gyroscope,

and magnetometer. 5

1.2 The second generation of the Aqua family of underwater robots. 6

2.1 When the box rests on the ground the ball will rest on its floor, thus the

accelerometer will measure 1g upwards. 14

2.2 Visualisation of the final output from InerVis, showing the estimated vanishing

points from the chessboard (blue), oriented properly using the IMU. It is

assumed that the chessboard is placed vertically. 25

2.3 The IMU frame, a history of three consecutive camera frames, and the initial

frame that represents the global frame of reference G. 26

2.4 A schematic of the relationship between the IMU coordinate frame and the

mounted camera coordinate frame. 33

2.5 The 3D position estimation procedure is a procedure reminiscent of triangulation. 35

3.1 Underwater dataset 1. The white line is a 30m long measuring tape carefully

laid on the seafloor for approximate ground truth. 49

3.2 Underwater dataset 2 with more motion blur than the other datasets. . . . 50

3.3 Underwater dataset 3 . 51

LIST OF FIGURES

3.4 Distribution of feature track lengths for two representative combinations. The

figure on the left shows the length distribution for the SURF detector, and

Approximate Nearest Neighbor matching. The one on the right shows it for

the FAST detector, matched by the normalized cross-correlation score. . . 52

3.5 Average ratio of false positive matches / all matches. High value implies

matching that is prone to outliers. SURF feature matching, and Shi-Tomasi

features matched with ZNCC appear to be overall the most robust. All

detectors did well on datasets 2 and 3, which were not blurry. FAST and

CenSurE were more prone to outliers on Dataset2, which had the highest

motion blur. 53

3.6 (a) Average feature extraction times per feature. CenSurE is the slowest

among the detectors that we evaluated. (b) Average feature matching times

per feature. The ZNCC score is computed by a brute force comparison of all

possible feature pairs, hence it requires more computation time than ANN.

The time spent on computing the fundamental matrix is not included in these

matching times. 54

3.7 (a) Estimated trajectory for Dataset3, using SURF and Approximate Nearest

Neighbor matching. (b) 3D coral structure, estimated via Eq. (2.58) along

with the trajectory. (c) Estimated trajectory for Dataset3, using Shi-Tomasi

features and ZNCC matching. (d) 3D coral structure 55

4.1 The output of the algorithm with noise-free measurements. (a) Simulated

noise-free trajectory and world (b) Estimated depth of features from the

camera. Real depth: 2.092m (c) Estimated trajectory and 3D structure (d)

Estimated orientation of the IMU frame 57

4.2 The sensitivity of the algorithm to sensor noise. Camera noise with standard

deviation σim is injected in the perspective projection to account for the

innacuracies of the pinhole camera model. IMU noise is injected in the

ix

LIST OF FIGURES

acceleration and angular velocity readings of the simulated IMU, with standard

deviations σna and σng respectively. 59

4.3 3-sigma covariance bounds for the orientation, velocity and position of the

simulated trajectory. In this experiment, σng = 0.006, σna = 0.03 and

σim = 0.03. The position covariance particularly underestimates the error. 60

4.4 Velocity errors of an almost noise-free trajectory, with the exception of camera

noise during t ∈ [2, 5] seconds. Notice that the velocity error in y does not

converge to 0, despite the noise-free measurements following the error pulse. 61

4.5 Velocity errors feed back via the 3D feature position estimation procedure.

Camera noise was added during t ∈ [2, 30] seconds. 62

4.6 Misestimation of the depth of features from the camera. Increasing velocity

gives rise to features that are deemed to be farther away. 63

4.7 A view of the design of the Aqua2 family of underwater robots. 65

4.8 The near-straight line 30 meter-long trajectory executed in the first experiment.

The increase of the field of view of the robot is an artifact of the image stitching

software. 66

4.9 The second experiment, where the robot is guided to perform a loop closure

while recording IMU data and images. In this case images have been stitched

using image stitching software operating in a semi-autonomous fashion, where

the user manually rejects poor stitches. 67

4.10(a) Top view of the estimated trajectory for the straight line. (b) Top view of

the estimated trajectory for the loop. 69

4.11(a) Estimated IMU frame trajectory for the loop (b) Estimated trajectory

and 3D structure for the loop . 71

4.12(a) Estimated IMU frame trajectory for the straight line (b) Estimated

trajectory and 3D structure for the straight line 72

x

LIST OF FIGURES

4.13(a) Estimated depth of features for the loop (b) Estimated depth of features

for the straight line . 73

4.14(a) Estimated velocity and biases for the loop (b) Estimated velocity and

biases for the straight line. Underwater experiments performed both in the

pool and in the ocean suggest that the maximum forward speed of the robot

is about 1m/s. 74

4.15(a) Estimated 3-sigma error bounds for the loop (b) Estimated 3-sigma error

bounds for the straight line . 75

4.16Time delay between camera and IMU timestamps 77

xi

LIST OF TABLES

2.1 Rotation representations . 21

3.1 Feature trackers included in the evaluation 45

A.1Parameters used in the experimental section 99

CHAPTER 1

INTRODUCTION

1.1. Outline

Algorithms for estimating the position and orientation (pose) of a mobile robot

are considered significant enablers of robot autonomy. This is mainly because an

intelligent agent that knows exactly or approximately its 3D position in the world

will find it easier to map its environment, and plan subsequent actions, compared

to an agent that does not. Thus, a large spectrum of robotics research has focused

on addressing the so-called localization problem, also known as the pose or state

estimation problem. If, in addition to the robot’s pose, the algorithm also estimates

the 3D structure of the environment in which the robot is traveling, then the problem

is called Simultaneous Localization And Mapping (SLAM) in the robotics literature

or Structure From Motion (SFM) in the computer vision literature.

This thesis addresses the SLAM problem for the underwater domain, using vi-

sual and inertial measurements as sensory information. We are especially interested

in real-time localization (regardless of whether it is absolute or relative to a starting

pose), aiming to use the estimates as feedback to a high-level planner and controller

that will enable the robot to execute complex trajectories for mapping and coverage.

Having accurate localization underwater will also facilitate many other lines of re-

search, such as multi-robot rendezvous [62] between underwater and surface robots,

and coordination of heterogeneous multi-robot teams in general. In addition, we are

1.1.1 OUTLINE

interested in algorithms that perform well in shallow (30 meters or less) underwater

environments that are feature-rich and have good visibility. We prefer to use passive

sensor modalities that are not disruptive to fragile marine ecosystems, rather than

active sensing, which is one of the reasons we chose to pursue fusion of visual and

inertial data for our state estimation system. To better situate our approach in the

spectrum of existing research, we will mention representative existing algorithms that

use a variety of different sensors to accomplish the same goal: estimate the trajectory

of a robot, and the structure of the world around it in some fixed frame of reference,

which is usually the initial pose of the robot.

1.1.1. Range-based localization. The most widely-known example we can

begin with is the satellite-based Global Positioning System (GPS) [71, 25] [84, Ch.

20], pioneered by Parkinson, Getting, and Easton in the late 1970s. GPS satel-

lites transmit timestamped messages that are interpreted by GPS receivers, which

measure the time-of-flight from all such visible satellites, and translate those time

measurements into distances to the corresponding satellites. Knowing the precise

orbital position of each satellite, the receiver is able to trilaterate1 its position in a

fixed frame of reference with respect to the transmitters. The fixed frame in this case

happens to be the World Geodetic System 1984 (WGS84). GPS measurements are

a very effective data source for state estimation algorithms because they are easy to

obtain. The system does however have some limitations:

(a) GPS signal reception is usually not possible in indoor environments. In fact,

receivers need signals from at least 4 GPS satellites in order to perform trilatera-

tion, and the signal propagation is assumed to be along the line-of-sight between the

transmitter and the receiver. Indoor environments and in many cases dense urban

environments cause the signal to bounce (known as multipath), thus decreasing its

integrity as a time-of-flight measurement.

1Trilateration is the computation of a position given distance measurements to known positions. In
contrast, triangulation uses angle measurements for the same purpose.

2

1.1.1 OUTLINE

(b) GPS signal is absorbed very quickly by water, so receivers do not work un-

derwater.

(c) Even in places where the signal integrity is high, the error associated with

the trilateration is in the order of 10 meters, which is a suboptimal data source for

inferring the 3D orientation of the receiver 2.

The principles behind GPS are present in other range-based localization algo-

rithms, which share the same limitations. For instance, in underwater environments

acoustic positioning systems have been developed, where a receiver triangulates its

approximate position with respect to a set of beacons placed at known distances

on the surface of the sea [95]. In wifi-enabled indoor environments, wireless signal

strength is indicative of the distance to a router, so a collection of such measure-

ments provides a rough characteristic signature of rooms. Examples of this work are

illustrated in [28, 85, 51].

Another group of range-based localization algorithms use sensory inputs from

laser rangefinders or sonars, to obtain dense measurements of precise distances to

the robot’s surroundings. As the robot moves, the range signature from the previ-

ous timestep is compared to the one of the current timestep. Then these algorithms

typically try to optimize for the rotation and translation that best explains the dif-

ference in the range signatures. This relative positioning technique has been termed

“scan matching” and representative work includes [58, 64, 14, 70]. Assuming the

presence of an underwater laser rangefinder or sonar, scan matching can be used as a

complementary technique to the one explained in this thesis, since the range data can

improve the accuracy of the camera constraints, or even impose additional constraints

that are independent from the ones obtained by the camera measurements.

One of the differences between the fixed frame used by the GPS system and the

fixed frame used in the system presented herein is that our localization is computed

relative to the initial pose, so it is not an absolute and global position estimate,

2The same is not true for 2D orientation

3

1.1.1 OUTLINE

unless the initial position is known explicitly. Another difference is that the system

presented here can be used indoors and underwater, while GPS cannot.

1.1.2. Vision-based localization. Aside from range-based techniques, an-

other category of localization algorithms are vision-based pose estimation methods,

which have become quite popular in recent years, not only due to the wide availabil-

ity of cheap camera sensors, but mainly due to a series of technical advances and

successful demonstrations of structure from motion systems. These systems use cam-

era sensors, sometimes monocular, but often stereo. They try to infer the motion

of the robot from the image flow of regions of interest. Clearly, this is a relative

positioning system, which estimates the robot’s trajectory from the starting pose.

Illustrative examples include early work by Davison et al. [19] and more recent

work [68] on structure from motion in a constrained indoor space, which focuses pri-

marily on augmented reality applications, and not necessarily on long-term, wide-area

pose estimation. That said, there are examples of vision-based pose estimation over

hundreds-of-meters-long trajectories, such as in the work of Nistér et al. [69], Kono-

lige et al. [49], Barfoot [9], and Sibley et al. [83]. We will omit discussing 3D pose

estimation from artificial fiducial markers placed in the environment, i.e. we assume

underwater environments that do not have human-generated structures. It is worth

mentioning that in this particular line of research there exist two major ideas, which

are sometimes used in conjunction: one approach advocates using statistical filters

(e.g. extended Kalman filters, unscented Kalman filters, or particle filters) to incorpo-

rate the latest measurement into the current estimate, aiming for real-time operation;

the other approach advocates using a history of measurements in order to achieve a

more globally accurate pose estimate (e.g. bundle adjustment methods [93, 83]). A

detailed analysis of this debate, highlighting the advantages of optimization methods

over filtering is presented in [87].

Vision-aided localization techniques also include appearance-based localization.

The seminal work of Cummins and Newman [18], which performed place recognition

over a thousand-kilometer-long trajectory, exemplifies this line of research. The main

4

1.1.2 OBJECTIVES

difference between appearance-based localization methods and the work presented

here is that they do not attempt to estimate the pose of the robot, but rather to

identify the place or area at which the robot is located.

1.2. Objectives

In this thesis, we assume that the robot moves freely in 3D space, and that it

has at least two sensors at its disposal: a monocular camera and an inertial measure-

ment unit (IMU). An IMU measures 3D rotational velocity and linear acceleration,

in other words, the first derivative of the orientation and the second derivative of po-

sition. Our aim is the design of a robust and real-time 3D pose estimation algorithm,

Figure 1.1. The particular IMU sensor that we are using, the MicroS-
train 3DM-GX1, incorporates a MEMS (microelectromechanical system) ac-
celerometer, gyroscope, and magnetometer.

which also estimates the 3D structure of the surrounding environment wherein the

robot is moving. In other words, a real-time structure from motion algorithm that is

aided by IMU measurements. The target robotic platform is the Aqua family of am-

phibious robots [24, 75]. These hexapod robots are equipped with three IEEE-1394

IIDC cameras, a low-cost IMU, and a pressure sensor which is used to provide noisy

measurements of depth, measured from the surface of the water. The robot’s swim-

ming motion is a product of six paddles, which oscillate synchronously in two groups

of three. If we naively integrate these IMU measurements over long time intervals, as

we will see in later chapters, the 3D pose estimate diverges very quickly, due to the

5

1.1.2 OBJECTIVES

Figure 1.2. The second generation of the Aqua family of underwater robots.

integration of the noise associated with these measurements. The main idea behind

the algorithm implemented in this thesis is that the flow of points of interest tracked

in consecutive images will impose motion constraints on the integration of the IMU

measurements, which will prevent the divergence of the pose estimate.

The majority of the localization work mentioned previously deals with neither

the underwater domain nor inertial measurements per se, and often assumes the

existence of a mathematical motion model of the vehicle at hand. In our case, such a

model is nonlinear, hard to justify, and susceptible to deviations due to currents and

other factors [31, 16, 72]. In general, underwater environments are generally more

challenging than most of their indoor counterparts for the following reasons:

(a) They are prone to rapid changes in lighting conditions. The canonical example

that illustrates this is the presence of caustic patterns, which are due to refraction,

non-uniform reflection, and penetration of light when it transitions from air to the

rippling surface of the water [98, 52].

(b) They often have limited visibility. This is due to many factors, some of

which include light scattering from suspended plankton and other matter, which

6

1.1.3 CONTRIBUTIONS

cause blurring and “snow effects”. Another reason involves the incident angle at

which light rays hit the surface of the water. Smaller angles lead to less visibility.

(c) They impose loss of contrast and colour information with depth. As light

travels at increasing depths, different parts of its spectrum are absorbed. Red is the

first color that is seen as black, and eventually orange, yellow, green and blue follow.

This absorption sequence refers to clear water, and is not necessarily true for other

types [98]. That said, this particular constraint will have a limited impact in our case

because we are not using color information, only greyscale images.

Despite all the disadvantages mentioned above, visual cues are informative and

relevant in the underwater domain, especially due to the passive nature of visual

sensing, which is not disturbing to marine life and surrounding ecosystems, but also

considering the fact that this work is targeting shallow (30 meters or less) underwater

environments. IMU information is also passive and provides useful information about

the vehicle’s motion. Given the above constraints, pose estimation algorithms that

rely on IMU and visual data are promising, because the IMU provides a noisy estimate

of the vehicle’s dynamics even in the presence of strong currents, while the camera

imposes corrective motion constraints on the drifting IMU pose estimate, which is

obtained by integration.

1.3. Contributions

In this thesis we extend the approach presented by Mourikis and Roumeliotis

[65], and we present its evaluation in the underwater domain. Specifically, we add

measurements from a depth sensor in the original algorithm, and we test the imple-

mentation both on simulated data and on real underwater datasets with approximate

ground truth. We also evaluate and select feature tracking parameters. Finally, we

examine how errors in particular components of the system affect the estimates, and

what is the level of errors that should be expected given the IMU noise characteristics

and the camera noise characteristics.

7

CHAPTER 2

BACKGROUND

2.1. Basic concepts

In this chapter we will introduce some of the basic terminology and mathematical

tools and concepts that are required in order to understand the arguments and algo-

rithms presented in the following chapters. Most existing work on visual and inertial

pose estimation algorithms relies on a standard set of statistical tools and paradigms

and on common computer vision techniques in order to merge the two sources of

information – camera and IMU – into one coherent estimate. Conceptually, we are

given two streams of information that need to be processed. IMU measurements

come much more frequently than camera measurements (in the order of 2 to 5 times),

as cameras typically capture images at 15-30Hz, while IMU measurements are often

available at 30-100Hz. On the IMU side we get motion information in the form of

3D angular velocities and linear accelerations. On the vision side, we need to extract

motion and spatial information from the incoming images. The way we do this is

by tracking keypoints1 (or other features, such as lines) of interest from one image

to the next. The motion of these keypoints on consecutive images contains partial

information about the 3D motion of the camera relative to the observed keypoints

1Since our current work deals with points (and not curves) of interest we are going to use the terms
keypoint and feature interchangeably.

2.2.1 BASIC CONCEPTS

and objects in the world (partial because the distance between the camera and the

3D points of interest is not directly available).

2.1.1. Feature tracking. The feature tracking component of the system can

be instantiated as one of many alternatives, such as SIFT [57], SURF [11], Shi-Tomasi

[77], or Lucas-Kanade optical flow [4], just to name a few. The principle behind most

of these alternatives is that reliable keypoints for tracking are the ones that are salient

with respect to some objective function. This function usually favours corners, that

is, points around which there is significant intensity variation in two major directions.

The motivation behind this is that, ideally, salient points in one image will remain

so in the next image, which will open up the possibility of matching identical points

in consecutive images. The technical details of this process will be described in

subsequent chapters, but at the moment it suffices to say that the main motivation

behind using feature matching to track multiple points from one image to the next is

in order to impose motion constraints on the consecutive camera frames. This means

that the poses from which the camera observed each point are constrained to some

specific trajectory, which in turn implies (since the camera is fixed on the robot) that

the robot’s motion is constrained. In general these constraints do not determine a

unique trajectory, unless we have access to the exact relative motion performed from

one camera pose to the next, an estimate of which is what the IMU measurements

give us.

2.1.2. Kalman Filters. Fusing two (or more) sources of information is usu-

ally done via statistical estimators, the most widely used in this domain being the

Kalman Filter (KF). In the KF framework we define a vector of random variables

of interest (for instance the position, orientation and velocity of the robot) which we

denote by xt where t represents time. The goal of the filter is to generate a prob-

abilistic estimate of xt, given the sensor measurements, which comprise a vector of

observed data denoted by zt. Let x̂t|t denote an estimate of the state xt given all

sensor measurements up to and including time t. The Kalman Filter state estimate,

9

2.2.1 BASIC CONCEPTS

denoted by x̂MMSE
t|t , is such that it minimizes the mean square error:

x̂MMSE
t|t = argmin

xt

E[(xt − x̂t)
T (xt − x̂t) | z1, z2, ..., zt] (2.1)

From this definition we can show that the minimum mean square error estimate can be

computed as the conditional expectation of the state given the sensor measurements:

x̂MMSE
t|t = E[xt | z1, z2, ..., zt] (2.2)

Therefore, computing this estimate requires knowledge (or assumption) of an under-

lying conditional probability distribution p(xt | z1, z2, ..., zt) which encodes the degree

of belief of being in state xt given all the sensory inputs up to time t. In order to

make the computation of the estimate mentioned above more tractable the Kalman

Filter makes some simplifying assumptions:

(i) (Markov assumption) The state xt depends only on the state xt−1

(ii) The measurement zt depends only on the state xt and not on the previous

measurements z1, ..., zt−1

These assumptions have a critical effect on reducing the complexity of computing

x̂MMSE
t|t because they enable us to compute the conditional probability distribution

mentioned in a recursive manner, using Bayes’ rule, as follows 2:

p(xt | z1, z2, ..., zt) = p(zt|xt)︸ ︷︷ ︸
sensor model

∫
p(xt | xt−1)︸ ︷︷ ︸

state transition model

p(xt−1 | z1, z2, ..., zt−1)dxt−1 (2.3)

The sensor model describes how the next sensor measurements depend on the current

state, while the state transition model describes the transition probabilities from the

set of previous possible states to the set of current possible states. At this point the

Kalman filter makes more assumptions:

(iii) (Gaussian assumption) The state xt given the measurements z1, z2, ..., zt,

the sensor model, and the state transition model are normally distributed.

2This makes the Kalman Filter an instance of a recursive Bayesian filter.

10

2.2.1 BASIC CONCEPTS

Mathematically, this is expressed as:

xt|z1, z2, ..., zt ∼ N (µt|t,Pt|t) (2.4)

xt|xt−1 ∼ N (0,Qt) (2.5)

zt|xt ∼ N (0,Rt) (2.6)

where N (µt|t,Pt|t) denotes the multivariate normal distribution with mean

µt|t and covariance matrix Pt|t. This means that two parameters are suffi-

cient statistics for the complete description of the conditional distribution

p(xt | z1, z2, ..., zt), and thus the Kalman Filter need only compute two

estimates, one for the mean and the other for the covariance:

x̂MMSE
t|t = E[xt | z1, z2, ..., zt] = µt|t (2.7)

P̂
MMSE

t|t = E[(xt − x̂MMSE
t|t)(xt − x̂MMSE

t|t)T | z1, z2, ..., zt] = Pt|t (2.8)

This assumption implies a unimodal distribution, in other words, that there

is a single best guess about the estimate of the state, which is often not

true, as in reality there may be two different states that are equally plausible

given the data.3

(iv) (Linearity assumption) The current state xt is a linear function of the pre-

vious state xt−1, and the current measurement zt is a linear function of the

state xt. In both cases, the functions are affected by uncorrelated Gaussian

noise processes. More formally,

xt = Ftxt−1 + wt where wt ∼ N (0,Qt) (2.9)

zt = Htxt + vt where vt ∼ N (0,Rt) (2.10)

where wt is independent of wt−1,wt−2, ...,w0 and vt is independent of

vt−1,vt−2, ...,v0. The noise processes wt and vt model uncertainty caused

3This is one of the differences between Kalman Filters and Particle Filters, which are another class
of Bayesian recursive statistical estimators.

11

2.2.1 BASIC CONCEPTS

by factors such as: our inability to exhaustively describe the physical system

that governs the dynamics of xt and zt, inaccurate sensor measurements,

or small quantities that we simply opt to ignore. Similar concepts are seen

in Taylor approximations of functions, for instance in the basic Newtonian

equations of motion. The matrices Ft and Ht are deterministic; they encode

our knowledge of how the state evolves and how we expect the measure-

ments to depend on the state. It is also worth mentioning for completeness’

sake that the linear state transition models for the Kalman filter might also

include a control vector ut, which makes the state model:

xt = Ftxt−1 + Btut + wt (2.11)

In our case however, we are ommitting this term because in this work we

are not modeling the direct controls of the motion of the robot.

The recursive algorithm that computes the estimate of the Kalman Filter can be

described in two steps: the propagation (or prediction) and the update (or correction)

step. In the propagation step the filter predicts what the next state will be according

to its linear state transition model, having access only to measurements and state

information up until the previous time unit. For ease of notation we will denote

x̂MMSE
t|t by x̂t|t and P̂

MMSE

t|t by P̂t|t.

x̂t|t−1 = Ftx̂t−1|t−1 (2.12)

P̂t|t−1 = FtP̂t−1|t−1F
T
t + Qt (2.13)

Following the propagation step the filter has access to the current measurements and

it performs a correction of the estimated state and covariance, based on the residual

12

2.2.1 BASIC CONCEPTS

rt between the expected measurement and the actual measurement:

rt = zt −Htx̂t|t−1 (2.14)

St = HtP̂t|t−1H
T
t + Rt (2.15)

Kt = P̂t|t−1H
T
t S−1 (2.16)

x̂t|t = x̂t|t−1 + Ktrt (2.17)

P̂t|t = (I−KtHt)P̂t|t−1 (2.18)

St is the covariance matrix of the residual. Intuitively, if this matrix is ‘large‘ by

some measure then we should not trust the residual that the current measurement

is suggesting, but if it is ‘small‘ then we should probably trust it. Kt is called the

‘optimal Kalman gain‘ and it is computed in such a way that it minimizes the trace

of the covariance matrix P̂t|t. This is not an arbitrary criterion, as it is equivalent to

minimizing the mean square error in Eq. (2.1).

As a final remark about the Kalman Filter we note that the recursive algorithm

mentioned above gives rise to an unbiased and consistent estimator, as long as the

initial conditions x̂0|0 and P̂0|0 are selected accurately. Mathematically, this means

that Eq. 2.7 and 2.8 are preserved during each step of the algorithm.

By definition, if the linearity, Markov and Gaussian assumptions truly describe

the dynamics of the state of interest, then the Kalman Filter is the optimal estimator

with respect to the minimum mean square error criterion. There are examples however

of dynamical systems that have nonlinear state transition and sensor models. As

we will show in later chapters, including orientation in the state vector leads to

a nonlinear transition model. Similarly, we will see that the sensor model for the

camera measurements is also nonlinear. In these cases the sensor and state models

are described by:

xt = f(xt−1) + wt (2.19)

zt = h(xt) + vt (2.20)

13

2.2.1 BASIC CONCEPTS

where f and h are nonlinear functions. To make the estimation problem tractable in

these cases, the two functions are linearized and the equations of the Kalman Filter

are used, this time without any guarantee of optimality, or consistency. This is the

approach of the Extended Kalman Filter (EKF), which we are using in this thesis.

2.1.3. What does an IMU measure and in what frame of reference?

We mentioned earlier that an IMU measures angular velocities and linear accelera-

tions. A question that comes to mind then is: in what coordinate frame are they

measured? An IMU consists of a 3-axis accelerometer and a 3-axis gyroscope. An

accelerometer measures g-force, which is a misnomer for accelerations relative to a

free-falling frame. A single-axis accelerometer placed on the surface of the Earth will

measure 1g upwards 4, which, from the point of view of the resting device, is caused

by the force exercised from the Earth’s surface to the resting device. A free-falling

accelerometer in a vacuum would measure 0g.

A more intuitive way to think about this is by imagining the accelerometer as

a box with a small metal ball inside it (see Fig. 2.1). Whenever the ball touches

Figure 2.1. When the box rests on the ground the ball will rest on its floor,
thus the accelerometer will measure 1g upwards.

the walls of the box, the accelerometer outputs a signal proportional to the force

exerted to the ball from the walls that touch it. For instance, if the ball-box system is

free-falling in vacuum, the ball will not touch the walls of the box. From the point of

view of a non-accelerating external observer, the box-ball system has 1g acceleration

4Assuming an idealized accelerometer this depends on the position on the surface of the Earth

14

2.2.2 RELATED WORK

downwards. From the point of view of the box the ball has 0g acceleration. In other

words, the coordinate frame in which the accelerometer measurements are expressed

in is the box itself, i.e. the enclosing case of the accelerometer. To further illustrate

this, if the box-ball system lies still on the surface of the Earth, an external observer

sees that the system has 0g acceleration, however, from the point of view of the box,

the ball is subject to a force from the walls of the box. The accelerometer will output

1g pointing upwards in that case. Accelerometers do not measure acceleration with

respect to an external observer’s frame, or a global frame of reference such as the one

we are going to use in our calculations. Thus, we will need to make this conversion

ourselves.

Finally, the measurements of the gyroscope are easier to interpret: they are the

angular velocities measured with respect to the axes of the aforementioned box. From

now on, we will refer to this box as the IMU frame {I}, and to the external observer’s

frame as the global frame {G}, which will be non-accelerating, and more specifically,

static, as in the examples above.

2.2. Related work

Previous work in the domain of visual and inertial state estimation has been

evaluated mainly on road vehicles, such as cars and terrestrial mobile robots, as well

as on aerial vehicles, such as quadrotors and small-scale helicopters. Aside from the

algorithm presented by Mourikis and Roumeliotis [65], which will be described in full

detail in the following chapter, there are a number of other algorithmic approaches

that use both vision and inertial data that have been experimentally validated in

the field over large-scale trajectories (kilometers or hundreds-of-meters long). On the

other hand, there is a large number of approaches which have only been demonstrated

to work reliably for small-scale pose estimation (room-size environments). In the

former category falls the work of Jones and Soatto [42], Kelly and Sukhatme [46],

and Eustice et al. [27] while in the latter category there are a large number of

examples, which will be mentioned below.

15

2.2.2 RELATED WORK

2.2.1. Large-scale estimation. Jones and Soatto [42] demonstrated that

their algorithm yields less than 1% localization error over a 31km-long trajectory in

an urban environment. Their sensors included a monocular camera recording images

at 30Hz and a BEI Systems IMU with update rate at 100Hz, both of them mounted on

a sensor pack that was placed on a car. They used an Extended Kalman Filter (EKF)

to combine the measurements from the two sensors, however, the implementation of

the EKF was modified to perform online sample-consensus-based outlier rejection of

both the IMU and the camera measurements [94]. Initially, the algorithm performs

an autocalibration step, during which the IMU-camera sensor pack is subjected to

‘rich‘ motion (with many degrees of freedom and in many directions) which allows

the gravity vector and IMU-camera transformation to be estimated. After those

two parameters have converged, the normal operation of the algorithm begins, where

features are tracked in the scene, their depth continuously re-estimated by the filter.

Both camera and IMU inlier measurements are used during updates, while predictions

are done by simple time propagation of the motion model forward in time. On the

purely vision side of their system, the algorithm relies on feature tracking from optical

flow. Finally, they report that their system is able to process measurements in real-

time on a desktop computer.

Kelly and Sukhatme [46] presented an algorithm that was shown to yield under

1% localization error over a 400m-long trajectory traversed by a small-scale helicopter,

where ground truth was provided by GPS measurements. The input sensors of the

vehicle were a stereo camera recording at 30Hz and an Inertial Science ISIS IMU

recording at 100Hz. Their algorithm uses an Extended Kalman Filter to combine

IMU measurements and visual odometry estimates computed from consecutive stereo

images. During the prediction step the pose estimate is propagated using the IMU

measurements, while the update step is driven by the visual odometry estimate. Fea-

ture tracking in consecutive stereo pairs was done using the Lucas Kanade Tracker

[5], and the authors reported offline processing of the results, but not real-time op-

eration on the Mini-ITX embedded vision computer onboard the helicopter. Their

16

2.2.2 RELATED WORK

work demonstrated that visual odometry combined with IMU measurements produces

significantly better results compared to visual odometry alone.

Eustice et. al [27] showed successful use of the sparse information filter to combine

visual and inertial data, while performing a robotic survey mapping of length 3.4km

of the surface of the RMS Titanic. The total surface covered was approximately

3100m2. They also presented a technique for maintaining the consistency bounds of

the filter’s covariance. In their case, mapping and localization was done offline on

collected datasets and the possibility of real-time operation of their system was not

addressed.

2.2.2. Small-scale estimation. The work of Strelow and Singh [88] presents

a batch pose estimation method whose input is a sequence of time-synchronized con-

secutive images and IMU measurements. The estimated pose output by their algo-

rithm minimizes the reprojection error of the observed features, without deviating

much from the IMU motion measurements. In other words, their work extends the

visual bundle adjustment formulation, by imposing IMU motion measurements in the

estimated trajectory. Close in spirit to our work is the work of Williams et al. [97],

who extended the work of Mourikis and Roumeliotis [65] by tracking persistent lines,

and not just keypoints, from the camera of a quadrotor trying to enter buildings.

From an implementational standpoint, worthy of note is also the paper of Hertzberg

et al. [35] which describes the authors’ experiences of building a visual and inertial

SLAM system using currently available open-source components. Corke [17] used

IMU measurements to form an expected image motion field, and used its residual

with respect to the image motion field produced by the flow of features in order to

apply a correction to the pose estimate. Huster and Rock [40] fused inertial and visual

measurements in order to localize a moving robotic arm with respect to a stationary

object, aiming to facilitate the grasping process, particularly for underwater vehicles

equipped with grippers. In their work, they argue that fusing the measurements via

an Extended Kalman Filter is not a reliable technique, since the linearization of the

process model is going to lead to underestimating the uncertainty, which may cause

17

2.2.2 RELATED WORK

the filter to diverge. As an alternative, they propose a coordinate change on the state

vector that makes the linearizations unnecessary. In the same vein, Gemeiner et al.

[30], as well as Langelaan and Rock [53] used the Unscented Kalman Filter (UKF)

to fuse the measurements from the two sensors, in order to avoid said linearization.

In this work we chose the EKF over the UKF mainly for reasons of computational

efficiency, but future extensions of this work will consider the use of the UKF, as it

has been shown to often outperform the EKF in terms of accuracy [96]. Rehbinder

and Ghosh [73] used line correspondences from a monocular camera and combined

them with inertial measurements in order to estimate the orientation, but not the

position, of the camera. Aside from not estimating position, this technique cannot be

applied underwater due to the general lack of man made structures that give rise to

straight lines. Alenyà et al. [2] proposed contour tracking instead of feature tracking

in consecutive images, which is something that our work could potentially benefit

from. Diel et al. [22] used the residual of the epipolar constraints between consec-

utive camera frames as a residual for an Extended Kalman Filter that corrects the

propagated IMU estimates. Finally, a very interesting example of small-scale visual

and inertial estimation was proposed by Grimm and Grigat [33], who placed the

IMU and camera sensor on a pen, aiming to use it for small-scale image mosaicing

and handwriting recognition.

18

STATE ESTIMATION

2.3. Preliminaries

2.3.1. Rotation representation. In our attempt to estimate the orientation

and the position of a robotic vehicle relative to its initial pose, we are going to need

to choose a way to represent rotations and translations, to describe rigid motion. For

translations in Euclidean space this is easy, we can represent them as vectors. This

will not work for rotations, as they don’t commute. For rotations there are quite a few

choices of parametrizations: rotation matrices, Euler angles, quaternions, Rodrigues

parameters, Cayley-Klein parameters, and axis-angle. The special-orthogonal group

of rotation matrices,

SO(3) = {R | RRT = I detR = 1} (2.21)

has dimension 3, so the minimal number of parameters needed to describe a rota-

tion is 3, but the representations mentioned above use up to 9. In Table 2.1 we

present an overview of these alternatives, but a more detailed analysis can be found

in [76, 21, 26, 32, 79]. Essentially, the main differences among the available rotation

representations have to do with some of the following considerations:

• The number of parameters. Fewer parameters are appealing because the

risk of numerical instabilities is lower. In the case of rotation matrices for

example, one would need to enforce the orthonormality of the estimated

rotation matrix after each major numerical operation, which is suboptimal.

2.2.3 PRELIMINARIES

• Whether they have singularities or not. Hopf and Stuelpnagel [36, 89]

showed that it is impossible to represent arbitrary rotations using 3 num-

bers without any singularities. A specific example of this theorem is the

representation of 3D rotations by Euler angles, which are susceptible to

gimbal lock when the source and target frames have a collinear rotation

vector. In fact, Hopf showed that at least 5 real numbers are needed to

represent rotations without any singularities in a 1-1 and onto fashion.

• The number of floating point operations required to concatenate two rota-

tions. For the axis-angle representation this number is particularly high

because no direct formulas are currently known that can compose two such

rotations. Instead, they are converted into one of the other representations.

So, axis-angle, while appealing and intuitive to common logic, is not an ef-

ficient representation. Quaternions, on the other hand can be composed

much more efficiently.

• The number of floating point operations required to transform to other rep-

resentations, if necessary.

Clearly, the last two considerations become irrelevant if enough computing power is

available, however they do become noteworthy issues when using embedded comput-

ers with limited-computing capabilities. Quaternions seem to satisfy most of these

requirements, so they have become a standard for representing global orientations

with respect to some fixed frame of reference. We are also going to be relying on

them in this thesis:

q = [usin(θ/2) cos(θ/2)] = [q1 q2 q3 q4] (2.22)

In the context of Kalman filtering, the fact that unit quaternions are used in the

representation of rotations means that the propagation and update steps will have

to respect the unit norm constraint. The typical formulation of the Kalman filter,

however, only addresses the solution of unconstrained stochastic systems. This implies

that we have to: (a) modify the formulation of the Kalman filter so that the state

20

2.2.3 PRELIMINARIES

Table 2.1. Rotation representations

Name Definition Parameters Singularities

Rotation matrix
R ∈ R3×3 such that

9RT = R−1 and detR = 1

Euler angles 3

If φ = nπ, n ∈ Z− {0}
(θ, φ, ψ) such that then θ and ψ refer to

R = Rx(θ)Ry(φ)Rz(ψ) the same axis and 1DOF
is lost (gimbal lock).

Quaternions
q = [usin(θ/2) cos(θ/2)]

4rotation along the unit axis u
by θ

Classical s = utan(θ/2)
3

If θ = nπ, n ∈ Z− {0}
Rodrigues rotation along the unit axis u it is undefined.

Parameters by θ
Modified m = utan(θ/4)

3
If θ = 2nπ, n ∈ Z− {0}

Rodrigues rotation along the unit axis u it is undefined.
Parameters by θ

p = [α β γ δ]

4
Cayley-Klein α = cos(θ/2) + iuzsin(θ/2)
Parameters β = −(uy − iux)sin(θ/2)

γ = (uy + iux)sin(θ/2)
δ = cos(θ/2)− iuzsin(θ/2)

Axis-angle (ux, uy, θ) 3
If θ = nπ, n ∈ Z− {0}

it is singular.

vector is subject to a constraint, while maintaining the optimality of the estimate

for linear systems, or (b) re-normalize the quaternions in the state vector after each

propagation and update step, or (c) simply ignore the preservation of unit norm of

quaternions during the two steps of the Kalman filter.

The first option was only recently proven to be a feasible approach [99, 43, 86].

The third was shown to introduce estimation errors that are difficult to correct [80,

81]. The second option has been the ad-hoc method of choice for at least four decades,

and its effects on the Kalman filter have been studied in many works [6, 8, 20, 82].

In this thesis we are also going to follow (b), so we are going to normalize quaternions

after propagations and updates.

21

2.2.3 PRELIMINARIES

Finally, it is worth mentioning that there exist transformations that convert from

one representation to the other. For example, the Rodrigues formula will convert axis-

angle representations to rotation matrices. Another example is the Cayley transform5:

R = (I − bs× c)−1(I + bs× c) (2.23)

which converts Classical Rodrigues Parameters to a rotation matrix. Its appeal comes

into play in scenarios where we want to search over the space of rotations in the

context of optimization problems. If our search is done over the rotation matrices,

then we will need to use constrained optimization to impose orthonormality and +1

determinant, while if our search is done over vectors in R3 the Cayley transform will

allow us to use unconstrained optimization.

2.3.2. Error quaternion. If q̂ is our estimate of the quaternion that repre-

sents the orientation of the robot, and q is the real orientation, then their difference,

i.e. the error quaternion of unit length will be denoted by q̃, where:

q = q̃⊗ q̂ (2.24)

and ⊗ stands for quaternion multiplication. If the error quaternion is close to identity

then the error in the estimated orientation is small, which is good. On the other hand,

an error quaternion that is sufficiently far from identity indicates a poor estimate,

which we want to avoid. Notice that we haven’t formally defined a distance over the

space of unit quaternions. Since unit quaternions are points on the unit 4-sphere, we

have a couple of choices when measuring distance between two such points: one is

the Euclidean (straight line) distance,

dE(p,q) = ‖p− q‖ =
√

(p1 − q1)2 + (p2 − q2)2 + (p3 − q3)2 + (p4 − q4)2 (2.25)

and the other will be the smallest arc-length joining the two points on the sphere,

dA(p,q) = arccos(p · q) (2.26)

5bs× c denotes the cross-product matrix generated from the 3-vector s

22

2.2.3 PRELIMINARIES

where we are treating p and q as 4-vectors of unit length, whose origin is at the

center of the sphere. Clearly, the straight line distance will be smaller or equal to the

arc-length distance, because the former follows a path in the interior of the sphere,

as opposed to the latter, whose path is on the surface. At this point it is worth

mentioning for completeness’ sake that the multiplicative quaternion correction is

not the only option that has been taken into consideration in the literature. Additive

correction has also been studied, for instance in [7, 59, 8].

In the context of Kalman filtering, if we continue to regard quaternions as points

or vectors on the unit 4-sphere, the uncertainty of our estimate q̂ of the random

vector q will be expressed as the covariance matrix

cov(q̃) = E{q̃T q̃} − E{q̃}TE{q̃} (2.27)

where T is the vector transpose operation in this vectorial view of quaternions. There

is a subtle, unsettled as of yet, potential problem with viewing quaternions as vectors

and computing their covariance as in Eq. (2.27): the 4 × 4 covariance matrix will

not have full rank because of the imposed unit-length constraint. Lefferts et. al [54]

argue that this rank deficiency is hard to preserve numerically during the iterations

of the Kalman filter, and that these numerical errors might make the covariance non-

symmetric. To avoid this they suggested that the error quaternion be linearized by a

3-vector, so the 3× 3 unconstrained covariance of said vector be used instead of the

exact, 4× 4 matrix. On the other hand, Bar-Itzhack et al. [8] argue that in practice

this phenomenon does not occur when using additive quaternion correction, however

their argument did not provide an analysis for the multiplicative correction, which

we are using. There are a number of options available at this point for linearizing the

error quaternion as a 3-vector 6:

i) The so-called small angle approximation, whereby:

q̃ =
[
ũsin(θ̃/2) cos(θ̃/2)

]
'
[
ũθ̃/2 1

]
=
[
θ̃/2 1

]
(2.28)

6The above list of options is not exhaustive (for instance, see [10]).

23

2.2.3 PRELIMINARIES

ii) Exact representation by classical Rodrigues parameters

q̃ = crp2quat(ũtan(θ̃/2)) (2.29)

which is undefined for θ̃ = nπ, n ∈ Z − {0}. The transformations crp2quat and

quat2crp are shown in the Appendix section A.1.

iii) Exact representation by modified Rodrigues parameters

q̃ = mrp2quat(ũtan(θ̃/4)) (2.30)

which is undefined for θ̃ = 2nπ, n ∈ Z − {0}. Again, the transformations mrp2quat

and quat2mrp are shown in the Appendix section A.2.

We argued earlier that quaternions were a better, singularity-free representation

of rotations compared to the remaining options, including Rodrigues parameters.

The reason we are suggesting representations that have singularities in the case of

error quaternions is that we assume that θ̃ is going to be small. In other words, we

can combine a stable, unit quaternion representation for the global orientation, with

locally stable, 3-vector representations for small corrections to the global orientation.

In this thesis we are going to use the small-angle approximation to represent error

quaternions, so the covariance in Eq. 2.27 will be approximated by:

cov(q̃) ' cov(θ̃) = E{θ̃T θ̃} − E{θ̃}TE{θ̃} (2.31)

2.3.3. Camera-IMU transformation. As mentioned previously, the cam-

era frame {C} and the IMU frame {I} are fixed with respect to each other, both

moving in unison on the rigid body of the robot with respect to the global reference

frame {G}. The fixed transformation between the camera and the IMU consists,

therefore, of a rotation and a translation. Let C
I q denote the quaternion that rotates

from the IMU to the camera frame, and IpC denote the origin of the camera frame

in IMU coordinates. This transformation is a very important parameter of the esti-

mator, and if misestimated, the reconstruction of the robot’s 3D trajectory will be

affected by systematic errors. That said, the effects of the quaternion are much higher

24

2.2.4 EXTENDED KALMAN FILTER

Figure 2.2. Visualisation of the final output from InerVis, showing the
estimated vanishing points from the chessboard (blue), oriented properly
using the IMU. It is assumed that the chessboard is placed vertically.

than the effects of an error in the translation. That is why, aside from trusting the

information from the design specifications of the robot (e.g. CAD files), algorithms

have been developed for the joint calibration of a camera-IMU setup. We are us-

ing the InerVis system, developed by Lobo and Dias [55, 56], which requires static

images of a calibration chessboard together with IMU readings around the time the

images were taken.

Its output is C
I q. In our case the difference between the estimated quaternion

and the quaternion computed from the CAD files, was in the order of 1.5 degrees for

roll, pitch, and yaw. For the translation component, IpC , we used the values from

the CAD files. That said, there are other calibration algorithms we could have used,

such as [46, 63].

2.4. Extended Kalman Filter

The state vector at time tk that we are interested in estimating has the following

form:

Xk =
[
XIMUk

C1
G q GpC1

. . . CN
G q GpCN

]T
(2.32)

where XIMUk
is a 16 × 1 vector expressing the state of the IMU, and the pairs

{Ci
G q GpCi

} represent the transformations between the global frame and the ith cam-

era frame. In other words, the state vector contains the current state of the IMU

25

2.2.4 EXTENDED KALMAN FILTER

Figure 2.3. The IMU frame, a history of three consecutive camera frames,
and the initial frame that represents the global frame of reference G.

motion characteristics and a brief history of snapshots of consecutive poses represent-

ing where the camera frame {C} was in 3D space when images were recorded 2.3.

In particular, Ci
G q is a unit quaternion that expresses the rotation from the global

frame to the frame of camera Ci, and GpCi
is the origin of camera frame Ci given in

coordinates of the global reference frame G. In total, the state vector Xk is of length

16 + 7N , where N is the number of camera frames that we wish to remember in the

state vector. As will be explained in more detail later, camera frames are appended

to the state vector every time an image is recorded, and the oldest one is removed

whenever there are Nmax camera frames in the history. The IMU state vector, consists

of the following:

XIMUk
=
[
I
Gq bg

GvI ba
GpI

]
(2.33)

where I
Gq is a quaternion that expresses the rotation from the global frame to the

IMU frame, bg is the bias of the gyroscope, GvI is the velocity of the IMU frame in

coordinates of the global frame, ba is the bias of the accelerometer, and GpI is the

origin of the IMU frame in global coordinates.

26

2.2.4 EXTENDED KALMAN FILTER

The final detail to notice at this point regarding the choice of the state vector

is that, unlike the traditional formulation of EKF-SLAM [23], the state vector in

this formulation does not contain 3D landmarks, although the algorithm will provide

estimates for them. This simply means that we are not modeling the cross-correlation

between landmarks and the robot’s motion, or the cross-correlation among landmarks,

which allows for efficient updates, as will be seen below.

We will denote the estimates of the true state Xk by X̂k. Following the discussion

on the small angle approximation of error quaternions shown in Eq. (2.28), the error

vector will be of size 15 + 6N and will look like this:

X̃k =
[
X̃IMUk

C1
G θ̃

Gp̃C1
. . . CN

G θ̃ Gp̃CN

]T
(2.34)

where the error in the IMU state is:

X̃IMUk
=
[
I
Gθ̃ b̃g

GṽI b̃a
Gp̃I

]
(2.35)

As mentioned in the introduction of this thesis, we are going to use an Extended

Kalman Filter (EKF) that will propagate the motion of the robot forward in time,

based on IMU readings, and will correct the drift using the reprojection errors from

the tracking of visual features, together with depth information from the pressure

sensor. The algorithm consists of four steps (see Fig. 1):

(a) In the propagation step the linear acceleration and angular velocity measure-

ments from the IMU are integrated, in order to provide a short-term, noisy estimate

of the robot’s motion. Only the IMU state vector, XIMUk
and the corresponding

IMU covariance matrix are modified during this phase; the state and covariance of

the camera frames remains intact.

(b) When the camera records an image, the camera frame is appended to the state

vector and the covariance grows analogously. Also, current features are matched to

previous features. If the maximum number of camera frames in the state vector has

been reached, then old frames are pruned.

27

2.2.4 EXTENDED KALMAN FILTER

average IMU readings to compute mean gravity
compute initial roll and pitch from mean gravity
while true do

if IMU message ready then
propagate

end if
if Camera message ready then

extract features from current image
match features between current and previous image
augment the state and the covariance
depth-based update
for each terminated feature trail do

compute the feature’s 3D position
compute the feature’s residual
if the feature is not an outlier then

vision-based update
end if

end for
end if

end while

Algorithm 1: The general structure of the state estimation algorithm

(c) Depth measurements from a pressure sensor are available at the same rate as

the IMU, however, we sample them at the same rate as the camera update rate to

perform the depth-based update.

(d) If there exist feature tracks that ceased to appear in the current image, the 3D

position of said features is estimated and is regarded as ‘true‘. Assuming said features

are not deemed to be outliers, the residual between the ‘true‘ feature positions and

the estimated feature positions gives rise to the vision-based update, which corrects

the entire state vector, and in particular, the IMU integration drift.

2.4.1. Propagation. The purpose of this step is for the filter to predict the

position and orientation of the robot’s IMU frame at time tk+1 based on the state

at time tk and a theoretical 3D kinematic model that approximates the rigid motion

a moving body in 3D. If we regard time as a continuous variable, the motion model

28

2.2.4 EXTENDED KALMAN FILTER

that we use is:

I
Gq̇(t) =

1

2

 Iω(t)

0

⊗ I
Gq(t) (2.36)

Gv̇I(t) = RT (IGq(t))Iα(t) + Gg

GṗI(t) = GvI(t)

where Iω(t) and Iα(t) are the true angular velocity and linear acceleration of the

IMU frame in IMU coordinates, and R() is the rotation matrix equivalent to the

quaternion. The derivation for the time derivative of the quaternion can be found in

[91]. In this motion model we are modeling neither hydrodynamic drag nor Coriolis

forces. The model of the IMU noises is the one used in Chatfield [15], whereby the

errors and biases affecting the IMU measurements are given by 7:

ωm = Iω + bg + ng (2.37)

αm = R(IGq)(Gα− Gg) + ba + na

where Gα is the acceleration of the IMU frame as seen by the non-accelerating ex-

ternal observer of the global frame, Gg ' [0 0 9.81]. Here we take αm to be in

m/s2 and the ωm to be in rad/s, but actually the IMU readings for the acceleration

come in units of g. Like Chatfield [15] we are going to assume that the bias and

noise processes involved in the IMU measurements are random walks and normally

distributed, respectively:

ḃa ∼ N (0, σ2
waI3×3)

ḃg ∼ N (0, σ2
wgI3×3)

na ∼ N (0, σ2
naI3×3)

ng ∼ N (0, σ2
ngI3×3)

7We are not modeling the Earth’s rotation because we are assuming that the IMU will not be
sensitive enough to measure it accurately.

29

2.2.4 EXTENDED KALMAN FILTER

The choice of these noise parameters has significant effect on the performance of the

filter, but a procedure on how to optimally choose them, such as the one presented

in [47], is not going to be the main focus of this thesis. Instead, suitable values that

seemed to work in practice are going to be provided in the experimental section.

Now that we have a nonlinear model of how the IMU works, and how the IMU

readings would affect the state vector in an idealized continuous-time setting, we can

proceed in showing the EKF propagation step for discrete time, which happens every

time we get IMU readings (in our case approximately 50 times per second):

ω̂ = ωm − b̂g

α̂ = αm − b̂a

I
Gq̂(tk+1) =

 ω̂
‖ω̂‖ sin(‖ω̂‖ (tk+1−tk)

2
)

cos(‖ω̂‖ (tk+1−tk)
2

)

⊗ I
Gq̂(tk) (2.38)

G ˙̂vI = RT (IGq̂)α̂+ Gg

G ˙̂pI = Gv̂I

˙̂
ba = 0

˙̂
bg = 0

Numerical integration of this system is done using 4th-order Runge-Kutta, modified

to account for the multiplicative correction of the quaternion. Notice the use of the

0th-order quaternion integrator in the above system. The proof for why it is the

approximate solution to Eq. (2.36) can be found in [92]. We have observed that

300-500 iterations of the Runge-Kutta integrator are sufficient, while less than 100

iterations produce noticeable numerical inaccuracies in terms of integration residual.

The initial values of the IMU state vector are also very critical to the results of

the filter. In particular, a very important assumption that this filter makes is that

Gv̂I(t0) = 0, i.e. the robot starts from a resting position. Under this assumption, the

initial acceleration measured by the accelerometer will be solely gravitational, which

means that by aligning said vector to point downwards on the z-axis of the IMU, we

30

2.2.4 EXTENDED KALMAN FILTER

can compute the initial orientation, I
Gq̂(t0) of the robot uniquely modulo the yaw.

Initial position is trivially set to zero. If the above assumption is not made then in

the case where the filter starts estimating from a point in time when the robot is

accelerating, the initial estimate of the orientation will have errors and there will be

no good initial estimate of the velocity.

So far we have mentioned how the state vector Xk|k is propagated to Xk+1|k , but

we haven’t mentioned how the covariance matrix will change:

Pk =

 cov(X̃IMUk
) cov(X̃IMUk

, X̃CAMk
)

cov(X̃IMUk
, X̃CAMk

)T cov(X̃CAMk
)

 =

 PIIk PICk

PT
ICk

PCCk

 (2.39)

The part of the covariance matrix that contains the cross-correlations between the

stored camera frames, PCCk
, will remain intact during the propagation step, while

the other components will change. In section A.3 of the Appendix we show that the

error components of the IMU state vector change as follows:

I
G

˙̃θ = −bω̂ × cθ̃ − b̃g − ng (2.40)

G ˙̃vI = −RT (IGq̂)(bα̂× cθ̃ + b̃a + na) (2.41)

G ˙̃pI = GṽI (2.42)

˙̃ba ∼ N (0, σ2
waI3×3) (2.43)

˙̃bg ∼ N (0, σ2
wgI3×3) (2.44)

We can write the differential equations above in a more compact matrix form, as

follows:

˙̃XIMU = FX̃IMU + GnIMU (2.45)

nIMU ∼ N (0,QIMU) = N (0,


σ2
ngI3×3 0 0 0

0 σ2
wgI3×3 0 0

0 0 σ2
naI3×3 0

0 0 0 σ2
waI3×3

) (2.46)

31

2.2.4 EXTENDED KALMAN FILTER

and we can show (Appendix, section A.4) that the IMU covariance, PIIk , must satisfy

the matrix differential equation:

ṖII = FPII + PIIF
T + GQIMUGT (2.47)

We use a 4th-order Runge-Kutta integrator again, to get the propagated IMU covari-

ance PIIk+1|k starting from PIIk|k , which is the IMU covariance from the last update

step of the filter. As in the case of Eq. (2.36) the time interval of integration starts

from the timestamp of the last IMU measurement and goes on until the timestamp

of the current IMU measurement. It is worth mentioning that the initial value of

the IMU covariance should reflect the initial uncertainty around the estimates. For

example, the covariance of the initial position will be set to epsilon, because we know

it exactly. The covariance of the initial velocity should be set to σ2
velI3×3. Similarly,

the covariance of the initial orientation should account for small errors in roll and

pitch.

Now, all that remains for the propagation step is to show how to propagate PICk|k

to PICk+1|k . We show in section A.5 of the Appendix that:

PICk+1|k = exp(F(tk+1 − tk))PICk|k (2.48)

where tk+1 corresponds to the timestamp of the current IMU measurement and tk

is the timestamp of the last IMU measurement, and exp() in this case is the matrix

exponential.

2.4.2. Augmentation. The purpose of this step is to append a new camera

frame to the history maintained in the state vector. This happens whenever an image

is recorded, which in our case is approximately 15 times per second. The new frame

to be appended will have the following coordinates with respect to the global frame:

CN+1

G q̂ = C
I q⊗ I

Gq̂ (2.49)

Gp̂CN+1
= Gp̂I + RT (IGq̂)IpC (2.50)

32

2.2.4 EXTENDED KALMAN FILTER

Figure 2.4. A schematic of the relationship between the IMU coordinate
frame and the mounted camera coordinate frame.

where {CI q IpC} describe the transformation from the IMU to the camera frame

on the robot, which we assumed to be fixed and known. Our vehicle is equipped

with two cameras facing forward and one camera facing backwards. As the robot

swims over the seafloor, most of the structures are below it. Therefore, in order to

observe the seafloor a mirror is placed at a 45◦ angle in front of the back camera.

This configuration results in a virtual downward-looking camera located behind the

robot; see Fig. 2.4. The state vector will be augmented as follows:

Xk =
[
XIMUk

C1
G q GpC1

. . . CN
G q GpCN

CN+1

G q GpCN+1

]T
(2.51)

and if N+1 > Nmax then {C1
G q GpC1

} is going to be removed from the state together

with the corresponding blocks of the covariance matrix. In the Appendix (section A.6)

we show that the cross-correlations between the newly-appended camera frame and

33

2.2.4 EXTENDED KALMAN FILTER

the existing frames in the history, as well as the IMU state are given by:

Paug =

 P PJT

JP JPJT

 (2.52)

J =

 R(CI q) 03×9 03×3 03×6N

−RT (IGq̂)bIpC × c 03×9 I3×3 03×6N

 (2.53)

Finally, immediately after the augmentation step we match the features from the

last image with the features from the current image, thus ensuring continuity of the

flow/tracking of features until the most recent image. The details of this process will

be explained in detail in the next chapter.

2.4.3. 3D position estimation of observed landmarks. Consider a single

feature, f , that has been tracked in n consecutive camera frames, C1, C2, ..., Cn, which

are stored in the state vector (see Fig. 2.5). Let Cipf =
[
CiXf

CiYf
CiZf

]
be the

real 3D position of feature f expressed in camera frame Ci coordinates, i ∈ {1, . . . , n}.

We are interested in estimating this as accurately as possible, because the vision-based

update will depend on it. Then, we can write the following:

Cipf = R(Ci
C1

q)C1pf + CipC1
(2.54)

= C1Zf

(
R(Ci

C1
q)

[
C1Xf

C1Zf

C1Yf
C1Zf

1

]T
+

1
C1Zf

CipC1

)
(2.55)

If we let αf =
C1Xf
C1Zf

, βf =
C1Yf
C1Zf

, and γf = 1
C1Zf

then

Cipf = C1Zf

(
R(Ci

C1
q) [αf βf 1]T + γf

CipC1

)

= C1Zf


hi1(αf , βf , γf)

hi2(αf , βf , γf)

hi3(αf , βf , γf)

 (2.56)

Now, assuming a simple pinhole camera model, and disregarding the effects of the

34

2.2.4 EXTENDED KALMAN FILTER

Figure 2.5. The 3D position estimation procedure is a procedure reminis-
cent of triangulation.

camera’s calibration matrix, we can model the projection of feature f on the projec-

tion plane CiZ = 1 as follows:

zCi
f =

1

hi3(αf , βf , γf)

 hi1(αf , βf , γf)

hi2(αf , βf , γf)

+ nCi
f (2.57)

where zCi
f is the 2 × 1 measurement, and nCi

f is noise associated with the process,

due to miscalibration of the camera, motion blur, and other factors. If we stack

the measurements from all cameras into a single 2n × 1 vector zf and similarly for

the projection functions hi into a 2n × 1 vector hf , then we will have expressed

the problem of estimating the 3D position of a feature as a nonlinear least-squares

problem with 3 unknowns:

argmin
αf ,βf ,γf

‖zf − hf (αf , βf , γf)‖ (2.58)

Provided we have at least 3 measurements of feature f , i.e. provided we track it in at

least 3 frames, we can use the Levenberg-Marquardt nonlinear optimization algorithm

35

2.2.4 EXTENDED KALMAN FILTER

in order to get an estimate C1p̂f of the true solution. Then, the estimated feature

position in global coordinates can be obtained by:

Gp̂f =
1

γf
RT (C1

G q̂) [αf βf 1]T + Gp̂C1
(2.59)

One problem with this approach is that nonlinear optimization algorithms do not

guarantee a global minimum, only a local one, provided they converge. Another

problem is that if feature f is recorded around the same pixel location in all the

frames in which it appears, then the measurements we will get are going to be linearly

dependent, thus providing no information about the depth of f . In other words,

feature tracks that have small baseline have to be considered outliers, unless we exploit

other local information around the feature to infer its depth. This turns out to be

important in the case where the robot is at rest, in which case almost all the feature

tracks will have minimal baseline from one image to the next. Another potential

pitfall is that the inter-camera transformations {Ci
C1

q, CipC1
} might be themselves

noisy, which will also affect the solution of the least squares problem.

2.4.4. Vision-based update. The purpose of this step is to correct the

predictions made during the propagation phase. Consider again a single feature f ,

which has been tracked in n consecutive camera frames, C1, C2, ..., Cn, but stopped

being tracked at the current frame, Cn+1. In this case we initiate the vision-based

update. After having estimated the 3D position of feature f in global coordinates,

as described previously, we expect that its projection on the image plane of camera

frame Ci, according to the pinhole camera model, will be:

ẑCi
f =

[
CiX̂f
Ci Ẑf

Ci Ŷf
Ci Ẑf

]
(2.60)

where [
CiX̂f

CiŶf
CiẐf

]T
= R(Ci

G q̂)(Gp̂f − Gp̂Ci
) (2.61)

36

2.2.4 EXTENDED KALMAN FILTER

The actual measurement obtained from the feature tracks, on the other hand, is zCi
f ,

so for a single feature f viewed from a camera frame Ci this gives rise to the residual

rCi
f = zCi

f − ẑCi
f (2.62)

If we take the Taylor expansion of the function rCi
f about the point (Ci

G q̂, Gp̂f ,
Gp̂Ci

)

we will get the following linearization:

rCi
f ' HCi

f X̃ + UCi
f
Gp̃f + nCi

f (2.63)

where HCi
f and UCi

f are the Jacobians of rCi
f at the chosen point of linearization (see

section A.7 in the Appendix). nCi
f ∼ N (0,RCi

f) is the uncertainty in the residual, with

RCi
f = σ2

imI2×2. Essentially, σim models the uncertainty in the camera measurements,

and we are currently modeling it as being the same for all camera frames, regardless

of whether a particular image has high levels of motion blur, or whether the viewed

scene is nearby or far away. The total projection residual from all camera frames in

which feature f was tracked is therefore a stack of the individual residuals:

rf ' HfX̃ + Uf
Gp̃f + nf (2.64)

where nf is the total uncertainty of the residual due to feature f . We make the as-

sumption that observations of the same feature in consecutive camera frames are sta-

tistically independent, which makes the covariance of said uncertainty Rf = σ2
imIn×n.

The problem with the residual in Eq. (2.64) is that the state errors X̃ are correlated

with the errors in the feature position estimate Gp̃f , since the former was used to

derive the latter, as described previously. So, using Eq. (2.64) as the EKF residual

will bias the estimates. That is why we can use the closest residual that ignores the

first-order dependence on Gp̃f :

Let Af be a matrix such that AT
f Uf = 0, in other words, the columns of A form

an orthonormal basis of the null space of UT
f . While the choice of A is not unique,

the final correction factor applied to the state and covariance will not be affected

by this. The residual due to a single feature f that does not depend on the feature

37

2.2.4 EXTENDED KALMAN FILTER

position errors is:

r′f = AT
f rf ' AT

f HfX̃ + AT
f nf = H′fX̃ + n′f (2.65)

where n′f ∼ N (0,Rf) due to the column-wise orthonormality of A. Now, the total

residual for all the features that ceased to be tracked and are part of the update, is

a stack of the above individual residuals:

r′ = H′X̃ + n′ (2.66)

At this point we make another assumption, whereby observations of different features

are statistically independent, which makes n′ ∼ N (0, σ2
imI). The residual of Eq.

(2.66) is now in a form where the EKF framework can be applied. That said, Mourikis

and Roumeliotis [66] further apply a numerical speed-up step whereby they use the

QR decomposition of H′ to reduce the dimension of said matrix, which is going to be

used in the expensive matrix multiplications and inversion of the EKF:

H′ = [Q1 Q2]

 R′

0

 = Q1R
′ (2.67)

where Q1 is unitary. From Eq. (2.66) we can write

r′′ = QT
1 r′ = R′X̃ + QT

1 n′ (2.68)

K = Pk+1|kR
′T (R′Pk+1|kR

′T + σ2
imI)−1 (2.69)

δx = Kr′′ (2.70)

Pk+1|k+1 = (I−KR′)Pk+1|k (2.71)

where δx is the correction vector, of size 15 + 6N for the state vector. As mentioned

in the beginning of this chapter, vectorial quantities on the state vector are updated

additively, while for quaternions we take each linearized quaternion θ̃ in δx and we

38

2.2.4 EXTENDED KALMAN FILTER

correct the corresponding quaternions of the state vector as follows:

δq =

[
θ̃/2

√
1− ‖θ̃‖/4

]
(2.72)

q̂k+1|k+1 = δq ⊗ q̂k+1|k

It is worth mentioning at this point that the approximation of the error quaternion

by θ̃ only holds for small angles, so if ‖θ̃‖ >= 4 the estimate will almost surely have

diverged.

2.4.5. Depth-based update. The Aqua family of amphibious robots is

equipped with a pressure sensor that is exposed to the water and measures its hydro-

static pressure. The sensor is calibrated so that its reference point is at the surface

of the sea, and its pressure measurements are converted into depth measurements in

a linear fashion. We model the incoming data at time tk of absolute depth from the

sea surface as:

zk = dk + nk, nk ∼ N (0, σ2
depth). (2.73)

That said, we are interested in the difference between the robot’s initial and current

depth, i.e. in the displacement on the z-axis with respect to the global frame of

reference, so our measurements are:

z′k = zk − z0 = dk − d0 + nk = GZIk + nk (2.74)

nk ∼ N (0, σ2
depth)

The EKF state estimate for the depth change is GẐIk , so the measurement residual

becomes rk = GZI,k − GẐI,k + nk. The covariance matrix of the uncertainty in the

residual is

Sk = HdepthPk|k−1H
T
depth + σ2

depth (2.75)

Hdepth =
[
01×14 1 01×6N

]
The Kalman gain is then given by Kk = Pk|k−1H

T
depthS

−1
k , so the state correction

vector is Kkrk. This correction will potentially affect the entire state vector. The

39

2.2.4 EXTENDED KALMAN FILTER

EKF update equations for the Pk+1|k+1 and Xk+1|k+1 are identical to those presented

in the vision-based update step.

We perform the depth-based update right before the augmentation step, every

time an image is recorded. One very important issue that needs to be mentioned

is the presence of numerical instabilities when the effects of these updates are com-

pounded, thus for example, making the state covariance non-symmetric. We address

this particular issue by enforcing the symmetry of the covariance after each update,

by Pk+1|k+1 ← (Pk+1|k+1 + PT
k+1|k+1)/2.

40

CHAPTER 3

FEATURE TRACKING

In the previous chapter we mentioned that features are tracked between consecutive

pairs of images and that gives rise to feature paths, which enables us to estimate the

3D position of each point of interest in the environment. This is a crucial component

of the algorithm and, ideally, it needs to satisfy certain requirements such as: speed

of tracking, low rate of false positives, and long tracking lengths whenever necessary.

Speed of tracking is important when real-time operation of the EKF is one of the ob-

jectives. This of course depends on the particular computing platform, but regardless

of the available hardware, our ultimate future goal in terms of processing speed in

this line of work is 5-10 camera frames per second. Accuracy, expressed as a low per-

centage of false positive matches, is also very important because matching errors will

lead to 3D feature position estimation errors, which in turn will lead to errors in the

update step. A more quantitative analysis of this effect will be presented in the next

chapter. Finally, the third requirement, long tracking lengths, are necessary when

the robot is moving slowly, or in other words, when the baseline between consecutive

camera frames is too small to accurately estimate the depth at which the feature is

seen.

Keeping all these considerations in mind, this chapter presents an experimental

evaluation of different feature trackers, aiming to compare how they perform with

respect to the criteria outlined above in underwater environments. A feature tracker

3.3.1 FEATURE DETECTORS AND DESCRIPTORS

consists of a detector that will consistently identify points of interest, a descriptor

that will assign a signature to each of those points, and a matching technique that

will match points based on their signatures.

3.1. Feature detectors and descriptors

Our evaluation compares the following feature detectors: SURF, Shi-Tomasi,

FAST, CenSurE, and the SURF descriptor.

The SURF [12] detector is designed to be scale and (partially) rotation invariant.

It detects keypoints at local extrema of the determinant of the image’s approximate

Hessian. This filter response is evaluated at different scales so as to achieve scale

invariance. The scale space is divided into overlapping octaves, each of which consists

of filter responses at increasing scales. Rotation invariance is due to the assignment

of a dominant orientation of Haar wavelet responses around the detected keypoint.

Each keypoint is characterized by a SURF descriptor, which is a vector that consists

of sums of Haar wavelet responses around its oriented neighborhood. Neither the

detector nor the descriptor use any color information.

The Shi-Tomasi detector [78] is invariant under affine transformations, but not

under scaling. Its keypoints are image locations where the 2nd moment matrix has two

large eigenvalues, indicating image intensity change in two directions, i.e. a corner.

The FAST (Features from Accelerated Segment Test) [74] detector, on the other

hand, focuses on speed of keypoint detection rather than robustness to noise and

invariance properties. It uses a decision tree to classify a pixel as a keypoint if a

circle of pixels around it has arcs that are much brighter or darker than the center.

The authors mention that while this classifier is not very robust to noise, scaling and

illumination variations, it has high repeatability.

Finally, the CenSurE (Center Surround Extrema) [1] detector (also known as

STAR) aims to identify keypoints at any scale, without resorting to image subsam-

pling like SIFT [57], or filter upsampling like SURF. It does this by searching for

extrema of the image’s approximate Laplacian, using polygonal (e.g. octagonal)

42

3.3.1 FEATURE DETECTORS AND DESCRIPTORS

center-surround Haar wavelet filters. By comparison, SURF uses box-shaped filters

for its descriptor, resulting in less symmetry and partial rotation invariance. Finally,

among the detected extrema, only the ones with high Harris response are kept, so as

to eliminate keypoints detected along edges, which might be unstable for tracking.

3.1.1. Feature matching. The feature matching component of our evalua-

tion is based on Muja and Lowe’s work [67], the Fast Library for Approximate Nearest

Neighbours (FLANN). More specifically, we match feature pairs based on Approxi-

mate Nearest Neighbor search among the respective SURF descriptors. We accept a

match if the distance ratio of the nearest neighbour over the second nearest neighbour

is below a certain threshold, and provided the feature correspondence is bi-directional.

For the Approximate Nearest Neighbour (ANN) search we experimented with both

hierarchical K-means and randomized kd-trees. For combinations that use FAST,

CenSurE, or Shi-Tomasi keypoints, we use normalized cross-correlation (ZNCC) as a

measure of similarity between image patches around said keypoints.

3.1.2. Outlier detection. In order to identify false positive matches between

two consecutive frames Ci and Ci+1 we use two techniques based on two criteria:

(i) The epipolar constraints imposed by the fundamental matrix.

(ii) A a χ2 test from robust statistics that detects when the residual due to a

terminated feature trail is too large (i.e. outlier).

For the first criterion we rely on two different methods of estimating the fundamental

matrix: one is the RANSAC [13] method, which works well as long as there is a

significant number of inliers among the matches. The other one is via direct compu-

tation [34], which is made possible due to the presence of the camera transformations

in the state vector. Specifically, we can express the fundamental matrix Φ in terms

of the calibration matrix K of the camera, and the transformation between camera

frames Ci+1 and Ci:

43

3.3.1 FEATURE DETECTORS AND DESCRIPTORS

Φ = K−T bCip̂Ci+1
× cR(

Ci+1

Ci
q̂)K−1 (3.1)

R(
Ci+1

Ci
q̂) = R(

Ci+1

G q̂)RT (Ci
G q̂)

Cip̂Ci+1
= R(Ci

G q̂)(Gp̂Ci+1
− Gp̂Ci

)

We classify a pair of keypoints, x1 and x2 written in homogeneous pixel coordinates,

as an outlier match if for either of the two estimates of the fundamental matrix:

xT2 Φx1 > τ (3.2)

where τ is a threshold (in our experiments τ = 1.0 pixels). We classify a feature trail

as an outlier if any of its constituent matching pairs are outliers.

The second outlier detection technique computes the Mahalanobis norm of the

residual due to a single feature f (see Eq. 2.65) that has been observed in Mf

consecutive camera frames, but stopped being tracked:

d2f = r′Tf (H′fP̂H′Tf + σ2
imI2Mf−3)

−1r′f (3.3)

Notice that H′fP̂H′Tf +σ2
imI2Mf−3 is the covariance matrix of the normally-distributed

residual r′f , and for this norm to be meaningful it needs to be positive definite 1. The

norm measures how far the observed feature measurements were with respect to the

expected feature measurement, given the uncertainty in the camera frames. It is a

known result that the distribution of the squared Mahalanobis distance of a normally-

distributed vector is chi-squared with as many degrees of freedom as the size of the

vector. In other words, d2f ∼ χ2(2Mf − 3). What this means in our case is that we

can compare the particular instantiation of this squared distance with the cumulative

distribution of χ2(2Mf − 3), and if said distance is in the ‘tail‘ of the chi-squared

then we consider the feature an outlier because it is too surprising with respect to

the expected measurements. More formally, if d2f is within the 95th percentile of

1See previous discussion on the covariance of the error quaternion following Eq. (2.27)

44

3.3.2 EXPERIMENTAL EVALUATION OF FEATURE TRACKERS

Table 3.1. Feature trackers included in the evaluation

Detector Descriptor Matching scheme 2

SURF SURF ANN
SURF Image patch ZNCC

Shi-Tomasi Image patch ZNCC
FAST Image patch ZNCC
STAR Image patch ZNCC

χ2(2Mf − 3) then we accept it as an inlier. Otherwise, we consider it an outlier and

we ignore it during the update step.

In method (i) the direct computation method is useful as a complement to

RANSAC when the presence of outlier matches is significant, however the use of these

two methods incurs a significant computational cost in a feature tracking system that

we want to run online. This is why in our system we mainly use (ii).

3.2. Experimental evaluation of feature trackers

Our experimental comparison included the following combinations of detectors,

descriptors, and matching strategies:

For each of the experiments conducted we attempted to tune the parameters

of individual feature trackers in such a way that each of them performs as well as

possible. The outlier detection parameters were fixed for all experiments, so that all

combinations are treated in the same way.

3.2.1. Underwater camera and IMU datasets. We rely on 3 different

datasets of camera and IMU readings in order to conduct our evaluation. The datasets

represent distinct underwater environments that are relatively feature rich, and have

been recorded under varying illumination conditions. All datasets were recorded at

approximately 30 feet depth. The frame rate of the downward-looking camera was

set at 15Hz. The camera is a PointGrey Dragonfly Hi-Color 1024 × 768 pixels. The

IMU sensor we used was a MicroStrain 3DM-GX1, and its sampling rate was set at

2ANN (Approximate Nearest Neighbour Search), ZNCC (Normalized Cross-Correlation)

45

3.3.2 EXPERIMENTAL EVALUATION OF FEATURE TRACKERS

50Hz. Both sensors are on board of one of the Aqua family of amphibious robots [75].

More specifically:

Dataset1 features a straight 30 meter-long trajectory, where the robot moves at

approximately 0.2 meters/sec forward, while preserving its depth. The sea bottom is

mostly flat, and the robot moves about 2 meters over it. A white 30 meter-long tape

has been placed on the bottom, both to provide ground truth for distance travelled,

and to facilitate the straight line trajectory.

Dataset2 is an L-shaped trajectory, where the robot goes straight for about 7

meters, turns left, and then continues straight for about 3 meters, while preserving

depth. Again, the sea bottom is mostly flat, and the robot moves about 2 meters

over it, at speed 0.3 meters/sec. Another way it differs from Dataset1 is that it has

a higher degree of motion blur.

Dataset3 features a remotely controlled trajectory over a coral reef, where the

robot moves for 20 seconds at speed 0.2m/s. It is the most feature-rich and blur-free

among the datasets we have used, it consists of 300 images and it differs from the

previous two datasets in that the robot changes depth.

3.2.2. Feature track lengths. The distribution of feature track lengths is

shown in Fig. 3.4, and it is a decaying curve for all combinations. The SURF detector

seems to track most features for an average of 5 camera frames, and it is virtually

unable to do it for more than 25 frames, using Approximate Nearest Neighbors as the

matching method. From the datasets we observed that, given the almost constant

forward velocity of the robot, each feature is visible in the camera’s field of view for

about 25 frames. This means that on average the combination mentioned above can

track approximately 1/5th of the real trajectory of a feature. Fig. 3.5 shows that this

tracking is very accurate.

3.2.3. False positive matches. Figure 3.5 demonstrates the difference in

accuracy between the combinations involving SURF, and all the rest. Matching FAST

keypoints with the normalized cross-correlation similarity score results in as many as

46

3.3.2 EXPERIMENTAL EVALUATION OF FEATURE TRACKERS

9% false matches, while the same quantity appears to be 5% for SURF. This difference

is pronounced when the image has motion blur, since the normalized cross-correlation

similarity measure does not take into account image intensity gradients of any sort,

so one should apply very aggressive outlier detection schemes when using it.

3.2.4. Running time. We compared the average time spent on keypoint

extraction and matching, normalized by the total number of keypoints processed.

The results were obtained on an Intel Pentium Core 2 Duo at 1.6GHz and 4GB

of RAM. The OpenCV C++ library implementations were used for each detector,

descriptor and matching scheme. The results in Fig. 3.6(a) clearly show that SURF

and the Shi-Tomasi detector spend approximately 1 millisecond on each feature, while

CenSurE spends 3 milliseconds. The latter is most likely due to the fact that CenSurE

computes keypoints at all scales. Fig. 3.6(b) depicts a very significant difference

between the running times of Approximate Nearest Neighbor matching through either

randomized kd-trees or K-means, and normalized-cross correlation matching. This

is not surprising, as the implementation of the latter has complexity O(nm) where

n,m are the number of features extracted from the previous and the current image,

respectively. On the other hand, kd-trees are constructed in O(nlogn) and queried

in O(logm). Therefore, if real-time processing of images is a requirement, limiting

the number of features extracted by the detectors becomes necessary. Specifically, in

all of our feature tracking experiments we have used no more than 800 features per

image, but no less than 200, before the outlier detection phase.

3.2.5. Swapping feature trackers. Figure 3.7 presents two illustrative ex-

amples of the state estimation algorithm applied to Dataset3, in one case using the

SURF detector adjusted so that it detects approximately 500-600 features per image,

and in the other case using the the Shi-Tomasi detector, tuned so that it detects

approximately 200-300 features. Less than half of those features were matched from

frame to frame, yet the robot’s trajectory was reproduced at 1Hz camera frame rate

for SURF and 3Hz frame rate for Shi-Tomasi. The estimated trajectory and 3D

47

3.3.2 EXPERIMENTAL EVALUATION OF FEATURE TRACKERS

structure of the coral is shown in Fig. 3.7. It is worth mentioning that this experi-

ment did not include ground truth validation, unlike the experiments that are going

to be presented in the next chapter. The purpose of this swapping was simply to

illustrate that different feature trackers can be tuned to have comparable accuracy,

and to highlight the existence of an accuracy-speed trade-off among them.

48

3.3.2 EXPERIMENTAL EVALUATION OF FEATURE TRACKERS

Figure 3.1. Underwater dataset 1. The white line is a 30m long measuring
tape carefully laid on the seafloor for approximate ground truth.

49

3.3.2 EXPERIMENTAL EVALUATION OF FEATURE TRACKERS

Figure 3.2. Underwater dataset 2 with more motion blur than the other datasets.

50

3.3.2 EXPERIMENTAL EVALUATION OF FEATURE TRACKERS

Figure 3.3. Underwater dataset 3

51

3.3.2 EXPERIMENTAL EVALUATION OF FEATURE TRACKERS

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12
x 10

4

Track lengths

N
um

be
r

of
 fe

at
ur

e
tr

ac
ks

SURF/ANN

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 FAST/ZNCC

Track length

N
um

be
r

of
 tr

ac
ks

Figure 3.4. Distribution of feature track lengths for two representative
combinations. The figure on the left shows the length distribution for the
SURF detector, and Approximate Nearest Neighbor matching. The one on
the right shows it for the FAST detector, matched by the normalized cross-
correlation score.

52

3.3.2 EXPERIMENTAL EVALUATION OF FEATURE TRACKERS

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

SURF/ANN

SURF/ZNCC

CenSurE/ZNCC

Shi−Tomasi/ZNCC

FAST/ZNCC

Average ratio of false positive matches / all matches

Dataset1
Dataset2
Dataset3

Figure 3.5. Average ratio of false positive matches / all matches. High
value implies matching that is prone to outliers. SURF feature matching,
and Shi-Tomasi features matched with ZNCC appear to be overall the most
robust. All detectors did well on datasets 2 and 3, which were not blurry.
FAST and CenSurE were more prone to outliers on Dataset2, which had the
highest motion blur.

53

3.3.2 EXPERIMENTAL EVALUATION OF FEATURE TRACKERS

0 0.5 1 1.5 2 2.5 3 3.5

x 10
−3

SURF

CenSurE

Shi−Tomasi

FAST

Average time / feature (sec)

Feature Extraction Times

(a)

KD−TREE K−MEANS ZNCC
0

1

2

3

4

5

6

7

8

9
x 10

−3

A
ve

ra
ge

 ti
m

e
/ f

ea
tu

re
 (

se
c)

Feature Matching Times

(b)

Figure 3.6. (a) Average feature extraction times per feature. CenSurE
is the slowest among the detectors that we evaluated. (b) Average feature
matching times per feature. The ZNCC score is computed by a brute force
comparison of all possible feature pairs, hence it requires more computation
time than ANN. The time spent on computing the fundamental matrix is
not included in these matching times.

54

3.3.2 EXPERIMENTAL EVALUATION OF FEATURE TRACKERS

2
4

6
8

10

0

2

4

6
−0.5

0
0.5

1
1.5

y (meters)

x (meters)

z
(m

et
er

s)

(a)

−2 0 2 4 6 8 10
−2

0
2

4
6−6

−4

−2

0

2

y (meters)

x (meters)

z
(m

et
er

s)

(b)

0
2

4
6

8
10

0

2

4

6
−0.5

0
0.5

1
1.5

y (meters)x (meters)

z
(m

et
er

s)

(c)

0 2 4 6 8 10

−2

0

2

4

6

−6

−5

−4

−3

−2

−1

0

1

2

y (meters)

x (meters)

z
(m

et
er

s)

(d)

Figure 3.7. (a) Estimated trajectory for Dataset3, using SURF and Ap-
proximate Nearest Neighbor matching. (b) 3D coral structure, estimated via
Eq. (2.58) along with the trajectory. (c) Estimated trajectory for Dataset3,
using Shi-Tomasi features and ZNCC matching. (d) 3D coral structure

55

CHAPTER 4

EXPERIMENTAL EVALUATION

In this chapter we are going to validate the system that has been presented so far in its

entirety, and present results that show correct implementation of the algorithm. Thus,

this will open up the possibility of future work that enhances different components of

the system so as to achieve the goal of real-time operation at 5-10 camera frames per

second on the computing hardware of the robot. We present experimental results and

the parameters that enabled them, both for a simulated world and for two real-world

underwater datasets.

4.1. Simulation

In the simulation scenario we compose synthetic data and provide it as an input

to the algorithm. The trajectory of the robot is executed along a quarter-circular

arc, 2 meters above the seabed, which is simulated as a flat surface, as shown in Fig.

4.1(a). The field of view of the simulated camera is about 35◦. The depth-based

update is not applied in these experiments, as they are meant mostly to explore the

performance of the algorithm as the noise of the IMU and camera data increases. The

exact trajectory is generated by:

p(t) = [R cos(ωt) R sin(ωt) Z] (4.1)

q(t) = [0 0 sin(ωt) cos(ωt)] (4.2)

4.4.1 SIMULATION

where R = 10m, Z = 2m, ω = π
60
rad/s and t ∈ [0, 30], which means that we

can differentiate to get the exact velocity as well. In the case where the sensory

data provided to the algorithm is noise-free, it is able to reconstruct the trajectory

without errors, as shown in Fig. 4.1(c). We want to see how the estimation error

−40
−20

0
20

40

−40

−20

0

20

40
0

0.5

1

1.5

2

z
(m

et
er

s)

x (meters)
y (meters)

(a)

0 100 200 300 400 500 600 700 800 900 1000
2.045

2.05

2.055

2.06

2.065

2.07

2.075

2.08

2.085

2.09

Inlier features
E

st
im

at
ed

 d
ep

th
 fr

om
 c

am
er

a
(m

)

(b)

0
2

4
6

8
10

−10

−5

0

−2

−1

0

x (meters)

y (meters)

z
(m

et
er

s)

(c)

2
4

6
8

10
12

−10

−5

0

0

2

y

x
x

y

x

y

x (meters)

z

x

z

x

y

z

x

y

z

x

z

y

x

z

x

y

z

x

y

z

x

z

y

x

z

y

x

z

x

y

z

y (meters)

z

y
z

y
yz

(m
et

er
s)

(d)

Figure 4.1. The output of the algorithm with noise-free measurements. (a)
Simulated noise-free trajectory and world (b) Estimated depth of features
from the camera. Real depth: 2.092m (c) Estimated trajectory and 3D
structure (d) Estimated orientation of the IMU frame

of the algorithm grows as a function of increasing IMU and camera noise. To this

end we ran multiple simulations with different noise parameters to get an empirical

evaluation of the estimation error. In particular, for position and velocity we use the

Euclidean norm, while for quaternion differences, we use the angle in Eq. (2.26).

Figure 4.2 illustrates that when both the IMU and the camera noise are low the

estimation error is low for all the quantities of interest. In the presence of IMU noise

57

4.4.1 SIMULATION

only, the velocity estimate seems to be affected in the same way as the position esti-

mate (similar error gradient), which suggests that near-perfect camera measurements

are able to correct the position as well as the velocity. In the presence of camera noise

only, the position estimate degrades faster than the velocity estimate. When both

IMU and camera noise are present, the rate of velocity degradation is again lower

than that of the position.

In the real system the measured gyroscope noise has standard deviation 0.006

rad/sec, the measured accelerometer noise has standard deviation 0.06m/s2, and we

expect an error of around 3 pixels over 900 pixels of the total field of view of the

camera, due to calibration and keypoint localization errors. This simulation shows

that if we assume the camera has been calibrated well, the camera to IMU transfor-

mation is accurate, and feature matching is perfect, then in this sort of trajectory

we should expect position errors of at least 1.5 meters (over 15 meters in total, i.e.

approximately 10%), velocity errors around 0.5 meters/sec, and orientation errors of

about 2 degrees.

Aside from the expected error, another lesson learned from the simulations when

the camera and IMU noise levels are set to realistic levels is that the filter covariance

may underestimate the errors. This is shown in Fig. 4.3 which indicates that the Ex-

tended Kalman Filter presented here is an inconsistent state estimator. Measures for

dealing with this inconsistency have been presented in Huang, Mourikis and Roume-

liotis [37], Julier and Uhlmann [44], and the issue has been studied in other works,

such as [39, 41, 38]. For the purposes of the present system it is left as future work.

58

4.4.1 SIMULATION

0.005
0.01

0.015
0.02

0.025
0.03

(0.001, 0.005)
(0.002, 0.01)

(0.003, 0.015)
(0.004, 0.02)

(0.005, 0.025)
(0.006, 0.03)

−0.5

0

0.5

1

1.5

σim

(σ
ng (rad/s), σ

na (m/s2))

A
ve

ra
ge

 P
os

iti
on

 E
rr

or
 (

m
)

(a) Average position error

0.005
0.01

0.015
0.02

0.025
0.03

(0.001, 0.005)
(0.002, 0.01)

(0.003, 0.015)
(0.004, 0.02)

(0.005, 0.025)
(0.006, 0.03)

0

0.1

0.2

0.3

0.4

0.5

σim

(σ
ng (rad/s), σ

na (m/s2))

A
ve

ra
ge

 V
el

oc
ity

 E
rr

or
 (

m
/s

ec
)

(b) Average velocity error

0.005
0.01

0.015
0.02

0.025
0.03

(0.001, 0.005)
(0.002, 0.01)

(0.003, 0.015)
(0.004, 0.02)

(0.005, 0.025)
(0.006, 0.03)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

σim

(σ
ng (rad/s), σ

na (m/s2))

A
ve

ra
ge

 O
rie

nt
at

io
n

E
rr

or
 (

de
g)

(c) Average orientation error

Figure 4.2. The sensitivity of the algorithm to sensor noise. Camera noise

with standard deviation σim is injected in the perspective projection to ac-

count for the innacuracies of the pinhole camera model. IMU noise is injected

in the acceleration and angular velocity readings of the simulated IMU, with

standard deviations σna and σng respectively.

59

4.4.1 SIMULATION

0 10 20 30
−2

−1

0

1

2

x

error quaternion 3−sigma (deg)

0 10 20 30
−2

−1

0

1

2

y

0 10 20 30
−2

−1

0

1

2

z

0 10 20 30
−0.4

−0.2

0

0.2

0.4
velocity 3−sigma (m/sec)

0 10 20 30
−0.5

0

0.5

0 10 20 30
−0.4

−0.2

0

0.2

0.4

0 10 20 30
−1

0

1

2

3
position 3−sigma (m)

0 10 20 30
−3

−2

−1

0

1

0 10 20 30
−0.2

−0.1

0

0.1

0.2

Figure 4.3. 3-sigma covariance bounds for the orientation, velocity and

position of the simulated trajectory. In this experiment, σng = 0.006, σna =

0.03 and σim = 0.03. The position covariance particularly underestimates

the error.

60

4.4.1 SIMULATION

4.1.1. Error propagation from the 3D feature estimation to the velocity

estimate. We wanted to get a picture of how a single “pulse” of error injected

in the camera measurements, would affect the estimates of the velocity. In other

words, assuming that before and after the injection of this pulse of noise, the IMU

and camera data were noise-free, would the velocity estimates converge to the correct

values? Fig. 4.4 shows that the answer is no; the velocity estimates converge, but not

necessarily to the correct values. In this simulation the pulse of camera noise with

standard deviation σim = 0.03 is applied during t ∈ [2, 5] seconds, which is why the

velocity errors shown are zero in the first 2 seconds.

0 5 10 15 20 25 30
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

time (s)

ve
lo

ci
ty

 e
rr

or
 (

m
/s

)

x axis
y axis
z axis

Figure 4.4. Velocity errors of an almost noise-free trajectory, with the ex-

ception of camera noise during t ∈ [2, 5] seconds. Notice that the velocity

error in y does not converge to 0, despite the noise-free measurements fol-

lowing the error pulse.

In the same vein, we wanted to see whether the velocity estimates are susceptible

to feedback of error, in other words, whether a constant level of error on the velocity

61

4.4.1 SIMULATION

gives rise, through the 3D feature estimation procedure, to increasing velocity errors.

Fig. 4.5 shows that this does indeed happen, and with time, the error on the velocity

accumulates in such a way that even perfect sensory inputs are not enough to keep

it constant. For this simulation we added random noise with standard deviation of

0.02m/s to the velocity estimate, during t ∈ [2, 30], while the IMU and the camera

noise were set to zero.

0 5 10 15 20 25 30
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

time (s)

ve
lo

ci
ty

 e
rr

or
 (

m
/s

)

x axis
y axis
z axis

Figure 4.5. Velocity errors feed back via the 3D feature position estimation

procedure. Camera noise was added during t ∈ [2, 30] seconds.

62

4.4.2 UNDERWATER ROBOT

0 500 1000 1500 2000 2500
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

Features detected

E
st

im
at

ed
 d

ep
th

 fr
om

 c
am

er
a

(m
)

Figure 4.6. Misestimation of the depth of features from the camera. In-

creasing velocity gives rise to features that are deemed to be farther away.

This suggests that in the case of a velocity increase that is unnatural given the

physical constraints of the robot (e.g. forward speed more than 1m/s) to mitigate the

effect of this accumulation and force a speed reduction without directly modifying the

state vector of the EKF, one could intervene at the 3D feature position estimation

procedure to bring the features closer to the camera, i.e. reduce their depth by an

appropriate percentage, which would lower the estimated speed of the robot.

4.2. Underwater Robot

The target underwater vehicle for this system is the Aqua2 family of underwa-

ter robots (see Fig. 4.7). These hexapod robots have both walking and swimming

capabilities and are able to execute complex trajectories. They are capable of non-

holonomic 6-degree-of-freedom motion and generally very agile and lightweight. More

specifically, they include two embedded computers, one for vision processing (vision

stack) and one for low-level control operations (control stack), both conforming to

63

4.4.2 UNDERWATER ROBOT

the PC/104 PLUS form factor. The vision stack features a Pentium-M processor at

1.6GHz, with 1GB RAM, running a minimalistic version of the Ubuntu operating

system and ROS (Robot Operating System) [29] as the sensor abstraction and ap-

plication layer. Three IEEE-1394 IIDC Firewire cameras are connected to the vision

stack, two high-resolution camera (1024 × 768), and one low-resolution (640 × 480).

The control stack on the other hand is computationally more limited. It features

a Geode processor running at 300MHz, with 256MB of RAM. The QNX real-time

operating system is running on the control stack, and on top of that there is the

RoboDevel library, which provides a hardware abstraction layer, motion primitives

for the swimming, walking and other operation modes of the robot, as well as more

complex walking gaits. A pressure sensor and a MicroStrain 3DM-GX1 IMU are con-

nected to the control stack because their data are used for roll and depth stabilization.

That said, the two stacks are able to exchange data or commands with each other, so

from the vision stack we can programmatically direct the robot via a simple API. It

is worth mentioning that the downward looking camera (enabled by the mirror setup

presented in Fig. 2.4) is at the back of the robot, about 50cm away from the IMU,

which is closer to the front. So, the translation between the camera frame and the

IMU frame is significant.

The state estimation system described in this thesis runs on the vision stack of

the robot, and is implemented in C++ as collection of ROS nodes with Eigen3 (and

occasional patches of LAPACK) as the underlying numerical computation library.

The robot can operate in tethered (connected via fiber-optic cable to a laptop on the

surface) or tetherless mode (divers program the robot underwater via tags), and it

has Lithium-Ion batteries capable of delivering more than 5 hours of operating time

underwater. The mass of the robot is around 17kg and its body is neutrally buoyant.

The maximum forward speed of the robot is around 1m/s.

64

4.4.3 EXPERIMENTS ON UNDERWATER DATASETS

Figure 4.7. A view of the design of the Aqua2 family of underwater robots.

4.3. Experiments on underwater datasets

To test the validity of our adaptation of the algorithm in real-world data, we

collected underwater datasets with ground truth from the waters of the island of

Barbados, and we performed offline experiments to test our implementation. Two

of these datasets are going to be presented below together with the state estimates.

Images on both datasets were recorded from the back camera at 15Hz, and a 640×480

subregion of the image was used in the experiments. The IMU data is coming from

a MicroStrain 3DM-GX1 MEMS unit, sampled at 50Hz. The first dataset, depicted

in Fig. 4.8, features a straight 30 meter-long trajectory, where the robot moves at

approximately 0.2 meters/sec forward, while preserving its depth. The sea bottom

is mostly flat, and the robot moves about 2 meters over it. A white 30 meter-long

tape has been placed on the bottom, both to provide ground truth for the distance

traveled, and to facilitate the robot’s guided straight line trajectory.

65

4.4.3 EXPERIMENTS ON UNDERWATER DATASETS

Figure 4.8. The near-straight line 30 meter-long trajectory executed in the

first experiment. The increase of the field of view of the robot is an artifact

of the image stitching software.

66

4.4.3 EXPERIMENTS ON UNDERWATER DATASETS

Figure 4.9. The second experiment, where the robot is guided to perform a

loop closure while recording IMU data and images. In this case images have

been stitched using image stitching software operating in a semi-autonomous

fashion, where the user manually rejects poor stitches.

The second dataset corresponds to an experiment that took place over the same

site, and under the same conditions mentioned above, however the shape of the tra-

jectory was a closed loop, as depicted in Fig. 4.9. The total length was approximately

67

4.4.4 DISCUSSION OF RESULTS

33 meters, and the side lengths are shown on the figure. In both cases the robot only

performed data collection, and the datasets were post-processed offline.

4.4. Discussion of results

As seen in the top view of the estimated trajectories in Fig. 4.10 the length

of the straight line was estimated correctly, with a 1 meter error, while the loop

trajectory accumulated more error. In particular, the horizontal segments of the loop

are estimated correctly with error below 0.5 meter, while the vertical segments have

been overshot by 2 meters. The fact that the straight line was estimated correctly,

while the loop segment lengths are overshot, indicates one or more of the following,

ordered from most to least likely:

(a) The 3 turns on the loop trajectory are too sharp, or are such that there is only

rotation in place without much translation. This means that the 3D estimates of the

tracked features might contain larger errors than usual, because the baseline is too

small. This is actually confirmed by Fig. 4.13, specifically, by the presence of the 3

spikes in the estimated depths of features from the camera. The spikes are unnatural

in the sense that there cannot be a sudden change of depth in the environment, which

is assumed to be more or less continuous. This issue might be fixable if handled as a

special case, where, if the baseline of consecutive occurrences of a features is too small,

then the feature should not be taken into account. Currently, this is not handled in

the code.

(b) Inaccurate modeling of the gyroscope noise and bias. The standard deviation

of the gyroscope noise was measured when the robot was still and the bias is too

small a quantity to cause the length errors we have observed.

(c) Camera calibration errors, which affect the undistortion process.

(d) Inaccurate initial conditions for the state and the covariance. This is less

likely due to the correct estimation of the first segment.

68

4.4.4 DISCUSSION OF RESULTS

5 10 15 20 25 30

−10

−5

0

5

10

x (meters)

y
(m

et
er

s)

(a)

−4 −2 0 2 4 6 8 10 12

−12

−10

−8

−6

−4

−2

0

x (meters)

y
(m

et
er

s)

(b)

Figure 4.10. (a) Top view of the estimated trajectory for the straight line.

(b) Top view of the estimated trajectory for the loop.

Reason (a) is most likely because it explains another issue: in the feature depth

estimates for the loop (Fig. 4.13(a)) we would expect that if the depth sensor indicates

69

4.4.4 DISCUSSION OF RESULTS

no change of depth, then the depth of features seen in the beginning of the loop

trajectory should be the same as that seen at the end. This is obviously not the case

at the moment. If (a) is indeed the root of the problem, then it would cause an error

in velocity after each of the turns, which would in turn cause an error in the baselines

of consecutive camera frames, and thus in the estimated feature depths.

The orientation of the IMU frame is shown in Fig. 4.11(a) and 4.12(a), and it

appears to be estimated correctly, thought we have no effective way to compare it

against ground truth.

The parameters used for the loop and straight line experiments are shown in

Table A.1 in the Appendix.

To summarize, the experiments have shown that the algorithm is accurate on

straight lines, and generally accurate on trajectories with turns, but faces problems

on sharp turns, especially when they are performed in place and with reduced speed,

which causes the baselines of the camera frames from which the features are seen to

be very small. We also noticed that the EKF tends to underestimate the errors of the

state, particularly for the position and less so for the velocity and the orientation. We

also demonstrated through simulation that velocity errors feed accumulate and feed

back via the 3D feature position estimation procedure, which is a potential cause of

divergence if the errors are high.

70

4.4.4 DISCUSSION OF RESULTS

−4
−2

0
2

4
6

8
10

12 −16

−14

−12

−10

−8

−6

−4

−2

0

2

−1

0

1

2

3

y
(m

et
er

s)

y

y
y

x

y

y

x

y

x

y

y

y

x

y

y

x

z

y

y

zz
y

z

x

z

x

x
z

z
y

z

z

x
z

x

x

x

z
y

z

x
x

x

z

z

z

x

x

y

y

z

x

z
y

x

y

z

zz

z

z

z

z

z

x

x

y
x

x

x

z

x (meters)

z

xz

x

x

z

x

z
x
z

z

z

z
zx

y

x

x

y

x

y

y

y

y

y

x

y

y

y

x
y

y

y

yz
(m

et
er

s)

(a)

−4
−2

0
2

4
6

8
10

12
14 −14

−12

−10

−8

−6

−4

−2

0

2

−6

−4

−2

0

2

y
(m

et
er

s)

x (meters)

z
(m

et
er

s)

(b)

Figure 4.11. (a) Estimated IMU frame trajectory for the loop (b) Esti-

mated trajectory and 3D structure for the loop

71

4.4.4 DISCUSSION OF RESULTS

0

5

10

15

20

25

30

−2
0

2

−1
0
1
2
3

xx
x

zz

xx

zz

x
x

z

x

yyy

x

z
zy

x

z

x

y

z

x

z
y

x

y
z

x

y
z

x
(m

et
er

s)

x

y
z

x

z
y

x

z
y

x

zy

x

yz

x

yz

x

zy

x

yz

x

yz

x

yz

x

zy

x

zy

x

zy
zyzyy

yy
y

y (meters)

z
(m

et
er

s)

(a)

0

5

10

15

20

25

30

−2
0

2

−6

−4

−2

0

2

x
(m

et
er

s)

y (meters)

z
(m

et
er

s)

(b)

Figure 4.12. (a) Estimated IMU frame trajectory for the straight line (b)

Estimated trajectory and 3D structure for the straight line

72

4.4.4 DISCUSSION OF RESULTS

0 1 2 3 4 5 6 7 8 9 10

x 104

0

1

2

3

4

5

6

7

8

9

Features detected

E
st

im
at

ed
 d

ep
th

 fr
om

 c
am

er
a

(m
)

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 104

0

1

2

3

4

5

6

7

Features detected

E
st

im
at

ed
 d

ep
th

 fr
om

 c
am

er
a

(m
)

(b)

Figure 4.13. (a) Estimated depth of features for the loop (b) Estimated

depth of features for the straight line

73

4.4.4 DISCUSSION OF RESULTS

0 50 100 150
−1

−0.5

0

0.5

time (s)
ve

lo
ci

ty
 (

m
/s

)

x

0 50 100 150
−1

−0.5

0

0.5

1

time (s)

y

0 50 100 150
−0.2

−0.1

0

0.1

0.2

time (s)

z

0 50 100 150
−0.1

−0.05

0

0.05

0.1

time (s)

bi
as

 a
cc

. (
m

/s
2)

0 50 100 150
−5

0

5
x 10−3

time (s)
0 50 100 150

−0.01

−0.005

0

0.005

0.01

0.015

0.02

time (s)

0 50 100 150
−0.2

−0.1

0

0.1

0.2

time (s)

bi
as

 g
yr

o
(d

eg
/s

ec
)

0 50 100 150
−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

time (s)
0 50 100 150

−0.2

−0.1

0

0.1

0.2

time (s)

(a)

0 20 40 60 80 100
−0.5

0

0.5

1

time (s)

ve
lo

ci
ty

 (
m

/s
)

x

0 50 100
−0.5

0

0.5

time (s)

y

0 20 40 60 80 100
−0.2

−0.1

0

0.1

0.2

time (s)

z

0 20 40 60 80 100
−0.05

0

0.05

0.1

time (s)

bi
as

 a
cc

. (
m

/s
2)

0 50 100
0

0.5

1

1.5
x 10−3

time (s)
0 20 40 60 80 100

−0.01

−0.005

0

0.005

0.01

0.015

0.02

time (s)

0 20 40 60 80 100
−0.2

−0.1

0

0.1

0.2

time (s)

bi
as

 g
yr

o
(d

eg
/s

ec
)

0 50 100
−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

time (s)
0 20 40 60 80 100

−0.15

−0.1

−0.05

time (s)

(b)

Figure 4.14. (a) Estimated velocity and biases for the loop (b) Estimated

velocity and biases for the straight line. Underwater experiments performed

both in the pool and in the ocean suggest that the maximum forward speed

of the robot is about 1m/s.

74

4.4.4 DISCUSSION OF RESULTS

0 50 100 150
−2

−1

0

1

2

x

error quaternion 3−sigma (deg)

0 50 100 150
−2

−1

0

1

2

y

0 50 100 150
−2

−1

0

1

2

z

0 50 100 150
−0.2

−0.1

0

0.1

0.2
velocity 3−sigma (m/sec)

0 50 100 150
−0.2

−0.1

0

0.1

0.2

0 50 100 150
−0.2

−0.1

0

0.1

0.2

0 50 100 150
−0.5

0

0.5
position 3−sigma (m)

0 50 100 150
−0.5

0

0.5

0 50 100 150
−0.1

−0.05

0

0.05

0.1

(a)

0 20 40 60 80 100
−2

−1

0

1

2

x

error quaternion 3−sigma (deg)

0 20 40 60 80 100
−2

−1

0

1

2

y

0 20 40 60 80 100
−2

−1

0

1

2

z

0 20 40 60 80 100
−0.4

−0.2

0

0.2

0.4
velocity 3−sigma (m/sec)

0 20 40 60 80 100
−0.4

−0.2

0

0.2

0.4

0 20 40 60 80 100
−0.2

−0.1

0

0.1

0.2

0 20 40 60 80 100
−0.4

−0.2

0

0.2

0.4
position 3−sigma (m)

0 20 40 60 80 100
−0.4

−0.2

0

0.2

0.4

0 20 40 60 80 100
−0.2

−0.1

0

0.1

0.2

(b)

Figure 4.15. (a) Estimated 3-sigma error bounds for the loop (b) Esti-

mated 3-sigma error bounds for the straight line

75

4.4.5 TIME SYNCHRONIZATION BETWEEN CAMERA AND IMU

4.5. Time synchronization between camera and IMU

As mentioned previously, camera measurements are made from the vision CPU

of the robot, while IMU measurements are made from the control stack. This allows

for errors due to lack of exact time-synchronization between the camera and the IMU.

That said, even if the two sensors were to be connected to the same computer, the

issue would still be there, because the camera has a higher delay in preparing the entire

message compared to the IMU. In order to get a rough estimate of this time delay

between the camera and the IMU messages, we performed the following experiment

in the lab, while the robot was completely still: we gently hit the part of the robot

containing the IMU, while the camera was recording the collision. We performed 13

such hits, and we recorded the maxima of the IMU accelerometer readings, and also

the collision times as seen in the corresponding camera frames. The results, shown

in figure 4.16 indicate that on average the camera is 45 milliseconds “slower” than

the IMU, with standard deviation 0.39 milliseconds. The reason why this experiment

is only going to provide a rough estimate is that the camera is recording at 15Hz,

or one frame every 66 milliseconds. In other similar algorithms, such as Jones and

Soatto [42], the time delay between their IMU and camera was reported to be 50

milliseconds. In other words, the standard deviation of these time delays is too big,

and would become smaller if our camera was recording at 30Hz. Nevertheless, this

simple experiment illustrates that a time delay between the camera and the IMU does

exist, however a more precise experiment is needed.

76

4.4.5 TIME SYNCHRONIZATION BETWEEN CAMERA AND IMU

1 2 3 4 5 6 7 8 9 10 11 12 13
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Number of hits

C
am

er
a

tim
es

ta
m

p
−

 IM
U

 ti
m

es
ta

m
p

(s
ec

)

Figure 4.16. Time delay between camera and IMU timestamps

Dealing with these time delays between sensors usually involves common hard-

ware triggers, which poll the IMU and the camera at regular intervals. If that is not

possible, then a common heuristic is to simply subtract the average time delay from

the camera timestamps, but that does not provide exact synchronization.

77

CHAPTER 5

CONCLUSIONS

5.1. Summary

In this thesis we presented in full detail the adaptation of an existing pose es-

timation algorithm for use by an underwater robot in shallow, feature-rich environ-

ments. An Extended Kalman Filter that incorporates measurements from a camera,

an IMU, and a depth sensor was presented and validated in simulated and real-world

environments. While real-time operation of pose estimation algorithms is usually a

requirement, in our current implementation we have opted to be concerned more with

accuracy than speed of operation. Our results show that visual and inertial measure-

ments are a viable option for pose estimation techniques, as long as careful calibration

and synchronization between the two sensors is performed. The algorithm examined

in this thesis is extendable in the sense that it can easily incorporate input from two

or more cameras, or some stable features in the state vector.

5.2. Critique And Shortcomings

One of the main limitations of the algorithm is that the initial velocity of the

robot has to be zero or otherwise known if the algorithm is started while the robot

is in motion. Also, the initial acceleration has to be zero, so that the estimate of the

initial orientation is done correctly. Unfortunately, in practice, these two conditions

are not easy to guarantee, especially in the underwater scenario. That said, recent

5.5.3 POTENTIAL PITFALLS

results have addressed both of these issues [60, 61], in an effort to estimate the initial

conditions of the trajectory.

Another limitation of this algorithm, and others like it, is the sheer number

of parameters that need to be tuned to the particularities of the dataset on which

estimation is performed. Some parameters, like the IMU noise characteristics, are

considered to be constant across different environments and datasets, but others, like

the number of features detected on each image, the initial covariance settings, and

the IMU bias modeling might be different depending on the environment, the lighting

conditions and the particularities of the dataset, such as the frame rate of the camera.

Finally, the underestimation of the error by the update of the covariance matrix

is also a limitation, and it reduces our confidence in the provided estimates.

5.3. Potential Pitfalls

Vision-aided pose estimation algorithms that incorporate inertial measurements

are prone to a number of sources of error, which might initially seem as unimportant

implementation details, but they nevertheless have a significant impact on perfor-

mance. Assuming a correct implementation, the following are some reasons behind

the potential limited accuracy of this class of algorithms:

• Recorded images have motion blur.

• The environment does not have many salient features. For example, when

the robot is moving over sandy regions of the seabed.

• The robot is moving very fast (there is little overlap between consecutive

images).

• Gravity is not estimated accurately for the place where the experiments are

going to take place.

• The fixed camera-to-IMU transformation is not accurate.

• Camera calibration, and joint camera-IMU calibration is not performed

underwater. Accurate camera calibration underwater is of paramount im-

portance to the algorithm’s accuracy. This is because aside from the camera

79

5.5.4 OPPORTUNITIES FOR FUTURE WORK

lens, the glass of the camera’s underwater housing, the water medium it-

self, and in our particular case, the mirror, cause distortions that facilitate

calibration errors that are hard to model.

• Outlier rejection for both camera and IMU data is not done carefully.

• IMU and camera measurements are not time-synchronized.

• IMU measurements are very noisy (indicative of a low-end sensor, or a

magnetically noisy environment).

• IMU and camera noise characteristics (covariance matrices) are not modeled

correctly.

5.4. Opportunities For Future Work

There are many directions in which this work can be extended or improved. Some

of them are related to software implementation issues, others propose significant mod-

ifications to the algorithm, and a couple highlight possibilities for different algorithms

altogether.

5.4.1. Possibilities for speed-ups. One of the decisive issues in allowing

this algorithm, and more generally vision-aided pose estimation algorithms, to run in

real time is the speed at which feature tracking is performed from image to image. As

mentioned previously, our current implementation relies on SURF keypoints matched

by Approximate Nearest Neighbour matching, which is able to operate on images at

a rate of 1-3Hz on the robot’s vision CPU. The current implementation is therefore

not considered real-time if our goal is to process images at 10-15Hz. At this point

there are two different ideas that can be explored, one hardware-related, while the

other already exists in software.

The first idea involves designing an FPGA (Field Programmable Gate Array)

whose sole function will be the computation of SURF keypoints and descriptors given

an input image. Barfoot [9] followed this approach for the extraction of SIFT key-

points and reported a 7-fold speed-up in the feature detection process (from 1 second

80

5.5.4 OPPORTUNITIES FOR FUTURE WORK

on a Pentium-M to 0.15 seconds on the FPGA). Of course, this opens up a new chal-

lenge: correctly implementing SURF on a hardware description language. Recently,

progress has been made in this direction via FPGA-SURF [90], an open-source im-

plementation of the SURF detector and descriptor on a Xilinx FPGA. The authors

report processing rate of 10 frames per second for a 1024 × 768 camera, with 10W

power consumption. This would definitely open up the road for real-time operation

of the algorithm on the PC104 vision stack of the robot.

The second idea involves software and suggests tracking features from the FAST

detector that have high Shi-Tomasi filter response, in order to obtain relatively sta-

ble features at high speed. This approach has already been implemented in PTAM

(Parallel Tracking And Mapping) [48], and the processing rate of its feature tracking

module was reported to be 50 frames per second. Although PTAM was designed with

small, augmented reality workspaces in mind, careful outlier rejection can make its

feature detection module very fast and robust.

5.4.2. Bundle adjustment. Unlike the filtering paradigm, where the Mar-

kovian assumption allows errors to be propagated from the previous to the current

state, the principle behind bundle adjustment [93] is that the estimated state best ex-

plains the measurements that were obtained during a portion of the trajectory. More

formally, bundle adjustment is the process of estimating both the camera trajectory

and the 3D structure of the observed world, based on the feature trails that were

seen. This involves solving an optimization problem where the objective function is

a user-defined reprojection error, between the actual measurements and the expected

measurements based on the variable, hypothetical camera trajectory. In fact, since

this objective function involves quaternions for the representation of rotations, spe-

cialized numerical solvers have been developed to handle this minimization process,

such as g2o [50]. Numerical solutions of this problem require an initial estimate of

the solution, which in our case can be provided by the propagation step of the IMU.

Performing bundle adjustment globally, on the entire trajectory, is an expensive

operation, so in most cases bundle adjustment is done locally, on small portions of

81

5.5.5 FINAL REMARKS

the trajectory, without aiming for a globally consistent trajectory and 3D structure

estimate. PTAM itself follows this approach, and other work too (e.g. Sibley [83],

Kaess [45]). A possible advantage of bundle adjustment methods over the proposed

algorithm would be that they do not necessarily take into account the velocity of the

vehicle, and thus the possibility of a velocity error propagating forward in time and

causing the estimate to diverge is reduced.

Therefore, a potential direction for future work would be to integrate bundle

adjustment into the filter presented in this thesis, particularly on segments of the

robot’s trajectory that give rise to small camera frame baselines.

5.4.3. Unscented Kalman Filter. Another direction of work which we have

not explored but seems very promising is the replacement of the EKF framework by

an Unscented Kalman Filter (UKF). As mentioned in previous chapters, the UKF

does not perform linearization of the nonlinear state transition and sensor models,

which make it generally better in terms of accuracy compared to the EKF [96].

An interesting possibility would be to compare the UKF and the EKF in the same

simulation scenarios that we considered here to get a measure of the difference in

accuracy.

5.5. Final remarks

Performing underwater localization is a hard problem, however it is a challenge

that is worthwhile to take up not only because of the technical difficulties, but also

because of the potential effects it will have in the collection of data for marine biology.

Underwater robot localization will be an important enabler of the automation of

the exploration and monitoring of subsea ecosystems, processes that are currently

performed by individual marine biologists, after a few hours of diving every day. These

processes are tedious, very long, and give scientists what can at best be regarded as

a very isolated view of the health of the ocean. On land, we have realized the value

of collecting streams of data from our cities and environments a long time ago; it is

time to start exploring that direction for the underwater domain as well.

82

REFERENCES

[1] Motilal Agrawal, Kurt Konolige, and Morten Rufus Blas. CenSurE: center

surround extremas for realtime feature detection and matching. In ECCV (4),

pages 102–115, 2008.

[2] Guillem Alenya, Elisa Martnez, and Carme Torras. Fusing visual and inertial

sensing to recover robot ego-motion. Journal of Robotic Systems, 21(1):2332,

2004.

[3] K.J. Astrom. Introduction to Stochastic Control Theory. Dover Books on En-

gineering. Dover Publications, 2006.

[4] Simon Baker and Iain Matthews. Lucas-Kanade 20 years on: A unifying frame-

work: Part 1. Technical Report CMU-RI-TR-02-16, Robotics Institute, Pitts-

burgh, PA, July 2002.

[5] Simon Baker and Iain Matthews. Lucas-Kanade 20 years on: A unifying frame-

work: Part 1. Technical Report CMU-RI-TR-02-16, Robotics Institute, Pitts-

burgh, PA, July 2002.

[6] Itzhack Bar-itzhack. Optimum normalization of a computed quaternion of ro-

tation. IEEE Transactions on Aerospace and Electronic Systems, AES-7:401–

402, 1971.

[7] I.Y. Bar-Itzhack and Y. Oshman. Attitude determination from vector observa-

tions: Quaternion estimation. Aerospace and Electronic Systems, IEEE Trans-

actions on, AES-21(1):128 –136, jan. 1985.

REFERENCES

[8] I.Y. Bar-Itzhack and J.K. Thienel. On the singularity in the estimation of the

quaternion-of-rotation. In Guidance, Navigation, and Control Conference and

Exhibit, AIAA, Monterrey, CA, August 2002.

[9] T. D Barfoot. Online visual motion estimation using FastSLAM with SIFT fea-

tures. In Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ

International Conference on, pages 579 – 585, August 2005.

[10] Timothy Barfoot, James R. Forbes, and Paul T. Furgale. Pose estimation using

linearized rotations and quaternion algebra. Acta Astronautica, 2010.

[11] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust

features. In ECCV, page 404417, 2006.

[12] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust

features. In ECCV, page 404417, 2006.

[13] R. C. Bolles and M. A. Fischler. Random sample consensus: A paradigm for

model fitting with applications to image analysis and automated cartography.

Comm. of the ACM,, 24:381–395, 1981.

[14] A. Censi, L. Iocchi, and G. Grisetti. Scan matching in the hough domain. In

Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE

International Conference on, pages 2739 – 2744, April 2005.

[15] A.B. Chatfield. Fundamentals of high accuracy inertial navigation. AIAA,

2005.

[16] Olivia Min Yee Chiu. A stability and control system for a hexapod under-

water robot. Master’s thesis, Department of Mechanical Engineering, McGill

University, Montreal, Canada, 2008.

[17] Peter Corke. An inertial and visual sensing system for a small autonomous

helicopter. Journal of Robotic Systems, 21(2):4351, 2004.

84

REFERENCES

[18] Mark Cummins and Paul Newman. Highly scalable Appearance-Only SLAM

FAB-MAP 2.0. In Robotics Science and Systems (RSS), Seattle, USA, June

2009.

[19] Andrew Davison, Ian Reid, N. Molton, and O. Stasse. MonoSLAM: Real-Time

single camera SLAM. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 29(6):10521067, June 2007.

[20] Bar-Itzhack I. Deutschmann, J. and K. Galal. Quaternion normalization in

spacecraft attitude determination. In AIAA/AAS Astrodynamics Specialist

Conference, 1992.

[21] James Diebel. Representing attitude: Euler angles, unit quaternions, and ro-

tation vectors, 2006.

[22] David D. Diel, Paul DeBitetto, and Seth Teller. Epipolar constraints for

Vision-Aided inertial navigation. Proc. IEEE Motion and Video Computing,

pages 221–228, 2005.

[23] Gamini Dissanayake, Hugh F. Durrant-whyte, and Tim Bailey. A computa-

tionally efficient solution to the simultaneous localisation and map building

(slam) problem. In International Conference on Robotics and Automation,

pages 1009–1014, 2000.

[24] Gregory Dudek, Philippe Giguere, Chris Prahacs, Shane Saunderson, Junaed

Sattar, Luz-Abril Torres-Mendez, Michael Jenkin, Andrew German, Andrew

Hogue, Arlene Ripsman, Jim Zacher, Evangelos Milios, Hui Liu, Pifu Zhang,

Martin Buehler, and Christina Georgiades. Aqua: An amphibious autonomous

robot. IEEE Computer Magazine, 40(1):46–53, January 2007.

[25] Gregory Dudek and Michael R. M. Jenkin. Computational principles of mobile

robotics. Cambridge University Press, 2010.

[26] D. Eberly. Rotation representations and performance issues, 2008.

85

REFERENCES

[27] Ryan Eustice, Hanumant Singh, John Leonard, Matthew Walter, and Robert

Ballard. Visually navigating the RMS titanic with SLAM information filters.

In Robotics Science and Systems, June 2005.

[28] B. Ferris, D. Haehnel, and D. Fox. Gaussian processes for signal Strength-

Based location estimation. In Proceedings of Robotics: Science and Systems,

Philadelphia, USA, August 2006.

[29] Willow Garage. Robot operating system. http://www.ros.org.

[30] P. Gemeiner, P. Einramhof, and M. Vincze. Simultaneous motion and structure

estimation by fusion of inertial and vision data. The International Journal of

Robotics Research, 26(6):591, 2007.

[31] Christina Georgiades. Simulation and control of an underwater hexapod robot.

PhD thesis, McGill University, Montreal, Canada, 2005.

[32] F. Sebastian Grassia. Practical parameterization of rotations using the expo-

nential map. Journal of Graphics Tools, 3:29–48, 1998.

[33] Marco Grimm and Rolf-Rainer Grigat. Real-Time hybrid pose estimation from

vision and inertial data. Computer and Robot Vision, Canadian Conference,

0:480486, 2004.

[34] R. I Hartley and A. Zisserman. Multiple view geometry in computer vision.

pages 245 – 246. Cambridge University Press, ISBN: 0521540518, second edi-

tion, 2004.

[35] C. Hertzberg, R. Wagner, O. Birbach, T. Hammer, and U. Frese. Experiences

in building a visual slam system from open source components. In IEEE In-

ternational Conference on Robotics and Automation, Shanghai, China, April

2011.

[36] H. Hopf. Systeme symmetrischer bilinearformen und euklidische modelle der

projektiven raüme. Vjschr. naturf. Ges. Zurich, 85:165–177, 1940.

86

REFERENCES

[37] G. Huang, A. I. Mourikis, and S. I. Roumeliotis. Observability-based rules for

designing consistent EKF SLAM estimators. International Journal of Robotics

Research, 29(5):502–528, April 2010.

[38] G.P. Huang, A.I. Mourikis, and S.I. Roumeliotis. Genearalized analysis and

improvement of the consistency for ekf-based slam. 2008.

[39] S. Huang and G. Dissanayake. Convergence and consistency analysis for ex-

tended kalman filter based slam. Robotics, IEEE Transactions on, 23(5):1036–

1049, 2007.

[40] Andreas Huster, Stephen M. Rock, Stephen P. Boyd, and Oussama Khatib.

Relative Position Sensing by Fusing Monocular Vision and Inertial Rate Sen-

sors. 2003.

[41] J. Neira J. A. Castellanos and J. D. Tardós. In 5th IFAC Symp. on Intelligent

Autonomous Vehicles, IAV’04, Lisbon, Portugal, Lisbon, Portugal 2004.

[42] E. Jones and S. Soatto. Visual-Inertial navigation, mapping and localization:

A scalable Real-Time causal approach. International Journal of Robotics Re-

search, October 2010.

[43] S.J. Julier and J.J. LaViola. On kalman filtering with nonlinear equality con-

straints. Signal Processing, IEEE Transactions on, 55(6):2774 –2784, june

2007.

[44] S.J. Julier and J.K. Uhlmann. Simultaneous localisation and map building

using split covariance intersection. In Intelligent Robots and Systems, 2001.

Proceedings. 2001 IEEE/RSJ International Conference on, volume 3, pages

1257–1262. IEEE, 2001.

[45] M. Kaess, A. Ranganathan, and F. Dellaert. isam: Incremental smoothing and

mapping. Robotics, IEEE Transactions on, 24(6):1365–1378, 2008.

87

REFERENCES

[46] Jonathan Kelly and Gaurav S. Sukhatme. Visual-Inertial sensor fusion: Local-

ization, mapping and Sensor-to-Sensor Self-Calibration. International Journal

of Robotics Research, 30(1):5679, 2011.

[47] A. Kim and M.F. Golnaraghi. Initial calibration of an inertial measurement

unit using an optical position tracking system. In Position Location and Nav-

igation Symposium, 2004. PLANS 2004, pages 96–101, april 2004.

[48] Georg Klein and David Murray. Parallel tracking and mapping for small AR

workspaces. In Proc. Sixth IEEE and ACM International Symposium on Mixed

and Augmented Reality (ISMAR’07), Nara, Japan, November 2007.

[49] Kurt Konolige, Motilal Agrawal, and Joan Sol. Large scale visual odometry

for rough terrain. In Proc. International Symposium on Research in Robotics

(ISRR), November 2007.

[50] R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A

general framework for graph optimization. In IEEE International Conference

on Robotics and Automation, Shanghai, China, April 2011.

[51] A. M. Ladd, Kostas E. Bekris, G. Marceau, A. Rudys, L. E. Kavraki, and

D. S. Wallach. Using wireless ethernet for localization. In Proceedings of the

2002 IEEE/RJS International Conference on Intelligent Robots and Systems

(IROS 2002), volume 1, pages 402–408, Lausanne, Switzerland, 30 Sept. - 5

Oct 2002. IEEE Press, IEEE Press.

[52] Michael F. Land. Optics of the eyes of marine animals. In P. J. Herring, A. K.

Campbell, M. Whitfield, and L. Maddock, editors, Light and life in the sea,

page 149166. Cambridge University Press, Cambridge, UK, 1990.

[53] Jack Langelaan and Steve Rock. Navigation of small UAVs operating in forests.

In in Proc. AIAA Guidance, Navigation, and Control Conf, page 468473, 2004.

[54] E. J. Lefferts, F. L. Markley, and M. D. Shuster. Kalman filtering for spacecraft

attitude estimation. Journal of Guidance Control and Dynamics, 5:417–429,

1982.

88

REFERENCES

[55] Jorge Lobo and Jorge Dias. Inervis calibration instructions. http:

//www2.deec.uc.pt/˜jlobo/InerVis_WebIndex/InerVis_How_

To/InerVis_Toolbox_example1.html.

[56] Jorge Lobo and Jorge Dias. Relative pose calibration between visual and in-

ertial sensors. International Journal of Robotics Research, 26(6), 2007.

[57] David G Lowe. Distinctive image features from Scale-Invariant keypoints. Int.

J. Comput. Vision, 60:91110, November 2004.

[58] Feng Lu and E.E. Milios. Optimal global pose estimation for consistent sensor

data registration. In Proceedings of IEEE International Conference on Robotics

and Automation, volume 1, pages 93 –100 vol.1, May 1995.

[59] F. Landis Markley. Multiplicative vs. additive filtering for spacecraft attitude

determination. In 6th Cranfield Conference on Dynamics and Control of Sys-

tems and Structures in Space, pages 467–474, 2004.

[60] Agostino Martinelli. Closed-form solution for attitude and speed determina-

tion by fusing monocular vision and inertial sensor measurements. In IEEE

International Conference on Robotics and Automation, Shanghai, China, April

2011.

[61] Agostino Martinelli, Laurent Kneip, Stephan Weiss, Davide Scaramuzza, and

Roland Siegwart. Closed-form solution for absolute scale velocity determina-

tion combining inertial measurements and a single feature correspondence. In

IEEE International Conference on Robotics and Automation, Shanghai, China,

April 2011.

[62] Malika Meghjani and Gregory Dudek. Combining multi-robot exploration and

rendezvous. Computer and Robot Vision, Canadian Conference, 0:80–85, 2011.

[63] F.M. Mirzaei and S.I. Roumeliotis. A kalman filter-based algorithm for IMU-

Camera calibration: Observability analysis and performance evaluation. IEEE

Transactions on Robotics, 24(5):1143–1156, October 2008.

89

REFERENCES

[64] L. Montesano, J. Minguez, and L. Montano. Probabilistic scan matching for

motion estimation in unstructured environments. In Intelligent Robots and

Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on,

pages 3499 – 3504, August 2005.

[65] A. I. Mourikis and S. I. Roumeliotis. A multi-state constraint kalman filter

for vision-aided inertial navigation. In Proceedings of the IEEE International

Conference on Robotics and Automation, pages 3565–3572, Rome, Italy, April

2007.

[66] A. I. Mourikis and S. I. Roumeliotis. A multi-state constraint kalman filter

for vision-aided inertial navigation. In Proceedings of the IEEE International

Conference on Robotics and Automation, pages 3565–3572, Rome, Italy, April

2007.

[67] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with

automatic algorithm configuration. In International Conference on Computer

Vision Theory and Application VISSAPP’09), pages 331–340. INSTICC Press,

2009.

[68] Richard A. Newcombe and Andrew J. Davison. Live dense reconstruction with

a single moving camera. In CVPR, pages 1498–1505, 2010.

[69] David Nister, Oleg Naroditsky, and James Bergen. Visual odometry for ground

vehicle applications. Journal of Field Robotics, 23:2006, 2006.

[70] E. B Olson. Real-time correlative scan matching. In Robotics and Automation,

2009. ICRA ’09. IEEE International Conference on, pages 4387 –4393, May

2009.

[71] B. W Parkinson and S. W Gilbert. NAVSTAR: global positioning system, ten

years later. Proceedings of the IEEE, 71(10):1177 – 1186, October 1983.

[72] Nicolas Plamondon. Modeling and Control of a Biomimetic Underwater Ve-

hicle. PhD thesis, Department of Mechanical Engineering, McGill University,

Montreal, Canada, 2010.

90

REFERENCES

[73] H. Rehbinder and B. K Ghosh. Multi-rate fusion of visual and inertial data. In

Multisensor Fusion and Integration for Intelligent Systems, 2001. MFI 2001.

International Conference on, pages 97 – 102, 2001.

[74] Edward Rosten and Tom Drummond. Fusing points and lines for high per-

formance tracking. In IEEE International Conference on Computer Vision,

volume 2, page 15081511, October 2005.

[75] Junaed Sattar, Gregory Dudek, Olivia Chiu, Ioannis Rekleitis, Alec Mills,

Philippe Giguere, Nicolas Plamondon, Chris Prahacs, Yogesh Girdhar, Meyer

Nahon, and John-Paul Lobos. Enabling autonomous capabilities in underwater

robotics. In Proceedings of the IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS), pages 3628–3634, Nice, France, September

2008.

[76] Hanspeter Schaub and John L. Junkins. Analytical Mechanics of Space Sys-

tems. AIAA Education Series, Reston, VA, October 2003.

[77] Jianbo Shi and Carlo Tomasi. Good features to track. In 1994 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR’94), pages 593 – 600,

1994.

[78] Jianbo Shi and Carlo Tomasi. Good features to track. In 1994 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR’94), pages 593 – 600,

1994.

[79] M. D. Shuster. A survey of attitude representations. The Journal of the As-

tronautical Sciences, 41(4):439–517, 1993.

[80] M. D. Shuster. Constraint in attitude estimation part i: Constrained estima-

tion. The Journal of the Astronautical Sciences, 51(1):51–74, 2003.

[81] M. D. Shuster. Constraint in attitude estimation part ii: Unconstrained esti-

mation. The Journal of the Astronautical Sciences, 51(1):75–101, 2003.

91

REFERENCES

[82] M.D. Shuster. The quaternion in kalman filtering. In AAS/AIAA Astrodynam-

ics Conference, Victoria, BC, Canada, August 1993.

[83] G. Sibley, C. Mei, I. Reid, and P. Newman. Adaptive relative bundle adjust-

ment. In Proceedings of Robotics: Science and Systems, Seattle, USA, June

2009.

[84] Bruno Siciliano and Oussama Khatib, editors. Springer Handbook of Robotics.

Springer, 2008.

[85] Sajid Siddiqi, Gaurav S. Sukhatme, and Andrew Howard. Experiments in

Monte-Carlo localization using WiFi signal strength. In Proceedings of the In-

ternational Conference on Advanced Robotics, Coimbra, Portugal, July 2003.

[86] D. Simon and Tien Li Chia. Kalman filtering with state equality constraints.

Aerospace and Electronic Systems, IEEE Transactions on, 38(1):128 –136, jan

2002.

[87] Hauke Strasdat, J. M. M. Montiel, and Andrew J. Davison. Real-time monoc-

ular SLAM: why filter? In ICRA, pages 2657–2664, 2010.

[88] D. Strelow and S. Singh. Optimal motion estimation from visual and iner-

tial measurements. In Applications of Computer Vision, 2002. (WACV 2002).

Proceedings. Sixth IEEE Workshop on, pages 314 – 319, 2002.

[89] J. Stuelpnagel. On the parametrization of the three-dimensional rotation

group. SIAM review, 6(4):422–430, 1964.

[90] J. Svab, T. Krajnik, J.Faigl, and L. Preucil. FPGA-based speeded up robust

features. In 2009 IEEE International Conference on Technologies for Practical

Robot Applications 2009, November 2009.

[91] N. Trawny and S. I. Roumeliotis. Indirect kalman filter for 3D attitude esti-

mation. Technical Report 2005-002, University of Minnesota, Dept. of Comp.

Sci. and Eng.,, March 2005.

92

REFERENCES

[92] N. Trawny and S. I. Roumeliotis. Indirect kalman filter for 3D attitude esti-

mation. Technical Report 2005-002, University of Minnesota, Dept. of Comp.

Sci. and Eng.,, March 2005.

[93] Bill Triggs, Philip Mclauchlan, Richard Hartley, and Andrew Fitzgibbon. Bun-

dle adjustment a modern synthesis. In Vision Algorithms: Theory and Prac-

tice, LNCS, page 298375. Springer Verlag, 2000.

[94] A. Vedaldi, Hailin Jin, P. Favaro, and S. Soatto. KALMANSAC: robust filter-

ing by consensus. In Computer Vision, 2005. ICCV 2005. Tenth IEEE Inter-

national Conference on, volume 1, pages 633 – 640 Vol. 1, October 2005.

[95] K. Vickery. Acoustic positioning systems. a practical overview of current sys-

tems. In Autonomous Underwater Vehicles, 1998. AUV’98. Proceedings Of

The 1998 Workshop on, page 517, 1998.

[96] Eric A. Wan and Rudolph Van Der Merwe. The unscented kalman filter. In

Kalman Filtering and Neural Networks, page 221280. Wiley, 2001.

[97] B. P. Williams, N. H. Hudson, B. E. Tweddle, R. Brockers, and L. Matthies.

Feature and pose constrained visual aided inertial navigation for computation-

ally constrained aerial vehicles. In IEEE International Conference on Robotics

and Automation, Shanghai, China, April 2011.

[98] B. Woniak and J. Dera. Light absorption in sea water. Springer Verlag, 2007.

[99] Renato Zanetti, Manoranjan Majji, Robert H. Bishop, and Daniele Mortari.

Norm-constrained kalman filtering. Journal of Guidance Control and Dynam-

ics, 32:1458–1465, 2009.

93

APPENDIX A

A.1. Classical Rodriguez Parameters and Quaternions

crp2quat(s1, s2, s3) =
1√

1 + ssT
[s1 s2 s3 1] (A.1)

quat2crp(q1, q2, q3, q4) =
1

q4
[q1 q2 q3] (A.2)

A.2. Modified Rodriguez Parameters and Quaternions

mrp2quat(m1,m2,m3) =
1

1 + mmT

[
2m1 2m2 2m3 1−mmT

]
(A.3)

quat2mrp(q1, q2, q3, q4) =
1

1 + q4
[q1 q2 q3] (A.4)

A.3. Derivative of the IMU state error

In the following proofs we are going to make frequent use of the approximation R(q̃) '

I− bθ̃ × c and ba× cT = −ba× c

Lemma 1.

I
G

˙̃θ ' −bω̂ × cθ̃ − b̃g − ng (A.5)

Proof. Can be found in [91]. �

A.A.4 DERIVATIVE OF THE CONTINUOUS-TIME COVARIANCE MATRIX

Lemma 2.

G ˙̃vI ' −RT (IGq̂)(bα̂× cθ̃ + b̃a + na) (A.6)

Proof.

G ˙̃v = Gv̇− G ˙̂v

= RT (IGq)αm −RT (IGq)ba −RT (IGq)na −RT (IGq̂)α̂

= RT (IGq̂)RT (IGq̃)αm −RT (IGq̂)RT (IGq̃)ba −RT (IGq̂)RT (IGq̃)na −RT (IGq̂)α̂

= RT (IGq̂)(RT (IGq̃)− I)α̂−RT (IGq̂)RT (IGq̃)b̃a −RT (IGq̂)RT (IGq̃)na

' RT (IGq̂)bθ̃ × cα̂−RT (IGq̂)(I + bθ̃ × c)b̃a −RT (IGq̂)(I + bθ̃ × c)na

' −RT (IGq̂)bα̂× cθ̃ −RT (IGq̂)b̃a −RT (IGq̂)na

where we neglected the second-order error terms. �

A.4. Derivative of the continuous-time covariance matrix

˙̃XIMU = FX̃IMU +GnIMU is a stochastic differential equation. Assuming that X̃IMU

has zero mean

P̂(t+ h)− P̂(t) = E
[
X̃(t+ h)X̃(t+ h)T

]
− E

[
X̃(t)X̃(t)T

]
= E

[
{FX̃h+ G∆n}{FX̃h+ G∆n}T + X̃{FX̃h+ G∆n}T+

{FX̃h+ G∆n}X̃T
]

= o(h) + GE
[
∆n∆nT

]
GTh+ FE

[
X̃X̃

T
]
h+ E

[
X̃X̃

T
]

FTh

There are a couple of points worth emphasizing here: first, we have assumed that

X̃ is independent of n; second, notice this is a stochastic differential equation, so

X̃(t + h) = X̃(t) + (FX̃(t) + Gn)dt from ordinary calculus is not true. Instead,

results from the Ito calculus, or calculus of stochastic variables, are used here. In

95

A.A.6 COVARIANCE AUGMENTATION

particular, E
[
∆n∆nT

]
= E

[
nnT

]
h + o(h) is the one that enables this proof, and

can be found in more detail in [3].

A.5. IMU-Camera covariance propagation

The solution of the stochastic differential equation ˙̃XIMU = FX̃IMU + GnIMU in the

interval [tk, tk+1] is given by:

X̃IMU(tk+1) = Φ(tk+1; tk)X̃IMU(tk) +

∫ tk+1

tk

Φ(tk+1; s)Gn(s)ds

d

dt
Φ(t; tk) = FΦ(t; tk) with Φ(tk; tk) = I

Therefore

P̂ICk+1|k = cov(X̃IMU(tk+1), X̃CAM(tk))

= Φ(tk+1; tk)cov(X̃IMU(tk), X̃CAM(tk))

= Φ(tk+1; tk)P̂ICk|k

= exp(F(tk+1 − tk))P̂ICk|k

A.6. Covariance augmentation

We have

CN+1

G q = C
I q⊗ I

Gq

CN+1

G q̂ = C
I q⊗ I

Gq̂

So

CN+1

G q̃ =
CN+1

G q⊗ CN+1

G q̂−1

= C
I q⊗ I

Gq⊗ I
Gq̂−1 ⊗ C

I q−1

= C
I q⊗ I

Gq̃⊗ C
I q−1

96

A.A.6 COVARIANCE AUGMENTATION

Using the small-angle approximation for the error quaternions we have 1
2

CN+1

G θ̃

1

 ' C
I q⊗

 1
2
I
Gθ̃

1

⊗ C
I q−1

And, via the algebraic properties of quaternion multiplication (see [91]), we get: 1
2

CN+1

G θ̃

1

 '

 R(CI q) 0

0 1

 1
2
I
Gθ̃

1


which implies that cov(

CN+1

G θ̃) = R(CI q)cov(IGθ̃)RT (CI q). For the error in the camera’s

position we have the following

GpCN+1
= GpI + RT (IGq)IpC

Gp̂CN+1
= Gp̂I + RT (IGq̂)IpC

so the errors will satisfy

Gp̃CN+1
= Gp̃I + (RT (IGq)−RT (IGq̂))IpC

= Gp̃I + (RT (IGq̂)RT (IGq̃)−RT (IGq̂))IpC

= Gp̃I + RT (IGq̂)(RT (IGq̃)− I)IpC

' Gp̃I + RT (IGq̂)bIGθ̃ × cIpC

' Gp̃I −RT (IGq̂)bIpC × cIGθ̃

so we have

cov(Gp̃CN+1
) ' cov(Gp̃I)−RT (IGq̂)bIpC × ccov(IGθ̃,

Gp̃I)

−cov(Gp̃I ,
I
Gθ̃)(RT (IGq̂)bIpC × c)T +

RT (IGq̂)bIpC × ccov(IGθ̃)(RT (IGq̂)bIpC × c)T

97

A.A.7 LINEARIZATION OF VISION-BASED RESIDUAL

A.7. Linearization of vision-based residual

HCi
f =

[
02×15 02×6 . . . 02×6 JCi

f b
Cip̂f × c − JCi

f R(Ci
G q̂︸ ︷︷ ︸

Jacobian wrt camera frame i

) 02×6 . . .
]
2×(15+6N)

UCi
f = JCi

f R(Ci
G q̂)

JCi
f = ∇Ci p̂f

zCi
f =

1
CiẐf

 1 0 −
CiX̂f
Ci Ẑf

0 1 −
Ci Ŷf
Ci Ẑf



98

A.A.7 LINEARIZATION OF VISION-BASED RESIDUAL

Table A.1. Parameters used in the experimental section

Parameters Definition Value

σim See Eq. (2.63) 0.003

σdepth See Eq. (2.73) 0.2 m

σna See Eq. (2.38) 0.06 m/s2

σng See Eq. (2.38) 0.009 rad/s

σba See Eq. (2.38) 0.0001 m/s2

σbg See Eq. (2.38) 0.0001 rad/s

Initial uncertainty for I
Gq 2 degrees for pitch and roll

0 degrees for yaw

Initial uncertainty for bg 0.0001 rad/s

Initial uncertainty for GvI 0.01 m/s

Initial uncertainty for ba 0.003 m/s2

Initial uncertainty for GpI 0 m

Nmax Max camera frames 30

in the state

Feature detector SURF

Feature descriptor SURF

Feature matching ANN, with distance ratio 0.5

Features per image 1100

Outlier detection χ2 criterion, 95%

Gravity magnitude 9.75 m/s2

99

Document Log:

Manuscript Version 1.0

Typeset by AMS-LATEX — 30 November 2015

Florian Shkurti

McGill University, 3480 University St., Montréal (Québec) H3A 2A7, Canada,

Tel. : (514) 398-7071

E-mail address: florian@cim.mcgill.ca

Typeset by AMS-LATEX

