Reducing Supervisor Burden in DAgger by one class SVM

Huan Ling

2019-01-25

Huan Ling

Reducing Supervisor Burden in DAgger by on

2019-01-25 1 / 18

(Ross & Gordon & Bagnell, 2011): DAgger, or Dataset Aggregation

- · Imitation learning as interactive supervision
- · Aggregate training data from expert with test data from execution

Algorithm 1 DAgger

- 1: $D = \{(s, a)\}$ initial expert demonstrations
- 2: $\theta_1 \leftarrow$ train learner's policy parameters on D
- 3: for i = 1...N do
- 4: Execute learner's policy π_{θ_i} , get visited states $S_{\theta_i} = \{s_0, ..., s_T\}$
- 5: Query the expert at those states to get actions $A = \{a_0, ..., a_T\}$
- 6: Aggregate dataset $D = D \cup \{(s, a) \mid s \in S_{\theta_i}, a \in A\}$
- 7: Train learner's policy $\pi_{\theta_{i+1}}$ on dataset D

8: Return one of the policies π_{θ_i} that performs best on validation set

< ∃ > <

(Ross & Gordon & Bagnell, 2011): DAgger, or Dataset Aggregation

- · Imitation learning as interactive supervision
- · Aggregate training data from expert with test data from execution

Algorithm 1 DAgger

- 1: $D = \{(s, a)\}$ initial expert demonstrations
- 2: $\theta_1 \leftarrow$ train learner's policy parameters on D
- 3: for i = 1...N do
- 4: Execute learner's policy π_{θ_i} , get visited states $S_{\theta_i} = \{s_0, ..., s_T\}$
- 5: Query the expert at those states to get actions $A = \{a_0, ..., a_T\}$
- 6: Aggregate dataset $D = D \cup \{(s, a) \mid s \in S_{\theta_i}, a \in A\}$
- 7: Train learner's policy $\pi_{\theta_{i+1}}$ on dataset D
- 8: Return one of the policies π_{θ_i} that performs best on validation set

- Dagger is time-consuming and it requires human to annotate data for each state.
- Can we save some human annotations by algorithm?

A B < A B <</p>

< 67 ▶

- We are given training data $(x^{(i)}, t^{(i)})$.
- We look at classification, so $t^{(i)}$ will represent the class label.
- We use t = 1 for the positive and t = -1 for the negative class.

- Goal: Find classification boundary that leads to the largest margin (buffer) from points on both sides.
- Subset of vectors that support (determine boundary) are called the support vectors.

- Let dicision boundary to be ω^Tx + b = 0, so that ω perpendicular to decision boundary.
- Let x to be support vector, d_n is the distance from support vector to boundary.

• $d_n \frac{\omega}{||\omega||}$ is the vector perpendicular to decision boundary and has length d_n .

Huan Ling

Reducing Supervisor Burden in DAgger by on

2019-01-25 7 / 18

- $d_n \frac{\omega}{||\omega||}$ is the vector perpendicular to decision boundary and has length d_n .
- Vector $x + d_n \frac{\omega}{||\omega||}$ locates on decision boundary.

Huan Ling

- $d_n \frac{\omega}{||\omega||}$ is the vector perpendicular to decision boundary and has length d_n .
- Vector x + d_n ω/||ω|| locates on decision boundary.
 So ω^T(x + d_n ω/||ω||) + b = 0

• $d_n \frac{\omega}{||\omega||}$ is the vector perpendicular to decision boundary and has length d_n .

< ∃ > <

- $d_n \frac{\omega}{||\omega||}$ is the vector perpendicular to decision boundary and has length d_n .
- Vector $x + d_n \frac{\omega}{||\omega||}$ locates on decision boundary.

- d_n ^ω/_{||ω||}
 is the vector perpendicular to decision boundary and has
 length d_n.
- Vector $x + d_n \frac{\omega}{||\omega||}$ locates on decision boundary.

• So
$$\omega^{T}(x+d_{n}\frac{\omega}{||\omega||})+b=0$$

- d_n ^ω/_{||ω||}
 is the vector perpendicular to decision boundary and has
 length d_n.
- Vector $x + d_n \frac{\omega}{||\omega||}$ locates on decision boundary.

• So
$$\omega^T(x+d_n\frac{\omega}{||\omega||})+b=0$$

• Derive d_n we have, $d_n = \frac{\omega^T x + b}{||\omega||}$

- d_n ^ω/_{||ω||}
 is the vector perpendicular to decision boundary and has
 length d_n.
- Vector $x + d_n \frac{\omega}{||\omega||}$ locates on decision boundary.

• So
$$\omega^{\mathsf{T}}(x+d_n\frac{\omega}{||\omega||})+b=0$$

- Derive d_n we have, $d_n = \frac{\omega' x + b}{||\omega||}$
- ► We let $t_n \in \{-1, 1\}$ stands for label for current data x, then $d_n = \frac{t_n(\omega^T x + b)}{||\omega||}$

We can set $d_n = rac{1}{||w||}$ for the point x_n closest to the decision boundary, leading to the problem:

$$rac{1}{||w||} ext{ s.t. } t_n(w^Tx_n+b) \geq 1, ext{ for } n=1\dots N$$

Or equivalently:

$$rac{\minrac{1}{2}||w||^2}{ ext{s.t. }t_n(w^Tx_n+b)\geq 1, ext{ for }n=1\dots N}$$

Non-linear SVM

- We change $y(x) = \boldsymbol{\omega}^{T}(x) + b$ to $y(x) = \boldsymbol{\omega}^{T}\phi((x)) + b$
- $\phi()$ is called kernel function.

Two Class SVM Review, slack variables

• Introduce slack variables ξ_i

$$\begin{split} \min \frac{1}{2} ||\mathbf{w}||^2 + \lambda \sum_{i=1}^{N} \xi_i \\ \text{s.t} \quad \xi_i \geq 0; \quad \forall i \ t^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \geq 1 - \xi_i \end{split}$$

- Example x_i lies on wrong side of hyperplane then $\xi_i > 1$
- So $\sum_i \xi_i$ is the upper bounds of the number of training error.

- We want to separate all data from origin.
- We want to the decision boundary to be as far as possible to origin.
- ▶ The red line above is the ideal decision boundary we want.

- Why do we want one class SVM?
- One class SVM means all data in training set are in the same class.
- When a new data comes in, we know whether the data is worth labeling.

$$\min_{\boldsymbol{w}, b, \boldsymbol{\xi}, \rho} \quad \frac{1}{2} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{w} - \rho + \frac{1}{\nu l} \sum_{i=1}^{l} \xi_{i}$$

subject to $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_{i}) - \rho \geq -\xi_{i}$
 $\xi_{i} \geq 0, \ i = 1, \cdots, l$

Same as two class SVM, we add slack term v.

- The parameter v controls the penalty or slack term and is an upper bound on the fraction of outliers in traingin set.
- ln another word, when v = 0.1 then only 0.1 of training data will be claffified to wrong class.

$$\min_{\boldsymbol{w}, \boldsymbol{b}, \boldsymbol{\xi}, \rho} \quad \frac{1}{2} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{w} - \rho + \frac{1}{\nu l} \sum_{i=1}^{l} \xi_{i}$$

subject to $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_{i}) - \rho \geq -\xi_{i}$
 $\xi_{i} \geq 0, \ i = 1, \cdots, l$

- Same as two class SVM, we add slack term v.
- The parameter v controls the penalty or slack term and is an upper bound on the fraction of outliers in traingin set.
- In another word, when v = 0.1 then only 0.1 of training data will be claffified to wrong class.

$$\min_{\boldsymbol{w}, \boldsymbol{b}, \boldsymbol{\xi}, \rho} \quad \frac{1}{2} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{w} - \rho + \frac{1}{\nu l} \sum_{i=1}^{l} \xi_{i}$$

subject to $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_{i}) - \rho \geq -\xi_{i}$
 $\xi_{i} \geq 0, \ i = 1, \cdots, l$

- Same as two class SVM, we add slack term v.
- The parameter v controls the penalty or slack term and is an upper bound on the fraction of outliers in traingin set.
- In another word, when v = 0.1 then only 0.1 of training data will be claffified to wrong class.

- One class SVM means all data in training set are in the same class.
- When a new data comes in, we know whether the data is worth labeling.
- However, standard one class SVM doesn't have sense of different classes.

$$y_i = \begin{cases} 1 & : l(\pi_{\theta}(\mathbf{x}_i), \mathbf{u}_i) \leq \varepsilon \\ -1 & : l(\pi_{\theta}(\mathbf{x}_i), \mathbf{u}_i) > \varepsilon \end{cases}$$

Where as I is loss function, π_{θ} is current policy, ε is human defined threshold.

→ ∃ →

$$y_i = \left\{ egin{array}{cc} 1 & : l(\pi_{ heta}(\mathbf{x}_i), \mathbf{u}_i) \leq arepsilon \ -1 & : l(\pi_{ heta}(\mathbf{x}_i), \mathbf{u}_i) > arepsilon \end{array}
ight.$$

Where as I is loss function, π_{θ} is current policy, ε is human defined threshold.

▶ $D_s = \{\{x_i, u_i\} \in D_k, y_i = 1\}, D_r = \{\{x_i, u_i\} \in D_k, y_i = -1\}$

白マシューション

$$y_i = \left\{ egin{array}{cc} 1 & : l(\pi_{ heta}(\mathbf{x}_i), \mathbf{u}_i) \leq arepsilon \ -1 & : l(\pi_{ heta}(\mathbf{x}_i), \mathbf{u}_i) > arepsilon \end{array}
ight.$$

Where as I is loss function, π_{θ} is current policy, ε is human defined threshold.

- ▶ $D_s = \{\{x_i, u_i\} \in D_k, y_i = 1\}, D_r = \{\{x_i, u_i\} \in D_k, y_i = -1\}$
- ► A separate One-Class SVM is then trained on each set of states, and providing measures of both set, g_s and g_r.

$$y_i = \left\{ egin{array}{cc} 1 & : l(\pi_{ heta}(\mathbf{x}_i), \mathbf{u}_i) \leq arepsilon \ -1 & : l(\pi_{ heta}(\mathbf{x}_i), \mathbf{u}_i) > arepsilon \end{array}
ight.$$

Where as I is loss function, π_{θ} is current policy, ε is human defined threshold.

- ▶ $D_s = \{\{x_i, u_i\} \in D_k, y_i = 1\}, D_r = \{\{x_i, u_i\} \in D_k, y_i = -1\}$
- ► A separate One-Class SVM is then trained on each set of states, and providing measures of both set, g_s and g_r.
- So our decision function becomes:

$$g_{\sigma}(\mathbf{x}) = \begin{cases} 0 & : g_s(\mathbf{x}) == 1 \text{ and } g_r(\mathbf{x}) == -1 \\ -1 & : \text{ otherwise} \end{cases}$$

 Both SHIV and DAgger solve the minimization loss iterating two steps.

.∃ >

- Both SHIV and DAgger solve the minimization loss iterating two steps.
- **Step 1**: Compute a θ using the training data so far

- Both SHIV and DAgger solve the minimization loss iterating two steps.
- Step 1: Compute a θ using the training data so far
- Step 2: Execute the policy induced by the current θ, and ask for labels for the encountered states.

- Both SHIV and DAgger solve the minimization loss iterating two steps.
- **Step 1**: Compute a θ using the training data so far
- Step 2: Execute the policy induced by the current θ, and ask for labels for the encountered states.
- **DAgger**: Query supervisor for every new state.

 $D_{k+1} = \mathcal{D}_k \cup \{(\mathbf{x}_t, \tilde{\mathbf{u}}_t) || t \in \{0, \dots, T\}\}$

- Both SHIV and DAgger solve the minimization loss iterating two steps.
- **Step 1**: Compute a θ using the training data so far
- Step 2: Execute the policy induced by the current θ, and ask for labels for the encountered states.
- ▶ **DAgger**: Query supervisor for every new state. $D_{k+1} = \mathcal{D}_k \cup \{(\mathbf{x}_t, \tilde{\mathbf{u}}_t) || t \in \{0, ..., T\}\}$
- ▶ SHIV: Using One Class SVM to decide whether to ask a query. $D_{k+1} = D_k \cup \{(\mathbf{x}_t, \tilde{\mathbf{u}_t}) || t \in \{0, ..., T\}, g(\mathbf{x}_t) = -1\}$

白マシューション

