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Backgroud

» Definitions: Action space A and sample space S. [ is the set of all
policies. Also assume P(s'|s, a) is the dynamics model. In this paper,
mg denotes the expert policy.

» Imitation Learning: Learning to perform a task from expert
demonstrations without querying the expert while training.

» Behavioral cloning: Its success depends on large amounts of data.

» Inverse RL: The paper adopts the maximum causal entropy IRL
which fits a cost function ¢ with the following problem.

7 = argmin —H(w) + E.[c(s, a)]
wel

¢ = argmaxEr-[c(s, a)]) — Er.[c(s, a)]
ceC

where H(m) = E[— log w(a|s)] is the entropy of the policy.
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More on IRL

> The reason why we want to maximize the entropy is we want to make
the least claim of the model while fitting the data.

» IRL learns a cost function that prioritizes entire trajectories.

» It doesn't have compounding error which occurs when the only fits
single-timestep decisions, such as behavioral cloning.

» However, IRL is generally expensive because it requires reinforcement
learning in the inner loop.

» Learning a cost function doesn't tell the learner how to act (policy).

» We hope to build a new algorithm based on IRL which can lead to an
induced policy.
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Formulation

» We first study the policies found by RL on costs learned by IRL on
the largest possible set of cost functions C = {c : SXA — R}.

» Also need to define a convex cost function regularizer v : Rgx 4 — R,
which turns out to be important in this paper.

» Re-write the Eq. 1 as the following:
IRLy(7g) = argmax —i(c) + (min —H(7) + Ex[c(s, a)])
ceC mell
- EWE [C($7 a)]
» Define RL(c) = argmin, cn —H(7) + Ex[c(s, a)].

Let ¢ € IRLy(7mg). We are interested in characterizing the induced
policy RL(E).
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Derivations

> It is easier to characterize RL(C) if we transform optimization
problems over policies into convex problems.

» So the paper introduces an occupancy measure p; : SXA — R:

pr(s,a) = m(als) Y~ P(s = sln) (1)

t=0

It can be interpreted as the distribution of state-action pairs when
roll-out with policy .

» There is an one-to-one correspondence between policy and
occupancy measure. It also allows us to re-write the expected cost as

Ex[c(s,a)] = ) _ pa(s. a)c(s, a) (@)

Yeming Wen GAIL 2019-02-23 5/15



Derivations

» Lemma 1: If we define

Zpsalog sa/Zpsa (3)

then we have H(p) = H(~m,) and H(m) = H(py). So we can represent
the entropy of a policy 7 with the occupancy measure p;.

» Lemma 2: If we define,

L(m, c) = —H(7r) + Ex[c(s, a)]
L(p,c) = —H(p) +Zp(sa c(s, a)

then we have L(m,c) = L(py,c) and L(p,c) = L(7,,c). The Lemma
allows us to transform the problem from optimizing 7 to p.
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Convex Conjugate

» Given a function f, it can be represented by the supremum of all
affine functions that are majorized by f.

» For any given slope m, there may be many different constants b such
that the affine function (m, x) — b is majorized by f. We only need
the best such constant.

» That's what the convex conjugate f* does. Given a slope m, f*
returns the best constant b such that (m, x) — b is majorized by f.
Thus,

*(m) = sup(m, x) — f(x)

X

» Note that f** = f.
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Derivations

» By Lemma 2, if ¢ is a constant regularizer and ¢ € IRLy(7g) and
7 € RL(E), then pz = pr,.
» Furthermore, we can also get the main result of the paper

RLo IRLy(mg) = argmin —H(7) + ¥ (pr — prz) (4)
mell

where ¢* is the convex conjugate of 1), which is defined as

Yi(m)= sup mTx—1(x)
xERSXA

» It tells us that the v-regularized inverse RL seeks a policy whose
occupancy measure is close to the expert's as measured by the convex
function ™.

» A good imitation learning algorithm boils down to a good choice of
the regularizer .
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Occupancy Measure Matching

» As we showed previously, if 1 is a constant, then the resulting policy
would have the same occupancy measures with expert at all states
and actions.

» It is not practically useful because most of the occupancy measure of
the expert values are exactly zero, due to the limited expert samples.

» Thus, exact occupancy measure matching will force the learned policy
to never visit the unseen state-action pairs.

> If we restrict the class of cost function C to be convex and set the
regularizer 1) to be the indicator function of the set C. Then
optimization problem in (6) can be written as

min —H(m) + max Ex[c(s,a)] — Exz[c(s, a)] (5)
™ ce
which is a entropy-regularized apprenticeship learning problem.
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Apprenticeship Learning

» Policy gradient method can be used to update the parameterized
policy my to optimize the apprenticeship objective, Eq. 7.

Vo maxEr,[c(s, a)] = Er[c(s, )] = VolEr, [c"(s, 2)]

= Eﬂ'e [Vg log WQ(a‘S)QC* (57 a)]

where
c* =argmaxE,,[c(s,a)] — Er.[c(s, a)] (6)
ceC
Qc* (§7 5) = Eﬂg[C*(ga 5)|50 = §7 ap = 5] (7)

» Fit ¢/ as defined above. Analytical solution is feasible if C is
restricted to Convex or Linear cost classes.

» Given the ¢/, compute the policy gradient and take a TRPO step to
produce 7y, ;.
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GAIL

» Apprenticeship learning via TRPO is tractable in large environments
but is incapable of exactly matching occupancy measures without
careful tuning due to the restrictive cost classes C.

» Constant regularizer v leads to exact matching but is intractable in
large environments. Thus, GAIL is proposed to combine the best of

both methods.

where

Yeming Wen

Yea(c) = {

Erelg(c(s, 2))]
400

GAIL

if c<O

otherwise

if x<0

otherwise

2019-02-23 11 /15



GAIL

» The GAIL regularizer ¢ ga places low penalty on cost functions ¢ that
assign an amount of negative cost to expert state-action pairs; It
havily penalizes c if it assigns large cost to the expert.

> 1A is an average over expert data so it can adjust to arbitrary expert
datasets.

» In comparison, if ¥ is an indicator function (Apprenticeship Learning),
then it's always fixed.

> Another property of ¥ga is its convex conjugate ¢, (pr — pre) can
be derived in the following form:

o1, Erllog (D(s. )] + Excllog (1~ D(=2)] (@

» It can be interpreted to find a discriminator that distinguishes
trajectory between learned policy and expert policy. t
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GAIL

» Combining with the main result Eq. (6) in the paper,

RL o IRLy(mg) = argmin —H(7) + ¥ (pr — pre)
wel

The imitation learning problem is equivalent to find a sddle point
(m, D) of the expression

Er[log (D(s,a)] + Er[log (1 — D(s, a))] — AH(m) (9)

» In terms of implementation, we just need to fit a parameterized policy
mp with weights 6 and a discriminator network D,, : SX.A — (0,1)
with weights w.

» Update D,, with Adam and update my with TRPO iteratively.
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Algorithm

Algorithm 1 Generative adversarial imitation learning

1: Input: Expert trajectories Tg ~ 7, initial policy and discriminator parameters fy, wp
2: fori=0,1,2,... do

3:  Sample trajectories 7; ~ o,

4:  Update the discriminator parameters from w; to w;4, with the gradient

E,, [V log(Dy(s,a)] + B, [V log(1 — Dy (s,a))] an

5:  Take a policy step from #; to ;4 1, using the TRPO rule with cost function log(D.,, ., (s, a)).
Specifically, take a KI-constrained natural gradient step with

.. [Vologma(als)Q(s, a)] — AVe H (),

where (5, a) = E., [log(D., ., (s,a)) | so = 5,a0 = a

(18)

6: end for
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Performance (scaled)
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