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Backgroud

I Definitions: Action space A and sample space S. Π is the set of all
policies. Also assume P(s ′|s, a) is the dynamics model. In this paper,
πE denotes the expert policy.

I Imitation Learning: Learning to perform a task from expert
demonstrations without querying the expert while training.

I Behavioral cloning: Its success depends on large amounts of data.

I Inverse RL: The paper adopts the maximum causal entropy IRL
which fits a cost function c with the following problem.

π∗ = arg min
π∈Π

−H(π) + Eπ[c(s, a)]

c̃ = arg max
c∈C

Eπ∗ [c(s, a)])− EπE [c(s, a)]

where H(π) = Eπ[− log π(a|s)] is the entropy of the policy.
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More on IRL

I The reason why we want to maximize the entropy is we want to make
the least claim of the model while fitting the data.

I IRL learns a cost function that prioritizes entire trajectories.

I It doesn’t have compounding error which occurs when the only fits
single-timestep decisions, such as behavioral cloning.

I However, IRL is generally expensive because it requires reinforcement
learning in the inner loop.

I Learning a cost function doesn’t tell the learner how to act (policy).

I We hope to build a new algorithm based on IRL which can lead to an
induced policy.
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Formulation

I We first study the policies found by RL on costs learned by IRL on
the largest possible set of cost functions C = {c : SXA → R}.

I Also need to define a convex cost function regularizer ψ : RSXA → R,
which turns out to be important in this paper.

I Re-write the Eq. 1 as the following:

IRLψ(πE ) = arg max
c∈C

−ψ(c) + (min
π∈Π
−H(π) + Eπ[c(s, a)])

− EπE [c(s, a)]

I Define RL(c) = arg minπ∈Π−H(π) + Eπ[c(s, a)].
Let c̃ ∈ IRLψ(πE ). We are interested in characterizing the induced
policy RL(c̃).
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Derivations

I It is easier to characterize RL(c̃) if we transform optimization
problems over policies into convex problems.

I So the paper introduces an occupancy measure ρπ : SXA → R:

ρπ(s, a) = π(a|s)
∞∑
t=0

γyP(st = s|π) (1)

It can be interpreted as the distribution of state-action pairs when
roll-out with policy π.

I There is an one-to-one correspondence between policy and
occupancy measure. It also allows us to re-write the expected cost as

Eπ[c(s, a)] =
∑
s,a

ρπ(s, a)c(s, a) (2)
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Derivations

I Lemma 1: If we define

Ĥ(ρ) = −
∑
s,a

ρ(s, a) log (ρ(s, a)/
∑
a′

ρ(s, a′)) (3)

then we have Ĥ(ρ) = H(πρ) and H(π) = Ĥ(ρπ). So we can represent
the entropy of a policy π with the occupancy measure ρπ.

I Lemma 2: If we define,

L(π, c) = −H(π) + Eπ[c(s, a)]

L̂(ρ, c) = −Ĥ(ρ) +
∑
s,a

ρ(s, a)c(s, a)

then we have L(π, c) = L̂(ρπ, c) and L̂(ρ, c) = L(πρ, c). The Lemma
allows us to transform the problem from optimizing π to ρ.
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Convex Conjugate

I Given a function f , it can be represented by the supremum of all
affine functions that are majorized by f .

I For any given slope m, there may be many different constants b such
that the affine function 〈m, x〉 − b is majorized by f . We only need
the best such constant.

I That’s what the convex conjugate f ∗ does. Given a slope m, f ∗

returns the best constant b such that 〈m, x〉 − b is majorized by f .
Thus,

f ∗(m) = sup
x
〈m, x〉 − f (x)

I Note that f ∗∗ = f .
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Derivations

I By Lemma 2, if ψ is a constant regularizer and c̃ ∈ IRLψ(πE ) and
π̃ ∈ RL(c̃), then ρπ̃ = ρπE .

I Furthermore, we can also get the main result of the paper

RL ◦ IRLψ(πE ) = arg min
π∈Π

−H(π) + ψ∗(ρπ − ρπE ) (4)

where ψ∗ is the convex conjugate of ψ, which is defined as

ψ∗(m) = sup
x∈RSXA

mT x − ψ(x)

I It tells us that the ψ-regularized inverse RL seeks a policy whose
occupancy measure is close to the expert’s as measured by the convex
function ψ∗.

I A good imitation learning algorithm boils down to a good choice of
the regularizer ψ.
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Occupancy Measure Matching

I As we showed previously, if ψ is a constant, then the resulting policy
would have the same occupancy measures with expert at all states
and actions.

I It is not practically useful because most of the occupancy measure of
the expert values are exactly zero, due to the limited expert samples.

I Thus, exact occupancy measure matching will force the learned policy
to never visit the unseen state-action pairs.

I If we restrict the class of cost function C to be convex and set the
regularizer ψ to be the indicator function of the set C. Then
optimization problem in (6) can be written as

min
π
−H(π) + max

c∈C
Eπ[c(s, a)]− EπE [c(s, a)] (5)

which is a entropy-regularized apprenticeship learning problem.
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Apprenticeship Learning

I Policy gradient method can be used to update the parameterized
policy πθ to optimize the apprenticeship objective, Eq. 7.

∇θ max
c∈C

Eπθ [c(s, a)]− EπE [c(s, a)] = ∇θEπθ [c∗(s, a)]

= Eπθ [∇θ log πθ(a|s)Qc∗(s, a)]

where

c∗ = arg max
c∈C

Eπθ [c(s, a)]− EπE [c(s, a)] (6)

Qc∗(s̄, ā) = Eπθ [c∗(s̄, ā)|s0 = s̄, a0 = ā] (7)

I Fit c∗i as defined above. Analytical solution is feasible if C is
restricted to Convex or Linear cost classes.

I Given the c∗i , compute the policy gradient and take a TRPO step to
produce πθi+1

.
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GAIL

I Apprenticeship learning via TRPO is tractable in large environments
but is incapable of exactly matching occupancy measures without
careful tuning due to the restrictive cost classes C.

I Constant regularizer ψ leads to exact matching but is intractable in
large environments. Thus, GAIL is proposed to combine the best of
both methods.

ψGA(c) ,

{
EπE [g(c(s, a))] if c < 0

+∞ otherwise

where

g(x) =

{
−x − log (1− ex) if x < 0

+∞ otherwise
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GAIL

I The GAIL regularizer ψGA places low penalty on cost functions c that
assign an amount of negative cost to expert state-action pairs; It
havily penalizes c if it assigns large cost to the expert.

I ψGA is an average over expert data so it can adjust to arbitrary expert
datasets.

I In comparison, if ψ is an indicator function (Apprenticeship Learning),
then it’s always fixed.

I Another property of ψGA is its convex conjugate ψ∗GA(ρπ − ρπE ) can
be derived in the following form:

max
D∈(0,1)SXA

Eπ[log (D(s, a))] + EπE [log (1− D(s, a))] (8)

I It can be interpreted to find a discriminator that distinguishes
trajectory between learned policy and expert policy. t
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GAIL

I Combining with the main result Eq. (6) in the paper,

RL ◦ IRLψ(πE ) = arg min
π∈Π

−H(π) + ψ∗(ρπ − ρπE )

The imitation learning problem is equivalent to find a sddle point
(π,D) of the expression

Eπ[log (D(s, a)] + EπE [log (1− D(s, a))]− λH(π) (9)

I In terms of implementation, we just need to fit a parameterized policy
πθ with weights θ and a discriminator network Dw : SXA → (0, 1)
with weights w .

I Update Dw with Adam and update πθ with TRPO iteratively.
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Algorithm
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Results
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