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Motivation



Recap: GAIL
⚫A generator producing a policy 𝜋 competes with a discriminator 

distinguishing 𝜋 and the expert.
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Drawbacks of GAIL
⚫ In reality, expert demonstrations can show significant variability. 

⚫ The observations might have been sampled from different experts with 

different skills and habits.

⚫ External latent factors of variation are not explicitly captured by GAIL, 

but they can significantly affect the observed behaviors. 
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Modified GAIL
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Objective Function
⚫ GAIL

min
𝜋

max
𝐷∈(0,1)𝒮×𝒜

𝔼𝜋 𝑙𝑜𝑔𝐷 𝑠, 𝑎 + 𝔼𝜋𝐸 𝑙𝑜𝑔 1 − 𝐷 𝑠, 𝑎 − 𝜆𝐻(𝜋)

where 𝜋 is learner policy, and 𝜋𝐸 is expert policy. 

⚫ InfoGAIL

• Discriminator: same with GAIL

• Generator: simply introducing latent factor c into 𝜋 → 𝜋 𝑎 𝑠, 𝑐
However, applying GAIL to 𝜋 𝑎 𝑠, 𝑐 could simply ignore c and fail to 

separate different expert behaviors → adding more constraints over c



Constraints over Latent Features
⚫ There should be high mutual information between the latent factor c and 

learner trajectory 𝜏. 
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⚫ Maximizing mutual information 𝐼(𝑐; 𝜏)
→ hard to maximize directly as it requires the posterior 𝑃(𝑐|𝜏)
→ using 𝑄(𝑐|𝜏) to estimate 𝑃(𝑐|𝜏)



Constraints over Latent Features
⚫ Introducing the lower bound 𝐿𝐼(𝜋, 𝑄) of  𝐼 𝑐; 𝜏
𝐼 𝑐; 𝜏
= 𝐻 𝑐 − 𝐻 𝑐 𝜏

= 𝔼𝑎~𝜋(∙|𝑠,𝑐) 𝔼𝑐′~𝑃 𝑐 𝜏 𝑙𝑜𝑔𝑃 𝑐′ 𝜏 + 𝐻 𝑐

= 𝔼𝑎~𝜋(∙|𝑠,𝑐) 𝐷𝐾𝐿 𝑃 ∙ 𝜏 ∥ 𝑄 ∙ 𝜏 + 𝔼𝑐′~𝑃 𝑐 𝜏 𝑙𝑜𝑔𝑄 𝑐′ 𝜏 + 𝐻 𝑐

≥ 𝔼𝑎~𝜋 ∙ 𝑠, 𝑐 𝔼𝑐′~𝑃 𝑐 𝜏 𝑙𝑜𝑔𝑄 𝑐′ 𝜏 + 𝐻 𝑐

= 𝔼𝑐~𝑃 𝑐 ,𝑎~𝜋 ∙ 𝑠, 𝑐 𝑙𝑜𝑔𝑄 𝑐 𝜏 + 𝐻 𝑐

= 𝐿𝐼(𝜋, 𝑄)



Constraints over Latent Features
⚫ There should be high mutual information between the latent factor c and 

learner trajectory 𝜏. 

⚫ Maximizing mutual information 𝐼(𝑐; 𝜏)
→ hard to maximize directly as it requires the posterior 𝑃(𝑐|𝜏)
→ using 𝑄(𝑐|𝜏) to estimate 𝑃(𝑐|𝜏)

⚫ Maximizing 𝐼(𝑐; 𝜏) through maximize the lower bound 𝐿𝐼(𝜋, 𝑄)



Objective Function
⚫ GAIL

min
𝜋

max
𝐷∈(0,1)𝒮×𝒜

𝔼𝜋 𝑙𝑜𝑔𝐷 𝑠, 𝑎 + 𝔼𝜋𝐸 log 1 − 𝐷 𝑠, 𝑎 − 𝜆𝐻(𝜋)

where 𝜋 is learner policy, and 𝜋𝐸 is expert policy. 

⚫ InfoGAIL

min
𝜋,𝑄

max
𝐷

𝔼𝜋 𝑙𝑜𝑔𝐷 𝑠, 𝑎 + 𝔼𝜋𝐸 log 1 − 𝐷 𝑠, 𝑎 − 𝜆1𝐿𝐼 𝜋, 𝑄 − 𝜆2𝐻(𝜋)

where 𝜆1 > 0 and 𝜆2 > 0.
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Additional Optimization



Reward Augmentation
⚫ If the expert is performing sub-optimally, then any policy trained under the 

recovered rewards will be also suboptimal.

⚫ Reward augmentation: providing additional incentives to incorporate 

prior knowledge to the agent without interfering with the imitation 

learning process.

→ specifying a surrogate state-based reward 𝜼 𝝅𝜽 = 𝔼𝒔~𝝅𝜽[𝒓(𝒔)] that 

reflects our bias over the desired agent’s behavior. 

min
𝜃,𝜓

max
𝜔

𝔼𝜋𝜃 𝑙𝑜𝑔𝐷𝜔 𝑠, 𝑎 + 𝔼𝜋𝐸 log 1 − 𝐷𝜔 𝑠, 𝑎 − 𝜆0𝜂(𝜋𝜃 ) − 𝜆1𝐿𝐼 𝜋𝜃 , 𝑄𝜓 − 𝜆2𝐻(𝜋𝜃)

where 𝜆0 > 0.



Improved Optimization
⚫ The traditional GAN objective suffers from vanishing gradient and mode 

collapse problems. 

⚫ Vanishing gradient
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Improved Optimization
⚫ The traditional GAN objective suffers from vanishing gradient and mode 

collapse problems. 

⚫ Mode collapse: generator tends to produce the same type of data

→ generator yields the same G(z) for different z



Improved Optimization
⚫ The traditional GAN objective suffers from vanishing gradient and mode 

collapse problems. 
→ using the Wasserstein GAN (WGAN)

min
𝜃,𝜓

max
𝜔

𝔼𝜋𝜃 𝐷𝜔 𝑠, 𝑎 − 𝔼𝜋𝐸[𝐷𝜔 𝑠, 𝑎 ] − 𝜆0𝜂(𝜋𝜃 ) − 𝜆1𝐿𝐼 𝜋𝜃, 𝑄𝜓 − 𝜆2𝐻(𝜋𝜃)





Experiments



Learning to Distinguish Trajectories
⚫ The observations at time t are positions from t − 4 to t.

⚫ The latent code is a one-hot encoded vector with 3 dimensions and 
a uniform prior. 



Self-driving car in the TORCS Environment

⚫ The demonstrations collected by manually driving

⚫ Three-dimensional continuous action composed of steering, acceleration, and 

braking

⚫ Raw visual inputs as the only external inputs for the state

⚫Auxiliary information as internal input, including velocity at time t, actions at 

time t − 1 and t − 2, and damage of the car

⚫ Pre-trained ResNet on ImageNet





Performance
⚫ Turn

[0, 1] corresponds to using the inside lane (blue lines), while [1, 0] 
corresponds to the outside lane (red lines).



Performance
⚫ Pass

[0, 1] corresponds to passing from right (red lines), while [1, 0] corresponds 
to passing from left (blue lines).
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Performance
⚫ Classification accuracies of 𝑄(𝑐|𝜏)

⚫ Reward augmentation encouraging the car to drive faster





Q&A


