
Neural Programmer-
Interpreters

By Scott Reed & Nando de Freitas

Presenter: Zeqi Li



Motivation

Why do we learn and use 

machine learning?



Motivation

Consider the problem of teaching a machine to do some 
particular task automatically

Task could be as simple as adding numbers or as difficult as 
driving a car



Motivation

Neural Programmer-Interpreters (NPI) is an attempt to use neural 
methods to train machines to carry out simple tasks based on a small 
amount of training data.



Recurrent neural network (RNN)

• RNN is a neural network with feedback
• Hidden state is to capture history information and current state of 

the network



Long Short Term Memory (LSTM)

• LSTM is a special kind of RNN

• Gates are used to control information 
flow. Just like a valve



Model

• The NPI core is a LSTM network that learns to represent and execute 
programs given their execution traces



NPI core module 



Algorithm - inference

(1)

(6)

(2)

(4) (5)

(1): 𝑀𝑝𝑟𝑜𝑔 and 𝑀𝑘𝑒𝑦 are memory storing program embeddings and program keys
(2): 𝑓𝑒𝑛𝑐 is a domain-specific encoder (for different tasks, have different encoders)
(3): 𝑓𝑒𝑛𝑑 is to calculate the probability of finishing the program
(4): 𝑓𝑝𝑟𝑜𝑔 is to retrieve the next program key from memory

(5): 𝑓𝑎𝑟𝑔 is to return the next program’s arguments

(6): (𝑀𝑗,:
𝑘𝑒𝑦

)𝑇𝑘 is to measure cosine similarity 

(7): 𝑓env is a domain-specific transition mapping

(3)

(7)



Algorithm - inference

Line 3: 𝑀𝑝𝑟𝑜𝑔 and 𝑀𝑘𝑒𝑦 are memory banks to store program embeddings and 
program keys



Algorithm - inference

Line 7: (𝑀𝑗,:
𝑘𝑒𝑦

)𝑇𝑘 is directly measurement for cosine similarity



Training

Directly maximize the probability of the correct execution trace output 
𝞷𝑜𝑢𝑡 conditioned on 𝞷𝑖𝑛𝑝:

𝜃∗ = 𝑎𝑟𝑔max
𝜃

෍

(𝞷𝑖𝑛𝑝,𝞷𝑜𝑢𝑡)

𝑙𝑜𝑔𝑃(𝞷𝑜𝑢𝑡|𝞷𝑖𝑛𝑝, 𝜃)

Then we can just run gradient ascent to optimize it



Tasks

• Addition
• Teach the model the standard grade school algorithm of adding 2 base-10 

numbers 

• Sorting
• Teach the model bubble sorting to sort an array of numbers in ascending 

order

• Canonicalizing 3D models
• Teach the model to generate a trajectory of actions that delivers the camera 

to the target view, e.g, frontal pose at a 15° elevation



Adding numbers together



Addition demo



Bubble sort



Sorting demo



Canonicalizing 3D models



Canonicalizing demo



Experiments

• Data Efficiency

• Generalization

• Learning new programs with a fixed NPI cores



Data Efficiency - Sorting

• Seq2Seq LSTM and NPI used the 
same number of layers and hidden 
units.

• Trained on length up to 20 arrays 
of single-digit numbers.

• NPI benefits from mining multiple 
subprogram examples per sorting 
instance, and additional 
parameters of the program 
memory.



Generalization - Sorting

• For each length up to 20, we 
provided 64 example bubble 
sort traces, for a total of 
1216 examples.

• Then, we evaluated whether 
the network can learn to 
sort arrays beyond length 20



Generalization - Adding

• NPI trained on 32 
examples for sequence 
length up to 20

• s2s-easy trained on twice as 
many examples as NPI 
(purple curve)

• s2s-stack trained on 16 
times more examples than 
NPI (orange curve)



Generalization - Adding

• NPI trained on 32 
examples for sequence 
length up to 20

• s2s-easy trained on twice as 
many examples as NPI 
(purple curve)

• s2s-stack trained on 16 
times more examples than 
NPI (orange curve)



Learning New Programs with a Fixed NPI Core

• Toy example: maximum-finding in an array

• Simple (not optimal) way: call BUBBLESORT and then take the right-
most element of the array. Two new programs:
• RJMP: Move all pointers to the rightmost position in the array by repeatedly 

calling RSHIFT program

• MAX: Call BUBBLESORT and then RJMP

• Expand program memory by adding 2 slots. Then learn by 
backpropagation with the NPI core and all other parameters fixed.



Learning New Programs with a Fixed NPI Core

Protocol:

• Randomly initialize new program vectors in memory

• Freeze core and other program vectors

• Backpropagate gradients to new program vectors

Only the memory slots of 
the new program are 
updated! 
All other weights are 
fixed!



Quantitative Results

• Numbers are per-sequence % accuracy
• + Max: indicates performance after addition of MAX program to 

memory
• “unseen” uses a test set with disjoint car models from the training 

set



Thanks!

Any questions and comments?

































TACO: Learning Task Decomposition via Temporal 
Alignment for Control

Kyriacos Shiarlis, Markus Wulfmeier, Sasha Salter, Shimon Whiteson, Ingmar Posner

Presented by: Zihang Fu



Motivation – Block Stacking Task

● Complex tasks can often be 

broken down into simpler sub-

tasks

● Most Learning from 

Demonstration (LfD) algorithms 

can only learn a single policy for 

the whole task

● Resulting in more complex 

policies, and also less reusable



Modular LfD

● Modelling the task as a composition of sub-tasks

● Reusable sub-policies (modules) are learned for each sub-task.

● Sub-policies are easier to learn and can be composed in different ways 

to execute new tasks.

● Enabling zero-shot imitation.

Key approach: provide the learner with additional information about the 

demonstration



TACO: Temporal Alignment for Control

● Partly supervised
● Domain agnostic
● Demonstration is augmented by task sketches - a sequence of sub-tasks 

that occur within the demonstration

𝛕 = (b1, b2, . . . , bL),

● Simultaneously aligns the sketches with the observed demonstrations 
and learns the required sub-policies



Example: Block stacking task
Augmented action space A+ := A ∪ aSTOP



Problem

How to align task-sketches with the demonstration?

Solution: Borrow temporal sequence alignment techniques from speech 
recognition!



TACO: Temporal Alignment for Control

𝛕 = (b1, b2, . . . , bL),

Input sequence ρ with length T

A path ζ = (ζ1, ζ2, ..., ζT ) is a sequence of sub-

tasks of the same length as the input sequence 

ρ, describing the active sub-task ζt at every 

time-step

ZT ,𝛕 is the set of all possible paths of length T for 

a task sketch 𝛕

Eg. T = 6, 𝛕 = (b1, b2, b3), ζ = (b1, b1, b2, b3, b3, b3)



TACO: Temporal Alignment for Control

Objective: Maximise the joint log likelihood of the task sequence and the 
actions conditioned on the states

p(ζ|sρ) is the product of the stop, aSTOP , and nonstop, āSTOP, probabilities associated 
with any given path.

Eg. T = 4, s⍴ = (s0, s1, s2, s3), 𝛕 = (b1, b2), ζ = (b1, b1, b2, b2)

p(ζ|sρ) = πb1(non-stop) * πb1(stop) * πb2(non-stop) * πb2(stop)



TACO: Temporal Alignment for Control

Problem: Impossible to compute all paths ζ in ZT ,tau for long sequence

Solution: Dynamic Programming

The (joint) likelihood of a being at sub-task l at time t can be formulated in 
terms of forward variables: 



TACO: Temporal Alignment for Control

Training: Maximize ⍺T(L) over θ



Experiments: Nav-World

Setup:
● The agent (blue) receives a route as 

a task sketch.
● 𝛕 = (black, green, yellow, red)
● State space: (x, y) distance from 

each of the destination points
● Action space: (vx, vy) - the velocity

Training:
● Provided with state-action 

trajectories ⍴ and the task sketch.
● At the end of learning, the agent 

learns four sub-policies

Test:
● Given an unseen task sketch.
● Considered successful if the agent 

visits all destinations in the correct 
order



Experiments: Nav-World

Success Rate Alignment Accuracy



Experiments: Dial Domain



Summary: TACO - Temporal Alignment for Control

● Modular LfD

● Weak supervision - task sketch

● Optimising the sub-policies over a distribution of possible alignments



Future Work & Limitation

Limitation: 

● Sub-tasks in the task sketch has to be placed in the correct order

Future work: 

● Task sketches are dissimilar to natural human communication. 
Combination of TACO with architectures that can handle natural 
language.

● Hierarchical tasks decomposition.




































