Neural Programmer-
Interpreters

By Scott Reed & Nando de Freitas

Presenter: Zeqi Li

Motivation

Why do we learn and use
machine learning?

Motivation

Consider the problem of teaching a machine to do some
particular task automatically

Task could be as simple as adding numbers or as difficult as
driving a car

Motivation

Neural Programmer-Interpreters (NPI) is an attempt to use neural
methods to train machines to carry out simple tasks based on a small

amount of training data.

Recurrent neural network (RNN)

D, @ ()

L»l — —b-l. >

1
b 3 b b4

* RNN is a neural network with feedback
* Hidden state is to capture history information and current state of
the network

Long Short Term Memory (LSTM)

 LSTM is a special kind of RNN

e Gates are used to control information
flow. Just like a valve

Model

* The NPI core is a LSTM network that learns to represent and execute
programs given their execution traces

Traces: fénp {et, 14, a} fo’t : {it—|—13 at—i—la""t}

NS/

environment program program
observation indices args

return bit

NP| core module

NPI inference

Algorithm - inference

Algorithm 1 Neural programming inference

I: Inputs: Environment observation e, program id 7, arguments a, stop threshold o

2: function RUN(7, a)

3 h < 0,7« 0,p <« MP=9 > Init LSTM and return probability.

4 while » < a do |

5: s 4 fene(e,a)?h < fistm(s.p.h) > Feed-forward NPI one step.

6: r4— j’md(;’?)(?)ﬁ- < fprog(h Yag fﬂ_m(hj(s)

7 ig 4— arg max (M J}.‘_:EE’)T,#(Q > Decide the next program to run.
j=1..N

8: if i == ACT then ¢ + feny(e.p.a)” > Update the environment based on ACT.

0: else RUN(is, as) > Run subprogram io with arguments aq

(1): MP7T°9 and M*€Y are memory storing program embeddings and program keys
(2): fenc is @ domain-specific encoder (for different tasks, have different encoders)
(3): fong is to calculate the probability of finishing the program

(4): fprog is to retrieve the next program key from memory

(5): farg is to return the next program’s arguments
(6): (M]’-{:ey)Tk is to measure cosine similarity
(7): fenv is @ domain-specific transition mapping

Algorithm - inference

Algorithm 1 Neural programming inference

I: Inputs: Environment observation e, program id 7, arguments a, stop threshold a
2: function RUN(7, a)
3 h<0,7<0,p< MP™ > Init LSTM and return probability.

Line 3: MP"°9 and M"€Y are memory banks to store program embeddings and
program keys

Algorithm - inference

Algorithm 1 Neural programming inference
Inputs: Environment observation e, program id ¢, arguments a, stop threshold o

1:

2: function RUN(7, a)

3 h<0,7<0,p< MP™ > Init LSTM and return probability.
4 while » < a do |

5: s < fencle,a), h < fistm(s,p,h) > Feed-forward NPI one step.
6: r 4 fend(h), k < fprog(h),aa < farg(R)

7 ig 4— arg max (M j}.‘__:ey)Tk > Decide the next program to run.

j=1..N

Line 7: (le:ey)Tk is directly measurement for cosine similarity

Training

Directly maximize the probability of the correct execution trace output
Eout conditioned on §P:

H*Zargméax Z logP (§°UL|EP, 9)

(finp,fout)

Then we can just run gradient ascent to optimize it

Tasks

e Addition

* Teach the model the standard grade school algorithm of adding 2 base-10
numbers

* Sorting

* Teach the model bubble sorting to sort an array of numbers in ascending
order

e Canonicalizing 3D models

* Teach the model to generate a trajectory of actions that delivers the camera
to the target view, e.g, frontal pose at a 15 elevation

Adding numbers together

NPI inference Generated commands

ADD

Output program
Addition scratch pad ﬁ
e Previous
—4M4~8~0—2_8»3~8_4;—§_: NPI state:>

+ 392840905 o

— ﬁ

Next
NPI state

t

[

h
: ;E | ‘Input program
— — * Environment
DD

— = observation A

Addition demo

NPI inference Generated commands

ADD

Output program
Addition scratch pad ﬁ

—————— N
Previous ore
*
A %N 2 7 2T R A 9 NPlstate:>

:__;,|i-_;,f_,___.,3__9._.2.,As_.4_~9._.o___s;gg_.

|
..

Next

l[: NPI state

ht
j‘ i ﬁnput program
ADD

L
* . Environment

observation

Bubble sort

Input array NPI inference Generated commands

' I I Output program ﬁ

Previous ,:J‘ > NS h :: >Next
NPI state NPI state

t
j‘ i | ‘ Input program
Environment

observation BUBBLESORT

BUBBLESORT

*
*
*

|

Sorting demo

Input array NPI inference Generated commands
BUBBLESORT
I Output program T\
I i I ~ulll I i I N
—are i B Mext
* NP state! > NET state
*
[= / || Input pregram

Environment

observation BUBBLESORT

Canonicalizing 3D models

Car rendering NPI inference Generated commands

GOTO 1 2
Output program

oo — =

NPI state

[j i | ‘ Input program
Environment

observation GOTO 1 2

Next
NPI state

Canonicalizing demo

Car rendering NPI inference Generated commands

Output program ﬁ

Previous::> h
NPI state : t : >

j‘ i l ‘ Input program
Environment

observation GOTO 1 2

GOTO 1 2

Next
NPI state

[

Experiments

* Data Efficiency
* Generalization

* Learning new programs with a fixed NPI cores

Data Efficiency - Sorting

Sorting per-sequence accuracy vs. # training examples
100 *

ad

0 —i 1 A——h A A _
1 p. d] 16 32 Bd 128 256 512 1024 2048

Training examples
—— SeqlSeq -—e— NP

* Seg2Seq LSTM and NPI used the
same number of layers and hidden
units.

* Trained on length up to 20 arrays
of single-digit numbers.

* NPI benefits from mining multiple
subprogram examples per sorting
instance, and additional
parameters of the program
memory.

Generalization - Sorting

Sorting per-sequence accuracy vs sequence length
o

S 10 1 20 25 30 3IS *ﬂéﬁr‘*f‘

Sequence length
—&— Seq2Seq —e— NPI

* For each length up to 20, we
provided 64 example bubble
sort traces, for a total of
1216 examples.

 Then, we evaluated whether
the network can learn to
sort arrays beyond length 20

Generalization - Adding

Addition Praﬂonm vs Seq2Seq

100.0% g

8- NFI@32 per-
sequence

75 0% per-character

828 easy

—&— S2S-easy@32

50.0% per-sequence
-8 S25-easy@bd
per-sequence

25.0%

0.0%

100 1000
Test sequence length

§28-stack@32

AQS—STack@M 2

 NPI trained on 32

examples for sequence
length up to 20

* s2s-easy trained on twice as
many examples as NPI
(purple curve)

e s2s-stack trained on 16

times more examples than
NPI (curve)

Generalization - Adding

1008

75.0%

50.0%

25.0%

0.0%

{dm Malizmn:l\MS SﬁSeq_ — ~—y, NPI

—wl@ﬂ per-

- sequence
—8— S52S-stack@32
per-character

per-character
—&— S525-easy@32
per-sequence
—8- 525-easy@b4
per-sequence

10

100
Test sequence length

1000

525-stack@512

* NPI trained on 32
examples for sequence
length up to 20

* s2s-easy trained on twice as
many examples as NPI
(purple curve)

e s2s-stack trained on 16
times more examples than
NPI (curve)

Learning New Programs with a Fixed NP| Core

* Toy example: maximum-finding in an array

* Simple (not optimal) way: call BUBBLESORT and then take the right-
most element of the array. Two new programs:

 RIMP: Move all pointers to the rightmost position in the array by repeatedly
calling RSHIFT program

* MAX: Call BUBBLESORT and then RIMP

* Expand program memory by adding 2 slots. Then learn by
backpropagation with the NPI core and all other parameters fixed.

Learning New Programs with a Fixed NP| Core

Only the memory slots of

Mkey Mprog the new program are
e e
| 4 | RJMP updated!
Frssslannnnn s All other weights are
' 5 ' MAX fixed!

1

Protocol:
* Randomly initialize new program vectors in memory

* Freeze core and other program vectors
* Backpropagate gradients to new program vectors

Quantitative Results

Task Single | Multi | + Max
Addition 100.0 | 97.0 97.0
Sorting 100.0 | 100.0 | 100.0

Canon. seen car 89.5 01.4 014
Canon. unseen 88.7 89.9 89.9

Maximum - - 100.0

* Numbers are per-sequence % accuracy
* + Max: indicates performance after addition of MAX program to

memory
* “unseen” uses a test set with disjoint car models from the training

set

Thanks!

Any gquestions and comments?

Neural Task Programming: Learning to
Generalize Across Hierarchical Tasks

Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg,

Li Fei-Fei, Silvio Savarese

Presented by Angran Li
February 8, 2019

How the Algorithm works?

Task Demonstration

Env. Task Final State

Robot APl State obs.

NTP [=> Task-Conditional
Policy

~ = Task(i)= ~

—

= Task Demonstration: state trajectory, first/third-person video
demonstrations, or a list of language instructions.

= Task-Conditional Policy: a neural program.

= Using callable primitive actions to interact with the environment.

How the Algorithm works?

|l
Wy

ﬁi.,

Env. Observation Input Task Spec. -4 I

Pi .+ block_stacking EOP: False

P_. pick_and_place Qutput Task Spec.

Env. Observation Input Task Spec. k

—*| P, :pick_and_place EOP: False B et e o i e il 0 f

|

P pick Output Task Spec. : f
I
I

L Env. Observation Input Task Spec. <@ | Env. Observation Input Task Spec.
P, pick EOP: False

\

P, pick EOP: True -

Po .+ move_to Args: block_E * = | P, 9rip Args: block_E i

\4

4

move_to (block_E) =

grip (block_E) o

Top-level program block_stacking is recursively decomposed to
bottom-level APl move_to and grip.

Goals

Learning to Generalize Across Hierarchical Tasks

= Generalizing the learned polices to new task objectives
» Task Length: more objects to transport.
» Task Semantics: a different goal.

» Task Topology: a different trajectory to the same goal.

= Hierarchical composition of primitive actions

» Modularization and reusability.
» Learn the latent structure in complex tasks, instead of fake
dependencies.

Implementation: Neural Task Programming

State Observation Outout broaram
observation Encoder gt Core pCupRtR
Task Spec. |, Network » End-of-program
prlcr)]gruatmi “pick_and_place” F—; Encoder probability
Is output Yes De?:z:jer ~# APl arguments
Input task . Task Spec. program <:
specrﬁcatlon - u Interpreter prln:;ltlve Task Spec 1 OUtpUt task
NTP © No 1 selection specification

Observation Encoder: observation o; = state representation s;

Task Spec. Interpreter: = APl arguments a; or task spec. i1

Task Spec. Encoder: task spec. 1); = vector space ¢;

Core Network: s;. pi, o;i = pir1. i

Implementation: Standing on the shoulder of NPI

Neural Task Programming combines the idea of Few-Shot Learning
from Demonstration and Neural Programmer-Interpreters.

= Similarities when executing a program:
» When the EOP probability exceeds a threshold «, control is returned
to the caller program;

» When the program is not primitive, a sub-program with its
arguments is called;

» When the program is primitive, a low-level basic action is performed.

= [wo similar modules:

» Domain-specific task encoders that map an observation to a state
representation.

» A key-value memory that stores and retrieves program embeddings.

Implementation: NTP vs NPI

= NPI: one-shot generalization to tasks with longer lengths; can’t

generalizing to novel programs without training.

= NTP: generalizes to sub-task permutations (topology) and success
conditions (semantics).
= Three main diffenrences of NTP than the original NPI:
= NTP can interpret task specifications and perform hierarchical
decomposition and thus can be considered as a meta-policy;

= |t uses robot APIs as the primitive actions to scale up neural

programs for complex tasks;
= |t uses a reactive core network instead of a recurrent network,

making the model less history-dependent, enabling feedback control

for recovery from failures.

Model Training

= The model is trained using rich supervision from program execution
traces {&:|&r = (W pryse), t=1... T}

= The training objective is to maximize the probability of the correct
executions over all the tasks in the dataset D = {(&;. &rv1) }-

» For each task specification, the ground-truth hierarchical
decomposition is provided by the expert policy, which is an agent

with hard-coded rules.

Experiments: Setup

__

. Task Semantics Variation
[

;11117:> CBE ., g

Task Topology Variation Bliel 5 /
) O3 O O (&)
o & = e |=

= Generalization in 3 variations: semantics, topology, and length.
» Using image-based input without access to ground truth state.

= Working in real-world tasks combine these variations.

= Three tasks: Object Sorting, Block Stacking, and Table Clean-up

Experiments: Object Sorting

Object Sorting: Task Length

1.0

0.8

0.6

0.4

success rate

0.2 —

0.0

1 8 20 40

number of objects
M Flat ™ Flat (GRU) ms= NTP (noscope) ®mm NTP (GRU) NTP

» Flat: non-hierarchical model, directly predicts the primitive APls

instead of calling hierarchical programs.

= GRU: Gated Recurrent Unit.

Experiments: Block Stacking

Block Stacking: Visual State

A. Seen Task Objectives B. Unseen Task Objectives

0.8 0.8
2 3
© 0.6 © 0.6
% 7
© 0.4 204
5 5
© 0.2 » (0.2
% i E
0.0 0.0 .
100 1000 50 100 1000
number of tralnmg tasks number of tralnmg tasks
mmm NTPVID (Detector) mmm NTPVID (E2E) NTP (Full State)

= NTPVID(E2E): Trained with only visual information.

= NTP(Full State): Trained with ground-truth hierarchical
decomposition.

10

Experiments: Table Clean-up

Bowls, Success
Forks
2B, 1F 1.00
2B. 2 F 0.95
3B,2F 0.75
3B,3F 0.55

= Sort plastic bowls and forks into a stack, so they can be steadily

carried away.

= Task variations:

» Task length: number of bowls and forks varies.
» Task topology: the ordering in which bowls are stacked varies.

11

Discussion & Future Work

= Neural Task Programming:
» A meta-learning framework that learns modular and reusable neural

programs for hierarchical tasks.
» Generalizing well towards the variation of task length, semantics, and

topology for complex tasks.

= Future work:
= Improve the state encoder to extract more task-salient information

such as object relationships;
= Devise a richer set of APIs such as velocity and torque-based

controllers;
» Extend this framework to tackle more complex tasks on real robots.

12

Neural Task Programming:
Learning to Generalize Across
Hierarchical Tasks

Danfei Xu’, Suraj Nair’, Yuke Zhu, Julian Gao, Animesh Garg,
Li Fei-Fei, Silvio Savarese

' Stanford
ARTHICIAL
INTELLMGENCE

Questions?

TACO: Learning Task Decomposition via Temporal
Alignment for Control

Kyriacos Shiarlis, Markus Wulfmeier, Sasha Salter, Shimon Whiteson, Ingmar Posner

Presented by: Zihang Fu

Motivation — Block Stacking Task

Complex tasks can often be
broken down into simpler sub-
tasks

Most Learning from
Demonstration (LfD) algorithms
can only learn a single policy for
the whole task

Resulting in more complex

Modular LfD

o« Modelling the task as a composition of sub-tasks
e Reusable sub-policies (modules) are learned for each sub-task.

e Sub-policies are easier to learn and can be composed in different ways

to execute new tasks.

e Enabling zero-shot imitation.

Key approach: provide the learner with additional information about the

demonstration

TACO: Temporal Alignment for Control

o Partly supervised

e Domain agnostic

o« Demonstration is augmented by task sketches - a sequence of sub-tasks
that occur within the demonstration

T=(bl,b2,...,bl),

o Simultaneously aligns the sketches with the observed demonstrations
and learns the required sub-policies

Example: Block stacking task

Augmented action space A+ := A U a¢op

’

T, (asTop|s) T, (asTop|S) Ty, (asToP|S)

| t

—>

T by: Pick b>: Move bs: Place t

| ! L J

o lals) mals) o, (als)

Problem

How to align task-sketches with the demonstration?

Solution: Borrow temporal sequence alignment techniques from speech
recognition!

TACO: Temporal Alignment for Control

T=(bl1,b2,...,Dbl),

T, (astopls) T,(astopls) T, (asTopls)

Input sequence p with length T A T T 1.

A path ¢ = (¢, {,, ..., {;) is a sequence of sub- |

tasks of the same length as the input sequence Q : :

p, describing the active sub-task {, at every : :

time-step T bi:Pick, by:Move , by Place t,
| L K

Z; . is the set of all possible paths of length T for m T, (a]s) n:b?(a|s)

a task sketch t

Fe. T=6, T =(bl, b2, b3), = (b1, bl, b2, b3, b3, b3)

TACO: Temporal Alignment for Control

Objective: Maximise the joint log likelihood of the task sequence and the
actions conditioned on the states

p(T,a,lsy) = Z p(Clsp) HWGC (at|st),

CEZT T

p(¢]s,) is the product of the stop, as;op , and nonstop, agop Probabilities associated
with any given path.

Eg. T=4,s, =(sy S, Sy S3), T=(b1, b2), 7= (b1, bl, b2, b2)

p(¢ls,) = my,(non-stop) * m,(stop) * m,(non-stop) * my,(stop)

TACO: Temporal Alignment for Control

Problem: Impossible to compute all paths {in Z; ., for long sequence
Solution: Dynamic Programming

The (joint) likelihood of a being at sub-task | at time t can be formulated in
terms of forward variables:

ar(l) = > p(Clsp) || moc, (arlse).

Cl:teztﬂ'l:l

TACO: Temporal Alignment for Control

if{l =1

0, otherwise. 1

Gft(l) — Ty, (flt|8t) [cht—l(l — 1)7T6‘b,;_1 (@STOP|3t)

tai_1(1)(1 = mop, (asTop|s:)]. T e ,

(b) TACO - Computation of forward variables cv; (1)

ar(L) = p(7,a,|s,).

Training: Maximize a,{L) over 8

Experiments: Nav-World

r/""-_-"-

Setup: -
« The agent (blue) receives a route as f \
a task sketch.)
o T =(black, green, yellow, red) _’. k

o State space: (x, y) distance from
each of the destination points
e Action space: (v,, v,) - the velocity

Test:
o Given an unseen task sketch.
o Considered successful if the agent
visits all destinations in the correct
order

Training:
o Provided with state-action
trajectories p and the task sketch.
« Atthe end of learning, the agent
learns four sub-policies

Experiments: Nav-World

Success Rate

Algorithm Nav-World
TACO 95.3
CTC-BC (MLP) 89.0
CTC-BC (GRU) 80.0
GT-BC (aligned w. TACO) 94.6

Alignment Accuracy

Experiments: Dial Domain

1.0
GT-BC
mEm TACO
EEm CTC-BC (MLP)
0.8 B CTC-BC (GRU)
0.6 |
o
O
| -
=]
(@)
o
<€ 0.4 ‘
0.2 '
0.0

800 1000 1200

Summary: TACO - Temporal Alignment for Control

e Modular LfD
o Weak supervision - task sketch

o Optimising the sub-policies over a distribution of possible alignments

Future Work & Limitation

Limitation:
o Sub-tasks in the task sketch has to be placed in the correct order
Future work:

o Task sketches are dissimilar to natural human communication.
Combination of TACO with architectures that can handle natural
language.

o Hierarchical tasks decomposition.

Learning Movement Primitive Libraries through
Probabilistic Segmentation

Rudolf Lioutikov, Gerhard Neumann, Guilherme Maeda, and Jan Peters
CSC2621: Imitation Learning for Robotics

February 8, 2019
llan Kogan

Agenda

= Motivation for movement primitive libraries

* Probabilistic segmentation (ProbS) algorithm derivation

= Experimental evaluation

MOTIVATION FOR MOVEMENT PRIMITATIVE LIBRARIES

If we can split complex tasks into movement primitives, we
can generalize robot learning to completing new tasks

= Each complex task (e.g., moving a box) Task: Pick up at location A and deposit at location B
within a given domain (e.qg., manipulating

boxes) can be broken down into a possibly- Rotate 907 clockwise

duplicative set of movement segments Open claw
» Unique movement segments across the
. - Lower arm
domain are termed movement primitives
(e.g., opening the claw) Close claw
Raise arm

ADVANTAGES OF MOVEMENT PRIMITIVES _
o . Rotate 90° counter-clockwise
» The same primitives can be combined for

different tasks within a domain Lower arm

* The movement plan for a task can be Open claw

adapted by swapping primitive order

. s Raise arm
» Transitions between primitives can be

OptimiZEd for the entire domain at once movement Segmen’[movement pr|m|t|Ve

MOTIVATION FOR MOVEMENT PRIMITATIVE LIBRARIES
Efficiently acquiring these primitives without relying on
human intervention is challenging

TRADITIONAL APPROACH LIOUTIKOV ET AL.’S APPROACH

= Movement primitive acquisition is broken down = Segment observed trajectories and
into two problems: trajectory segmentation and learn the underlying library at once
learning of underlying primitive library using an iterative Expectation-

= Segmentation of observed trajectories Maximization (EM) algorithm

— When did one movement primitive stop and

the next begin?

L Learn a probabilistic
— Heuristics are commonly used (e.g., when representation of

does the velocity of the arm become zero), ™ movement primitives using T
but these are task-dependent and unclear the current segmentation
when to apply one heuristic vs. another

— Requires expert involvement to make time-
invariant (i.e., speed should not matter) Improve segmentation by
down-weighting
segmentations less likely
— Given the segments, how many primitives given current primitive library

are present? What are they?

= [earning of the underlying primitive library —

Agenda

» Motivation for movement primitive libraries

* Probabilistic segmentation (ProbS) algorithm derivation

= Experimental evaluation

PROBABILISTIC SEGMENTATION (PROBS) ALGORITHM DERIVATION
As the algorithm runs, false positive cuts are removed and
the underlying library is learned from remaining segments

INPUT I

An initial segmentation is selected
based on an arbitrary heuristic that
weakly over-segments the task

» Unfeasible to initialize with cut at
every time step of the observation? Time

OUTPUT

The algorithm eliminates false State I
positive cuts to determine the correct
segmentation, and then learns the
underlying primitive library

» Since cuts are only removed, the Time
heuristic must weakly over-segment

1 No evidence for this claim is provided. Perhaps the authors are implicitly referring to the fact that a combinatorial explosion would render their EM approach futile, but one may
be able to use other algorithms that would not face a similar fate (e.g., by taking into account the non-independent nature of observations)

PROBABILISTIC SEGMENTATION (PROBS) ALGORITHM DERIVATION

The Probabilistic Segmentation (ProbS) algorithm operates
iteratively, converging to a locally-optimal solution

E-Step

., o Compute the probability a, each segment is part
of the true segmentation (i.e., the probability the
segment was generated by the primitives)

The initial set of
cutting points
from an arbitrary,

|
|
|
|
|
|
|
|
|
|
|
| :
| The underlying
|
|

over-segmenting |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

mixture model
and the
underlying

heuristic segmentation

o Project each segment into a lower-dimensional
space using ridge regression, turning a,into a,,
Implement the Gaussian-means algorithm to pu

determine the number of primitives K and the
initializing labels for each segment L

Run a weighted-EM-GMM with K clusters, initial
labels L7, and weights a,, to update mixture model

F 3

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
M-Step }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1 Since the Gaussian-means algorithm generates Gaussian distributions, the responsibility of each primitive for each possible segment can be calculated, or an overall average
prior can be used as mixing weights. The authors do not specify exactly what “initial labelling L™ means, but it is likely the latter.

PROBABILISTIC SEGMENTATION (PROBS) ALGORITHM DERIVATION
Rather than working directly with segments, the authors use
Probabilistic Movement Primitives (ProMPs)

» Probabilistic Movement Primitives (ProMPs) T 1
project trajectories (tasks) into a lower w = ((Dq) + FI) (I)S

dimensional weight space with ridge regression

— Working in a lower-dimensional space \ V J
makes clustering easier by limiting the

curse of dimensionality = Each segment s has a matching

— Ridge regression provides a distributional projected segment w
(probabilistic) interpretation (i.e., each — The ridge regression penalty
observation of a primitive—a segment—is term drives the coordinates of s
generated by a normal distribution), to zero, inducing sparsity
providing a likelihood function to maximize

— Still requires human intervention
— Basis functions can be chosen to provide to choose a penalty term and

time invariance (i.e., normalizing by the basis functions!’
length of the segment)

1 The choice of basis function requires human intervention. While ProbS requires less human intervention than some other approaches discussed in the paper, substantial
human intervention and parameter tuning is still required.

PROBABILISTIC SEGMENTATION (PROBS) ALGORITHM DERIVATION

The distributional interpretation of ridge regression enables
calculating the likelihood of a segment

» Without justification, each timestep from a segment is assumed to be independently and
identically distributed from a primitive distribution (but shouldn’t they be highly correlated?)

» The likelihood of a segment is therefore the product of the probability density function values

5]

91{:) — H p(St‘Q;‘:)

=1

p(s

s -

= Without justification, each segment in a trajectory is assumed to be independently selected (i.e.,
the likelihood of a trajectory is the product of the likelihood of each segment within it)

= Since we do not know what the true segmentation is, we use the EM algorithm for optimization

PROBABILISTIC SEGMENTATION (PROBS) ALGORITHM DERIVATION

The Expectation-Maximization algorithm can be used to

segment trajectories

Main E-Step: Compute Segment Weighting®
/ Given the current model parameters, how likely is it that the
a-w — Z p(S | T; (_)) — identified projected segment belongs to the optimal
SeDy segmentation (i.e., sum over the probability of each
segmentation S that includes segment s (D,))?

Ow = argmaxrg Qw(O,0")

= argmarg >, «, X logp(w|O)
weWw

M|
= argmarg Y. , X log| Z A p(w|6)]

wew

M-Step: Maximize
Likelihood
Weighing by the
probability of each
previously-projected
segment a,, maximize
the likelihood of
seeing those
segments across all
segmentations and
trajectories W

1 The authors reformulate the E-Step as a message-passing algorithm. Accordingly, they are able to reduce exponential complexity to quadratic complexity. This is done by,
rather than calculating this term from scratch for each segment, storing information from preceding segments and leveraging the probabilistic relationship among them. 10

PROBABILISTIC SEGMENTATION (PROBS) ALGORITHM DERIVATION

... but we have to apply it twice since we do not know the
primitive that generated each segment

Optimizing the sum
inside of the log term is

we use the EM

M |
argmaxe Z Oy X l()g[Z)\A.‘ p(qu’@k)] . intractable; accordingly,
| k=1 :

wew 4 k=1 algorithm again!
LM
Qw(0,0) = > > awfrwlog Aip(w|by)
k=1 weW
Sub E-Step: Compute Primitive Weighting Sub M-Step: Maximize Likelihood
In the expectation step, we calculate the In the maximization step, we optimize A,
responsibilities: the probability 8, , each M., and Z, to maximize the weighted log

primitive k generated each projected segment w likelihood of the observed data

PROBABILISTIC SEGMENTATION (PROBS) ALGORITHM DERIVATION

Rather than assuming the number of components is known a

priori, the Gaussian-means algorithm is used

» The Gaussian-means algorithm is a bisecting k-means algorithm (i.e., a

combination of hypothesis testing, k-means, and hierarchical clustering):

o Start with one cluster
9 Run k-means with k = 2

Using the Anderson-Darling goodness-of-fit test, test the null hypothesis that
the observations within each created cluster are normally distributed

For all clusters that the null hypothesis is rejected, repeat steps two to four;
else break

Effectively, the clusters continue to be divided until we cannot reject the null
hypothesis—as a result, the number of primitives is not assumed a priori

— “A goodness-of-fit test is a measure of how much data you have.” — PJ Diggle
— Limitation: This implies more observations will lead to more clusters!

Agenda

= Motivation for movement primitive libraries

» Probabilistic segmentation (ProbS) algorithm derivation

» Experimental evaluation

EXPERIMENTAL EVALUATION

ProbS excelled at writing letters in different orders ...

» Using kinesthetic teaching, 27 combinations of the three letters “y”, “a”, and “u” were shown to
the robot and then velocities were processed using ProbS, EM-GMM, and BP-AR-HMM'

* ProbS performed better than the other two algorithms:

— More compact compression: ProbS was able to represent the trajectories with fewer bits

— Higher-quality primitives: The average log-likelihood of segments in a held-out trajectory
(leave-one-out-cross-validation) was highest for ProbS

i
— D

Position (m)
=

1)
i
o —

01 0 01 02 01 0 01 0 01 0 0101 0 0101 0 01
Position (m)

ProbS determined six movement primitives were present in the data set

1 The authors compared ProbS to a standard Expectation-Maximization Gaussian Mixture Model (EM-GMM) (i.e., equivalent to ProbS but with a specified segmentation based
on a heuristic) and the state-of-the-art Beta Process Autoregressive Hidden Markov Model (BP-AR-HMM) (Bayesian approach that uses an Indian buffet process prior)

EXPERIMENTAL EVALUATION

... putting together a chair differently than shown ...

*» The robot was shown how to put together a chair six times; ProbS determined four movement
primitives were present

skill 1: approaching leg skill 2: showing leg skill 3: approaching seat skill 4: back to home

— Lr
E §BF ———
» 901§ L || | | | ||
- U.% .

—0.IR -
ETQASL - — e
%_OE% || | | || | | | | | |
. 04r
N _904% L | | | | | | | |

| | | | || |
25 50 75 1001 25 50 75 1001 25 50 75 1001 25 50 75 100

Time steps

[

» These movement primitives were later combined to assemble a chair in a new way

EXPERIMENTAL EVALUATION

... and identifying characteristic table tennis swings

* Multiple kinesthetic teaching demonstrations of table tennis swings were segmented into a total of
four movement primitives by ProbS: forehand swing, backhand swing, and two waiting primitives

* The two waiting primitives resulted in a robot that barely moved, but moved in opposite ways

Notably, the authors do not demonstrate learning libraries across tasks within a domain and
do not make clear how they concatenated movement primitives to perform new trajectories

Thank you!

