
Deep Q-Learning from 
Demonstrations (DQfD)

Bryan Chan & Chandripal Budnarain



Markov Decision Process (MDP)

• A MDP is a tuple ⟨𝑆, 𝐴, 𝑃, 𝑅, 𝛾⟩
• 𝑆: A finite set of states

• 𝐴: A finite set of actions

• 𝑃: A state transition function

• 𝑅: A reward function

• 𝛾: Discount factor

• Want to find a policy 𝜋: 𝑆 → 𝐴 such that it maximizes the expected 
discounted total reward



Q-Function

• The action-value Q-function 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) is the expected return 
starting from state 𝑠𝑡, taking action 𝑎𝑡, and then following policy 𝜋

• 𝑄𝜋 𝑠𝑡 , 𝑎𝑡 = 𝐸 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +⋯ | 𝑠𝑡, 𝑎𝑡
= 𝐸𝑠′ 𝑅𝑡+1 + 𝛾𝑄𝜋 𝑠′, 𝑎′ 𝑠𝑡, 𝑎𝑡]

• The optimal policy 𝜋∗ 𝑠 can be obtained from optimal Q-function 
argmax𝑎𝑄

∗(𝑠, 𝑎)



Q-Learning Algorithm



Deep Q-Network (DQN)

• State-action space might be too big for storing a Q-table!

• Idea: Replace Q-table with a neural network that approximates Q-
values

• Deep Q-Network = Deep Learning + Q-Learning



Q-Function Approximator

• 𝐿𝑜𝑠𝑠 = [(𝑅 𝑠, 𝑎 + 𝛾max
𝑎∈𝐴

𝑄(𝑠′, 𝑎; 𝜃)) − 𝑄(𝑠, 𝑎; 𝜃)]2



DQN Algorithm



How to Combine 
Demonstration Data with DQN?



Loss Function

• Recall that the loss function for Q-Learning is:
𝐽𝐷𝑄𝑁 𝑄 = [(𝑅 𝑠, 𝑎 + 𝛾max

𝑎
𝑄(𝑠′, 𝑎; 𝜃)) − 𝑄(𝑠, 𝑎; 𝜃)]2

• Given demonstration data, we want the agent to learn from it

• Issue: Demonstration data only covers a small subset of the state 
space and does not consider a lot of actions

• Issue: Many (ungrounded) values are not realistic and the Q-
Network would propagate these values



Supervised Large Margin Classification Loss

• Push the values of other actions to be at least a margin lower than 
the demonstrator’s action

• The loss function:
𝐽𝐸 𝑄 = max

𝑎∈𝐴
𝑄 𝑠, 𝑎 + 𝑙 𝑎, 𝑎𝐸 − 𝑄(𝑠, 𝑎𝐸) ,

where 𝑙 𝑎, 𝑎𝐸 is a margin function that is 0 when 𝑎 = 𝑎𝐸 and some 
positive value otherwise, and 𝑎𝐸 is the demonstrator’s action

• In this paper, 𝑙 𝑎, 𝑎𝐸 = 0 if 𝑎 = 𝑎𝐸 , and 0.8 otherwise



New Loss Function

• 𝐽 𝑄 = 𝐽𝐷𝑄𝑁 𝑄 + 𝜆1𝐽𝑛 𝑄 + 𝜆2𝐽𝐸 𝑄 + 𝜆3𝐽𝐿2(𝑄),

where 𝜆’s control the weighting between the losses, 𝐽𝑛 𝑄 is the n-
step TD-loss, and 𝐽𝐿2 𝑄 is the L2 regularization loss

• There is a trade off between following demonstration data and finding 
optimal Q-values



Prioritized Experience Replay

• In DQN, we sample experiences from the replay buffer uniformly

• Issue: We tend to learn better when there is a big difference 
between what we imagine and the actual outcome

• For example, we focus on mistakes and learn from them!

• We can prioritized what we sample instead – By looking at the latest 
TD-error: 𝛿 = 𝑅 𝑠, 𝑎 + 𝛾max

𝑎∈𝐴
𝑄 𝑠′, 𝑎; 𝜃 − 𝑄 𝑠, 𝑎; 𝜃

“actual” outcome “estimated” outcome



Prioritized Experience Replay

• Specifically, priority of experience 𝑖, 𝑃 𝑖 =
𝑝𝑖
𝛼

σ𝑘 𝑝𝑘
𝛼, 

where 𝑝𝑖 = 𝛿𝑖 + 𝜖 is the absolute of last TD-error with some 
positive constant

• What is 𝜶?

• 𝛼 (hyperparameter) decides how much prioritization is used. If 𝛼 =
0, we are sampling uniformly

• Issue: Sampling with priority introduces bias and changes the 
distribution



Prioritized Experience Replay

• Solution: Correct using weighted importance-sampling with weights 

𝑤𝑖 = (
1

𝑁

1

𝑃 𝑖
)𝛽, where 𝑁 is number of samples

• What is 𝜷?

• 𝛽 (hyperparameter) decides how much we should compensate for 
the non-uniform probabilities 𝑃 𝑖 . If 𝛽 = 1, we fully compensate

• In general, 𝛼 and 𝛽 grows together as time goes on. The idea is that 
we first sample close to uniformly, then slowly sample with priority

• In this paper, 𝛼 = 0.4 and 𝛽 = 0.6 (Fixed)



Deep Q-Learning from 
Demonstration (DQfD)



DQfD Pre-Training



DQfD Post-Training



DQfD Replay Buffer Tweak

• We give more priority on demonstration data (by having a higher 𝜖)

• In this paper, 𝜖𝑎 = 0.001 (self-generated) and 𝜖𝑑 = 1.0 (demonstration)

• Problem: What if the replay buffer is full?

• 1) We want to make sure the agent does not go too far from 
demonstrator unless some other action is optimal

• Keep demonstration data

• 2) Old sampled experiences are out-of-date

• Remove oldest self-generated data



Experiment

• Compared DQfD with 

PDD DQN & supervised 

imitation on three games

• PDD DQN is DQfD
without demonstration 
data, pre-training, 
supervised loss, and 
regularization loss



Removing Supervised Loss



Summary

• Improved initial performance in real system using demonstration data

• Accelerated learning by combining supervised large margin 
classification loss and traditional DQN loss

• Smartly utilizes demonstration data during post-training using 
prioritized experience replay



Limitations

• Does not explore continuous state-action space scenarios

• Similar to previous paper, algorithm does not explore hidden state 
humans might consider

















































Presented by David Acuna and Brenna Li



Problem Formulation

Auto-Rally car

training/test track

off-the-road real-word scenario.

high-speed is a must



Problem 
Formulation

cheap sensors.

NN learns from raw images and speed sensor

expensive sensors

model predictive control
~ $6,000

~ $500

IMU=Inertial Measurement Units 

GPS=Global Positioning System



Formulation

• needs to account for high-speed

• involves a physical robot

state, action, observation

expected reward of taking this action

expected reward of this state



Formulation

• needs to account for high-speed

• involves a physical robot

Hard to solve

expert

Wasserstein Distance



Formulation

experts policylearner policy

Online Imitation Learning Problem



Online Imitation Learning

online IL problem

DAgger

Sequence of 

Supervised Learning Problems



Batch Imitation Learning
Flipping the policies

This resumes to supervised learning

expert policy
expert policy



System Diagram



DNN Control Policy



Expert – recall control

Sparse Spectrum Gaussian Process



Expert – MPC

Differential Dynamic Program  (DDP) ~  Recall iLQR



Related works:



Experiment – Setup Experts

High Speed driving

at 7.5 m/s or 135 km / h 

Cost for expert:



Experiment– learning trajectories



Comparing – Loss (to expert) 



Comparing – distance travelled



Comparing – generalizability

t-Distributed Stochastic Neighbor Embedding (t-SNE) 



Comparing – generalizability 



DNN – high and low capture



DNN > CNN …  or Limitation?





Thank you!

Any Questions?






































