Deep Q-Learning from Demonstrations (DQfD)

Bryan Chan & Chandripal Budnarain

Markov Decision Process (MDP)

- A MDP is a tuple $\langle S, A, P, R, \gamma \rangle$
 - S: A finite set of states
 - A: A finite set of actions
 - *P*: A state transition function
 - R: A reward function
 - γ : Discount factor
- Want to find a policy $\pi: S \to A$ such that it maximizes the expected discounted total reward

Q-Function

• The action-value Q-function $Q^{\pi}(s_t, a_t)$ is the expected return starting from state s_t , taking action a_t , and then following policy π

•
$$Q^{\pi}(s_t, a_t) = E[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | s_t, a_t]$$

= $E_{s'}[R_{t+1} + \gamma Q^{\pi}(s', a') | s_t, a_t]$

• The optimal policy $\pi^*(s)$ can be obtained from optimal Q-function $\operatorname{argmax}_a Q^*(s, a)$

Deep Q-Network (DQN)

- State-action space might be too big for storing a Q-table!
- Idea: Replace Q-table with a neural network that approximates Qvalues
- Deep Q-Network = Deep Learning + Q-Learning

Q-Function Approximator

• Loss = [($R(s,a) + \gamma \max_{a \in A} Q(s',a;\theta)$) - $Q(s,a;\theta)$]²

How to Combine Demonstration Data with DQN?

Loss Function

- Recall that the loss function for Q-Learning is: $J_{DQN}(Q) = [(R(s,a) + \gamma \max_{a} Q(s',a;\theta)) - Q(s,a;\theta)]^2$
- Given demonstration data, we want the agent to learn from it
- Issue: Demonstration data only covers a small subset of the state space and does not consider a lot of actions
- Issue: Many (ungrounded) values are not realistic and the Q-Network would propagate these values

Supervised Large Margin Classification Loss

- Push the values of other actions to be at least a margin lower than the demonstrator's action
- The loss function:

$$J_E(Q) = \max_{a \in A} [Q(s, a) + l(a, a_E)] - Q(s, a_E),$$

where $l(a, a_E)$ is a margin function that is 0 when $a = a_E$ and some positive value otherwise, and a_E is the demonstrator's action

• In this paper, $l(a, a_E) = 0$ if $a = a_E$, and 0.8 otherwise

New Loss Function

• $J(Q) = J_{DQN}(Q) + \lambda_1 J_n(Q) + \lambda_2 J_E(Q) + \lambda_3 J_{L2}(Q),$

where λ 's control the weighting between the losses, $J_n(Q)$ is the nstep TD-loss, and $J_{L2}(Q)$ is the L2 regularization loss

• There is a trade off between following demonstration data and finding optimal Q-values

Prioritized Experience Replay

- In DQN, we sample experiences from the replay buffer uniformly
- **Issue:** We tend to learn better when there is a big difference between what we imagine and the actual outcome
- For example, we focus on mistakes and learn from them!
- We can prioritized what we sample instead By looking at the latest TD-error: $\delta = R(s, a) + \gamma \max_{a \in A} Q(s', a; \theta) Q(s, a; \theta)$

"actual" outcome "estimated" outcome

Prioritized Experience Replay

• Specifically, priority of experience *i*, $P(i) = \frac{p_i^{\alpha}}{\sum_k p_k^{\alpha}}$,

where $p_i = |\delta_i| + \epsilon$ is the absolute of last TD-error with some positive constant

- What is α ?
- α (hyperparameter) decides how much prioritization is used. If $\alpha = 0$, we are sampling uniformly
- **Issue:** Sampling with priority introduces bias and changes the distribution

Prioritized Experience Replay

- Solution: Correct using weighted importance-sampling with weights $w_i = (\frac{1}{N} \frac{1}{P(i)})^{\beta}$, where N is number of samples
- What is β ?
- β (hyperparameter) decides how much we should compensate for the non-uniform probabilities P(i). If $\beta = 1$, we fully compensate
- In general, α and β grows together as time goes on. The idea is that we first sample close to uniformly, then slowly sample with priority
- In this paper, $\alpha = 0.4$ and $\beta = 0.6$ (Fixed)

Deep Q-Learning from Demonstration (DQfD)

DQfD Pre-Training

Replay Buffer with only demonstration data

DQfD Post-Training

DQfD Replay Buffer Tweak

- We give more priority on demonstration data (by having a higher ϵ)
- In this paper, $\epsilon_a = 0.001$ (self-generated) and $\epsilon_d = 1.0$ (demonstration)
- **Problem:** What if the replay buffer is full?
- 1) We want to make sure the agent does not go too far from demonstrator unless some other action is optimal
 - Keep demonstration data
- 2) Old sampled experiences are out-of-date
 - Remove oldest self-generated data

Training Iteration

Removing Supervised Loss

Summary

- Improved initial performance in real system using demonstration data
- Accelerated learning by combining supervised large margin classification loss and traditional DQN loss
- Smartly utilizes demonstration data during post-training using prioritized experience replay

Limitations

- Does not explore continuous state-action space scenarios
- Similar to previous paper, algorithm does not explore hidden state humans might consider

AggreVaTe:

Reinforcement and Imitation Learning via Interactive No-Regret Learning

CSC 2621 Renato Ferreira Pinto Junior

Stéphane Ross & J. Andrew Bagnell (2014)

Pick one:

• DAgger aims to minimize disagreement with expert

- DAgger aims to minimize disagreement with expert
 - What if it's easier to imitate the expert in an *unsafe* situation than in *safe* ones?

- DAgger aims to minimize disagreement with expert
 - What if it's easier to imitate the expert in an *unsafe* situation than in *safe* ones?
 - No consideration of *cost-to-go* of learned policy

```
Initialize \mathcal{D} \leftarrow \emptyset.

Initialize \hat{\pi}_1 to any policy in \Pi.

for i = 1 to N do

Let \pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_i.

Sample T-step trajectories using \pi_i.

Get dataset \mathcal{D}_i = \{(s, \pi^*(s))\} of visited states by \pi_i

and actions given by expert.

Aggregate datasets: \mathcal{D} \leftarrow \mathcal{D} \bigcup \mathcal{D}_i.

Train classifier \hat{\pi}_{i+1} on \mathcal{D}.

end for

Return best \hat{\pi}_i on validation.
```

Algorithm 3.1: DAGGER Algorithm.

- DAgger aims to minimize disagreement with expert
 - What if it's easier to imitate the expert in an *unsafe* situation than in *safe* ones?
- Instead, AggreVaTe (Aggregate Values to Imitate):
 - Minimizes expert's cost-to-go
 - Provides *regret* (rather than *error*) guarantees

Regret

• In *hindsight*, how much better could I have performed?

$$\mathbf{regret}(h_1, \dots, h_T) = \frac{1}{N} \sum_{t=1}^T Cost(h_t, t) - \min_{h \in H} \frac{1}{N} \sum_{t=1}^T Cost(h, t)$$

Regret

• In *hindsight*, how much better could I have performed?

$$\mathbf{regret}(h_1, \dots, h_T) = \frac{1}{N} \sum_{t=1}^T Cost(h_t, t) - \min_{h \in H} \frac{1}{N} \sum_{t=1}^T Cost(h, t)$$

Limited information at each time t

Regret

• In *hindsight*, how much better could I have performed?

$$\mathbf{regret}(h_1, \dots, h_T) = \frac{1}{N} \sum_{t=1}^T Cost(h_t, t) - \min_{h \in H} \frac{1}{N} \sum_{t=1}^T Cost(h, t)$$

Limited information at each time t

- AggreVaTe minimizes regret with respect to expert's cost
- DAgger minimizes loss with respect to expert's actions

Algorithm 1 AGGREVATE: Imitation Learning with Cost-To-Go Initialize $\mathcal{D} \leftarrow \emptyset$, $\hat{\pi}_1$ to any policy in Π . for i = 1 to N do Let $\pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_i$ #Optionally mix in expert's own behavior. Collect m data points as follows: for j = 1 to m do Sample uniformly $t \in \{1, 2, \ldots, T\}$. Start new trajectory in some initial state drawn from initial state distribution Execute current policy π_i up to time t - 1. Execute some exploration action a_t in current state s_t at time t Execute expert from time t + 1 to T, and observe estimate of cost-to-go \hat{Q} starting at time t end for Get dataset $\mathcal{D}_i = \{(s, t, a, \hat{Q})\}$ of states, times, actions, with expert's cost-to-go. Aggregate datasets: $\mathcal{D} \leftarrow \mathcal{D} \bigcup \mathcal{D}_i$. Train cost-sensitive classifier $\hat{\pi}_{i+1}$ on \mathcal{D} (Alternately: use any online learner on the data-sets \mathcal{D}_i in sequence to get $\hat{\pi}_{i+1}$) end for **Return** best $\hat{\pi}_i$ on validation.

Initialization {

Algorithm 1 AGGREVATE: Imitation Learning with Cost-To-Go Initialize $\mathcal{D} \leftarrow \emptyset$, $\hat{\pi}_1$ to any policy in Π . for i = 1 to N do Let $\pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_i$ #Optionally mix in expert's own behavior. Collect m data points as follows: for j = 1 to m do Sample uniformly $t \in \{1, 2, \ldots, T\}$. Start new trajectory in some initial state drawn from initial state distribution Execute current policy π_i up to time t-1. Execute some exploration action a_t in current state s_t at time t Execute expert from time t + 1 to T, and observe estimate of cost-to-go \hat{Q} starting at time t end for Get dataset $\mathcal{D}_i = \{(s, t, a, \hat{Q})\}$ of states, times, actions, with expert's cost-to-go. Aggregate datasets: $\mathcal{D} \leftarrow \mathcal{D} \bigcup \mathcal{D}_i$. Train cost-sensitive classifier $\hat{\pi}_{i+1}$ on \mathcal{D} (Alternately: use any online learner on the data-sets \mathcal{D}_i in sequence to get $\hat{\pi}_{i+1}$) end for **Return** best $\hat{\pi}_i$ on validation.

Algorithm 1 AGGREVATE: Imitation Learning with Cost-To-Go

```
Initialize \mathcal{D} \leftarrow \emptyset, \hat{\pi}_1 to any policy in II.
                                        for i = 1 to N do
                                           Let \pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_i #Optionally mix in expert's own behavior.
                                           Collect m data points as follows:
                                           for j = 1 to m do
                                              Sample uniformly t \in \{1, 2, \ldots, T\}.
                                              Start new trajectory in some initial state drawn from initial state distribution
                                             Execute current policy \pi_i up to time t - 1. \longrightarrow similar to DAgger
                                              Execute some exploration action a_t in current state s_t at time t
                                              Execute expert from time t + 1 to T, and observe estimate of cost-to-go Q starting at time t
                                          end for
Get dataset \mathcal{D}_i = \{(s, t, a, Q)\} of states, times, actions, with expert's cost-to-go.
New data point
                                          Aggregate datasets: \mathcal{D} \leftarrow \mathcal{D}[]\mathcal{D}_i.
Train on dataset
                                      \rightarrow Train cost-sensitive classifier \hat{\pi}_{i+1} on \mathcal{D} \rightarrow minimize total cost
                                              (Alternately: use any online learner on the data-sets \mathcal{D}_i in sequence to get \hat{\pi}_{i+1})
                                        end for
                                        Return best \hat{\pi}_i on validation.
```
• Classification regret: best in policy class compared to expert

 $\epsilon_{\text{class}} = \min_{\pi \in \Pi} \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{t \sim U(1:T), s \sim d_{\pi_i}^t} [Q_{T-t+1}^*(s, a) - \min_a Q_{T-t+1}^*(s, a)]$

• Classification regret: best in policy class compared to expert

 $\epsilon_{\text{class}} = \min_{\pi \in \Pi} \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{t \sim U(1:T), s \sim d_{\pi_i}^t} [Q_{T-t+1}^*(s, a) - \min_a Q_{T-t+1}^*(s, a)]$

• Classification regret: best in policy class compared to expert

 $\epsilon_{\text{class}} = \min_{\pi \in \Pi} \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{t \sim U(1:T), s \sim d_{\pi_i}^t} [Q_{T-t+1}^*(s, a) - \min_a Q_{T-t+1}^*(s, a)]$

Online learning regret: learned policies compared to best in policy class

$$\epsilon_{\text{regret}} = \frac{1}{N} \left[\sum_{i=1}^{N} \ell_i(\hat{\pi}_i) - \min_{\pi \in \Pi} \sum_{i=1}^{N} \ell_i(\pi) \right]$$
$$\ell_i(\pi) = \mathbb{E}_{t \sim U(1:T), s \sim d_{\pi_i}^t} \left[Q_{T-t+1}^*(s, \pi) \right]$$

• Classification regret: best in policy class compared to expert

 $\epsilon_{\text{class}} = \min_{\pi \in \Pi} \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{t \sim U(1:T), s \sim d_{\pi_i}^t} [Q_{T-t+1}^*(s, a) - \min_a Q_{T-t+1}^*(s, a)]$

Online learning regret: learned policies compared to best in policy class

$$\epsilon_{\text{regret}} = \frac{1}{N} \left[\sum_{i=1}^{N} \ell_i(\hat{\pi}_i) - \min_{\pi \in \Pi} \sum_{i=1}^{N} \ell_i(\pi) \right]$$
$$\ell_i(\pi) = \mathbb{E}_{t \sim U(1:T), s \sim d_{\pi_i}^t} \left[Q_{T-t+1}^*(s, \pi) \right]$$

• Guarantee:

$$J(\hat{\pi}) \le J(\overline{\pi}) \le J(\pi^*) + T[\epsilon_{class} + \epsilon_{regret}] + O\left(\frac{Q_{\max}T\log T}{\alpha N}\right)$$

• Classification regret: best in policy class compared to expert

 $\epsilon_{\text{class}} = \min_{\pi \in \Pi} \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{t \sim U(1:T), s \sim d_{\pi_i}^t} [Q_{T-t+1}^*(s, a) - \min_a Q_{T-t+1}^*(s, a)]$

Online learning regret: learned policies compared to best in policy class

$$\epsilon_{\text{regret}} = \frac{1}{N} \left[\sum_{i=1}^{N} \ell_i(\hat{\pi}_i) - \min_{\pi \in \Pi} \sum_{i=1}^{N} \ell_i(\pi) \right]$$
$$\ell_i(\pi) = \mathbb{E}_{t \sim U(1:T), s \sim d_{\pi_i}^t} \left[Q_{T-t+1}^*(s, \pi) \right]$$

• Guarantee:

$$J(\hat{\pi}) \le J(\overline{\pi}) \le J(\pi^*) + T[\epsilon_{class} + \epsilon_{regret}] + O\left(\frac{Q_{\max}T\log T}{\alpha N}\right)$$

• If no-regret online algorithm is used to pick policies:

$$\lim_{N \to \infty} J(\overline{\pi}) \le J(\pi^*) + T\epsilon_{class}$$

• If no-regret online algorithm is used to pick policies:

 $\lim_{N \to \infty} J(\overline{\pi}) \le J(\pi^*) + T\epsilon_{class}$

• Can use online gradient descent descent

Conclusion

- Optimizes for cost-to-go rather than naive imitation
 - Prefer actions in which it's possible to act optimally
 - Imitate expert toward favourable situations

Conclusion

- Optimizes for *cost-to-go* rather than naive imitation
 - Prefer actions in which it's possible to act optimally
 - Imitate expert *toward favourable situations*
- Limitations:
 - Expensive data collection (one data point per trajectory!)
 - Requires policy class to contain good policy compared to expert
 - Empirical evidence?

Agile Autonomous Driving using End-to-End Deep Imitation Learning

Yunpeng Pan*, Ching-An Cheng*, Kamil Saigol*, Keuntaek Lee[†], Xinyan Yan*, Evangelos A. Theodorou*, and Byron Boots*
*Institute for Robotics and Intelligent Machines, [†]School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, Georgia 30332–0250 {ypan37, cacheng, kamilsaigol, keuntaek.lee, xyan43}@gatech.edu evangelos.theodorou@gatech.edu, bboots@cc.gatech.edu

Presented by David Acuna and Brenna Li

Problem Formulation

training/test track

off-the-road real-word scenario. high-speed is a must

Auto-Rally car

Problem Formulation

Formulation

$$\min_{\pi} J(\pi), \quad J(\pi) \coloneqq \mathbb{E}_{\rho_{\pi}} \left[\sum_{t=0}^{T-1} c(s_t, a_t) \right], \longrightarrow$$

state, action, observation

- needs to account for high-speed
- involves a physical robot

$$d_{\pi}(s,t) = \frac{1}{T} d_{\pi}^{t}(s)$$

$$J(\pi) = J(\pi') + \mathbb{E}_{s,t \sim d_{\pi}} \mathbb{E}_{a \sim \pi_{s}} [A_{\pi'}^{t}(s,a)]$$

$$A_{\pi'}^{t}(s,a) = Q_{\pi'}^{t}(s,a) - V_{\pi'}^{t}(s) \longrightarrow \text{ expected reward of this state}$$

expected reward of taking this action

Formulation

Hard to solve

$$\min_{\pi} J(\pi), \quad J(\pi) \coloneqq \mathbb{E}_{\rho_{\pi}} \left[\sum_{t=0}^{T-1} c(s_t, a_t) \right], \quad ----$$

 $J(\pi) = J(\pi') + \mathbb{E}_{s,t \sim d_{\pi}} \mathbb{E}_{a \sim \pi_s} [A_{\pi'}^t(s,a)]$

- needs to account for high-speed
- involves a physical robot

$$J(\pi) - J(\pi^*)$$

$$= \mathbb{E}_{s,t \sim d_{\pi}} \left[\mathbb{E}_{a \sim \pi_s} [Q_{\pi^*}^t(s,a)] - \mathbb{E}_{a^* \sim \pi_s^*} [Q_{\pi^*}^t(s,a^*)] \right]$$

Wasserstein Distance

$$D_W(p,q) \coloneqq \sup_{\substack{f: \operatorname{Lip}(f(\cdot)) \leq 1}} \mathbb{E}_{x \sim p}[f(x)] - \mathbb{E}_{x \sim q}[f(x)]$$
$$= \inf_{\gamma \in \Gamma(p,q)} \int_{\mathcal{M} \times \mathcal{M}} d(x,y) d\gamma(x,y),$$

Formulation

$$J(\pi) = J(\pi') + \mathbb{E}_{s,t\sim d_{\pi}} \mathbb{E}_{a\sim\pi_{s}} [A_{\pi'}^{t}(s,a)]$$

$$J(\pi) - J(\pi^{*})$$

$$= \mathbb{E}_{s,t\sim d_{\pi}} \left[\mathbb{E}_{a\sim\pi_{s}} [Q_{\pi^{*}}^{t}(s,a)] - \mathbb{E}_{a^{*}\sim\pi_{s}^{*}} [Q_{\pi^{*}}^{t}(s,a^{*})] \right]$$

$$\leq C_{\pi^{*}} \mathbb{E}_{s,t\sim d_{\pi}} \left[D_{W}(\pi,\pi^{*}) \right]$$

$$\leq C_{\pi^{*}} \mathbb{E}_{s,t\sim d_{\pi}} \mathbb{E}_{a\sim\pi_{s}} \mathbb{E}_{a^{*}\sim\pi_{s}^{*}} [||a-a^{*}||],$$

$$\lim_{\text{learner policy}} \exp_{\text{experts policy}}$$

$$\min_{\pi} \mathbb{E}_{\rho_{\pi}} \left[\sum_{t=1}^{T} \hat{c}(s_{t},a_{t}) \right]. \longrightarrow \hat{c}(s,a) = \mathbb{E}_{a^{*}\sim\pi_{s}^{*}} [||a-a^{*}||]$$

Online Imitation Learning Problem

Online Imitation Learning

Batch Imitation Learning

(8)

Flipping the policies

$$J(\pi) - J(\pi^{*})$$

$$= \mathbb{E}_{s^{*}, t \sim d_{\pi^{*}}} \left[\mathbb{E}_{a \sim \pi_{s^{*}}} \left[Q_{\pi}^{t}(s^{*}, a) \right] - \mathbb{E}_{a^{*} \sim \pi_{s^{*}}^{*}} \left[Q_{\pi}^{t}(s^{*}, a^{*}) \right] \right]$$

$$\leq \mathbb{E}_{s^{*}, t \sim d_{\pi^{*}}} \mathbb{E}_{a^{*} \sim \pi_{s^{*}}^{*}} \left[C_{\pi}^{t}(s^{*})\tilde{c}_{\pi}(s^{*}, a^{*}) \right] .$$

$$expert policy \qquad \text{expert policy}$$

$$\min_{\pi} \mathbb{E}_{\rho_{\pi^{*}}} \left[\sum_{t=1}^{T} \tilde{c}_{\pi}(s^{*}_{t}, a^{*}_{t}) \right] ,$$

$$\prod_{t=1}^{T} \mathbb{E}_{\rho_{\pi^{*}}} \left[\sum_{t=1}^{T} \tilde{c}_{\pi}(s^{*}_{t}, a^{*}_{t}) \right] .$$
This resumes to supervised learning

System Diagram

DNN Control Policy

Expert – recall control

Optimal Control

Expert – MPC

Differential Dynamic Program (DDP) ~ Recall iLQR

Given an initial sequence of states $\, ar{\mathbf{x}}_0,...,ar{\mathbf{x}}_N$ and actions $\, ar{\mathbf{u}}_0,...,ar{\mathbf{u}}_N$

$$\begin{aligned} \text{Linearize dynamics} \quad f(\mathbf{x}_t, \mathbf{u}_t) \approx \tilde{f}(\delta \mathbf{x}_t, \delta \mathbf{u}_t) &= f(\bar{\mathbf{x}}_t, \bar{\mathbf{u}}_t) + \frac{\partial f}{\partial \mathbf{x}}(\bar{\mathbf{x}}_t, \bar{\mathbf{u}}_t)(\mathbf{x}_t - \bar{\mathbf{x}}_t) + \frac{\partial f}{\partial \mathbf{u}}(\bar{\mathbf{x}}_t, \bar{\mathbf{u}}_t)(\mathbf{u}_t - \bar{\mathbf{u}}_t) \\ & \bullet \mathbf{b}_t \quad A_t \quad \delta \mathbf{x}_t \quad B_t \quad \delta \mathbf{u}_t \\ \text{Taylor expand cost} \quad c(\mathbf{x}_t, \mathbf{u}_t) \approx \tilde{c}(\delta \mathbf{x}_t, \delta \mathbf{u}_t) &= c(\bar{\mathbf{x}}_t, \bar{\mathbf{u}}_t) + \nabla_{\mathbf{x}_t, \mathbf{u}_t} c(\bar{\mathbf{x}}_t, \bar{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \bar{\mathbf{x}}_t \\ \mathbf{u}_t - \bar{\mathbf{u}}_t \end{bmatrix}^T \nabla^2_{\mathbf{x}_t, \mathbf{u}_t} c(\bar{\mathbf{x}}_t, \bar{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \bar{\mathbf{x}}_t \\ \mathbf{u}_t - \bar{\mathbf{u}}_t \end{bmatrix}^T \nabla^2_{\mathbf{x}_t, \mathbf{u}_t} c(\bar{\mathbf{x}}_t, \bar{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \bar{\mathbf{x}}_t \\ \mathbf{u}_t - \bar{\mathbf{u}}_t \end{bmatrix}^T \\ & \bullet \mathbf{h}_t \end{aligned}$$

Use LQR backward pass on the approximate dynamics $\tilde{f}(\delta \mathbf{x}_t, \delta \mathbf{u}_t)$ and cost $\tilde{c}(\delta \mathbf{x}_t, \delta \mathbf{u}_t)$

Do a forward pass to get $\delta {f u}_t$ and $\delta {f x}_t$ and update state and action sequence $~ar{f x}_0,...,ar{f x}_N$ and $~ar{f u}_0,...,ar{f u}_N$

Related works:

TABLE I: Comparison of our method to prior work on IL for autonomous driving

Methods	Tasks	Observations	Action	Algorithm	Expert	Experiment
[1]	On-road low-speed	Single image	Steering	Batch	Human	Real & simulated
[23]	On-road low-speed	Single image & laser	Steering	Batch	Human	Real & simulated
[24]	On-road low-speed	Single image	Steering	Batch	Human	Simulated
[20]	Off-road low-speed	Left & right images	Steering	Batch	Human	Real
[33]	On-road unknown speed	Single image	Steering + break	Online	Pre-specified policy	Simulated
Our	Off road high speed	Single image +	Steering + throttle	Batch & Model predictive co	Model predictive controller	Real &
Method	On-road nigh-speed	wheel speeds	Steering + unotite	online	woder predictive controller	simulated

Experiment – Setup Experts

High Speed driving at 7.5 m/s or 135 km / h

Cost for expert:

$$c(s_t, a_t) = \alpha_1 c_{\text{pos}}(s_t) + \alpha_2 c_{\text{spd}}(s_t) + \alpha_3 c_{\text{slip}}(s_t) + \alpha_3 c_{\text{act}}(a_t)$$

Experiment–learning trajectories

Comparing – Loss (to expert)

Policy	Avg. speed	Top speed	Training data	Completion ratio	Total loss	Steering/Throttle loss
Expert	6.05 m/s	8.14 m/s	N/A	100 %	0	0
Batch	4.97 m/s	5.51 m/s	3000	100 %	0.108	0.092/0.124
Batch	6.02 m/s	8.18 m/s	6000	51 %	0108	0.162/0.055
Batch	5.79 m/s	7.78 m/s	9000	53 %	0.123	0.193/0.071
Batch	5.95 m/s	8.01 m/s	12000	69 %	0.105	0.125/0.083
Online (1 iter)	6.02 m/s	7.88 m/s	6000	100 %	0.090	0.112/0.067
Online (2 iter)	5.89 m/s	8.02 m/s	9000	100 %	0.075	0.095/0.055
Online (3 iter)	6.07 m/s	8.06 m/s	12000	100 %	0.064	0.073/0.055

Comparing – distance travelled

Comparing – generalizability

t-Distributed Stochastic Neighbor Embedding (t-SNE)

Comparing – generalizability

(c) Batch data wrt batch model (d) Online data wrt batch model

DNN – high and low capture

(a) raw image

(b) max-pooling1

(c) max-pooling2 (d) max-pooling3

Fig. 9: The input RGB image and the averaged feature maps for each max-pooling layer.

DNN > CNN ... or Limitation?

Thank you!

Any Questions?

t-Distributed Stochastic Neighbor Embedding

Introduction

Measure pairwise similarities between high-dimensional and low-dimensional objects

4 🖬 🕨 4	17. 1	12	1.1	3.1	2	000
	the second se					

Laurens van der Maaten and Geoffrey Hinton	t-SNE	October 30, 2014 10 / 3	3
--	-------	-------------------------	---

End-to-end Driving via Conditional Imitation Learning

Wei Cui

Electrical & Computer Engineering University of Toronto

Feb 1st 2019

Wei Cui (University of Toronto)

Brief Overview of the Paper

- This paper focuses on the task of self-driving, while allowing users to interact with high-level navigation commands.
- As the conventional imitation learning is not sufficient, the agent solves the task through conditional imitation learning.

Problem Formulation

- The main task : given specified sensory inputs, the agent achieves self-driving through computing controller outputs, while following navigational guidance.
- Sensory Inputs (Observation o) :

• Controller Outputs :

$$\mathbf{a} = [\mathbf{s}, \alpha] \tag{1}$$

- s : steering angle
- α : acceleration

Wei Cui (University of Toronto)

Feb 1st 2019 3 / 16

Conditional Imitation Learning

- Conditional Imitation Learning : for both training and testing, the agent receives additional input : c (navigation command).
- The formulation for Conditional Imitation Learning :

• The high level commands explored for this paper :

 $\mathbf{c} \in \{\text{continue, left, straight, right}\}$ (3)

Network Architecture

- Two models are explored :
 - command input model
 - branched model

(b)

System Setup

- Two systems : a simulated urban environment and a physical system.
- Simulated Environment : an urban driving simulator, CARLA.
- Town 1 for training; Town 2 for exclusive testing.

Town 1 (training)

System Setup (Cont'd)

• **Physical System :** An off-the-shelf 1/5 scale truck is used (Traxxas Maxx), with an embedded computer (Nvidia TX2) which the agent model runs on.

Training Data Preparation

• Firstly, additional state-action pairs are collected through injecting noise into expert's control, and let the expert to respond. This method is an alternative to DAgger (not used in the paper).

Training Data Preparation (Cont'd)

- The authors further augment the data through applying random transformations to the images as inputs to the agent.
- The types of transformations include :
 - Change in contrast, brightness, and tone.
 - Adding Gaussian blur, Gaussian noise, salt-and-pepper noise (sparse white and black pixels).
 - Region dropout (masking out a random set of rectangles of roughly 1% of image area)

Training Details

- Some normalization used : 50% dropout after fully-connected hidden layers, and 20% dropout after convolutional layers.
- Loss Function : As mentioned before, each action contains a tuple of signals : a = [s, α].

With model's action \mathbf{a} and expert's action \mathbf{a}_e , the per-sample loss function :

$$\mathcal{L}(\mathbf{a}, \mathbf{a}_e) = ||\mathbf{s} - \mathbf{s}_e||^2 + \lambda_a ||\alpha - \alpha_e||^2$$
(4)

- Different than DAgger, the agent's parameters are optimized once after all the data is collected, without iterative loops.
- For the command-conditional models, minibatches were constructed to contain an equal number of samples with each command.

Testing Methods : Simulation Environment

• Baseline Method :

- Standard Imitation Learning : $\mathbf{a} = \mathcal{F}(\mathbf{o})$
- Variations on the current model : Investigate on the importance of each component.
 - The command input model.
 - ► The *branched* model trained without noise-injected data.
 - The branched model trained without data augmentation.
 - ► The *branched* model implemented with a shallower network.

Testing Results : Simulation Environment

	Success rate		Km per infraction	
Model	Town 1	Town 2	Town 1	Town 2
Non-conditional	20%	26%	5.76	0.89
Ours branched	88%	64%	2.34	1.18
Ours cmd. input	78%	52%	3.97	1.30
Ours no noise	56%	22%	1.31	0.54
Ours no aug.	80%	0%	4.03	0.36
Ours shallow net	46%	14%	0.96	0.42

Testing Methods & Results : Physical System

- The authors picked only 3 competitive methods in simulation environment testing for this comparison :
 - ► The *command input* model.
 - ► The *branched* model trained without noise-injected data.
 - The *branched* model trained without data augmentation.
- The results still support the necessity for each of the model's component :

Model	Missed turns	Interventions	Time
Ours branched	0%	0.67	2:19
Ours cmd. input	11.1%	2.33	4:13
Ours no noise	24.4%	8.67	4:39
Ours no aug.	73%	39	10:41

- This paper recognizes one key problem in conventional imitation learning : expert's demonstrations are often decided by certain latent factors not included in the observations (such as intentions).
- It is important to introduce a channel for the communication of this extra information, which motivates conditional imitation learning
- The method has been shown with its efficacy in self-driving task, where users' high-level navigation needs are also considered into the requirement.

A few discussions of mine...

- Under misguiding c, the agent might perform dangerous actions (such as
 [o=driving on the straight highway, c=turn right!]). This is never tested for
 this work (at least based on the paper).
- Under these considerations, perhaps a rejection option against certain **c** should be built into the agent as a safety feature.
- It is not convincing to me why the authors decided to remove the benchmark during testing the physical system case.

Appendix A : Network Architecture Details

- For both architectures explored as shown above, the individual modules are identical.
- The image module :
 - Consists of 8 convolutional and 2 fully connected layers.
 - The convolution kernel size is 5 in the first layer and 3 in the following layers. The first, third, and fifth convolutional layers have a stride of 2.
 - The number of channels increases from 32 in the first convolutional layer to 256 in the last.
 - ► Fully-connected layers contain 512 units each.
- Other modules :
 - Implemented as standard multilayer perceptrons, with ReLU nonlinearities after all hidden layers.

