
CSC2621
Imitation Learning for Robotics

Florian Shkurti

Week 2: Introduction to Optimal Control & Model-Based RL

Today’s agenda

• Intro to Control & Reinforcement Learning

• Linear Quadratic Regulator (LQR)

• Iterative LQR

• Model Predictive Control

• Learning the dynamics and model-based RL

Acknowledgments

Today’s slides have been influenced by: Pieter Abbeel (ECE287), Sergey Levine (DeepRL), Ben Recht (ICML’18), Emo Todorov, Zico Kolter

Optimal Control

control / action

external noise /

disturbance /

error

observation

state

system

Optimal Control

control / action

external noise /

disturbance /

error

observation

state

system

Optimal Control

control / action

external noise /

disturbance /

error

observation

state

system

Optimal Control

control / action

external noise /

disturbance /

error

observation

state

system

control law / policy

known dynamics

Optimal Control

control / action

external noise /

disturbance /

error

observation

state

system

control law / policy

known dynamics

action
observation

system / world

Reinforcement Learning

state

Optimal Control

control / action

external noise /

disturbance /

error

observation

state

system

control law / policy

known dynamics

policy dynamics

cost = - reward

action
observation

system / world

Reinforcement Learning

state

Optimal Control

control / action

external noise /

disturbance /

error

observation

state

system

Optimal cost-to-go:

“if you land at state x and you follow the optimal actions

what is the expected cost you will pay?

action
observation

system / world

Reinforcement Learning

state

Optimal Control

control / action

external noise /

disturbance /

error

observation

state

system

Optimal cost-to-go Optimal value function:

“if you land at state x and you follow the optimal policy

what is the expected reward you will accumulate?”

action
observation

system / world

Reinforcement Learning

state

For finite time horizon

Optimal Control

control / action

external noise /

disturbance /

error

observation

state

system

Optimal cost-to-go Optimal value function

Optimal state-action value function:

“if you land at state x, and you commit

to first execute action a, and then

follow the optimal policy how much

reward will you accumulate?”

action
observation

system / world

Reinforcement Learning

state

For finite time horizon

Optimal Control

control / action

external noise /

disturbance /

error

observation

state

system

Optimal cost-to-go Optimal value function

action
observation

system / world

Reinforcement Learning

state

For finite time horizon

Value function of policy pi:

“if you land at state x and you follow policy pi

what is the expected reward you will accumulate?”

Optimal Control

control / action

external noise /

disturbance /

error

observation

state

system

Optimal cost-to-go Optimal value

function

action
observation

system / world

Reinforcement Learning

state

For finite time horizon

Value function

of policy pi

State-action value function of policy pi:

“if you land at state x, and you commit

to first execute action a, and then follow

policy pi how much reward will you

accumulate?”

Optimal Control

control / action

external noise /

disturbance /

error

observation

state

system

Optimal cost-to-go Optimal value

function

action
observation

system / world

Reinforcement Learning

state

For finite time horizon

Value function

of policy pi

State-action value

function of policy pi

Optimal state-action

value function

Today’s agenda

• Intro to Control & Reinforcement Learning

• Linear Quadratic Regulator (LQR)

• Iterative LQR

• Model Predictive Control

• Learning the dynamics and model-based RL

Acknowledgments

Today’s slides have been influenced by: Pieter Abbeel (ECE287), Sergey Levine (DeepRL), Ben Recht (ICML’18), Emo Todorov, Zico Kolter

What you can do with LQR control

What you can do with (variants of)
LQR control

Pieter Abbeel, Helicopter Aerobatics

LQR: assumptions

• You know the dynamics model of the system

• It is linear:

State at the next time step Control / command / action applied to the system

Which systems are linear?

• Omnidirectional robot

Which systems are linear?

• Omnidirectional robot

• Simple car

Which systems are linear?

• Omnidirectional robot

• Simple car

Which systems are linear?

• Omnidirectional robot

• Simple car

The goal of LQR

• Stabilize the system around state with control

• Then and the system will remain at zero forever

The goal of LQR

• Stabilize the system around state with control

• Then and the system will remain at zero forever

If we want to stabilize around x* then

let x – x* be the state

LQR: assumptions

• You know the dynamics model of the system

• It is linear:

• There is an instantaneous cost associated with being at state

and taking the action :

Quadratic state cost:

Penalizes deviation

from the zero vector

Quadratic control cost:

Penalizes high control

signals

LQR: assumptions

• You know the dynamics model of the system

• It is linear:

• There is an instantaneous cost associated with being at state

and taking the action :

Square matrices Q and R must be positive definite:

i.e. positive cost for ANY nonzero state and control vector

Finite-Horizon LQR

• Idea: finding controls is an optimization problem

• Compute the control variables that minimize the cumulative cost

Finite-Horizon LQR

• Idea: finding controls is an optimization problem

• Compute the control variables that minimize the cumulative cost

We could solve this as a constrained

nonlinear optimization problem. But,

there is a better way: we can find a

closed-form solution.

Finite-Horizon LQR

• Idea: finding controls is an optimization problem

• Compute the control variables that minimize the cumulative cost

Open-loop plan!

Given first state compute

action sequence

Finding the LQR controller in
closed-form by recursion

• Let denote the cumulative cost-to-go starting from state x
and moving for n time steps.

• I.e. cumulative future cost from now till n more steps

• is the terminal cost of ending up at state x, with
no actions left to perform. Recall that

Finding the LQR controller in
closed-form by recursion

• Let denote the cumulative cost-to-go starting from state x
and moving for n time steps.

• I.e. cumulative future cost from now till n more steps

• is the terminal cost of ending up at state x, with
no actions left to perform. Recall that

Q: What is the optimal cumulative cost-to-go function with 1 time step left?

Finding the LQR controller in
closed-form by recursion

Finding the LQR controller in
closed-form by recursion

For notational convenience later on

Finding the LQR controller in
closed-form by recursion

Bellman Update

Dynamic Programming

Value Iteration

In RL this would be the

state-action value function

Finding the LQR controller in
closed-form by recursion

Q: How do we optimize a multivariable function with respect to some

variables (in our case, the controls)?

Finding the LQR controller in
closed-form by recursion

Finding the LQR controller in
closed-form by recursion

Finding the LQR controller in
closed-form by recursion

A: Take the partial derivative w.r.t. controls and set it to zero. That will give you a critical point.

Quadratic

term in u

Quadratic

term in u
Linear

term in u

Finding the LQR controller in
closed-form by recursion

From calculus/algebra:

If M is symmetric:

Finding the LQR controller in
closed-form by recursion

From calculus/algebra:

If M is symmetric:

The minimum is attained at:

Q: Is this matrix invertible? Recall R, Po are positive definite matrices.

Finding the LQR controller in
closed-form by recursion

The minimum is attained at:

Q: Is this matrix invertible? Recall R, Po are positive definite matrices.

is positive definite, so it is invertible

Finding the LQR controller in
closed-form by recursion

The minimum is attained at:

So, the optimal control for the last time step is:

Linear controller in terms of the state

Finding the LQR controller in
closed-form by recursion

The minimum is attained at:

So, the optimal control for the last time step is:

Linear controller in terms of the state

We computed the location of the minimum.

Now, plug it back in and compute the

minimum value

Finding the LQR controller in
closed-form by recursion

Q: Why is this a big deal?

A: The cost-to-go function remains quadratic after the first recursive step.

Finding the LQR controller in
closed-form by recursion

J remains quadratic in x throughout the recursion

…

Time 0

Time N (planning horizon)

…

u remains linear in x throughout

the recursion

Finite-Horizon LQR: algorithm summary

// n is the # of steps left

for n = 1…N

Optimal control for time t = N – n is with cost-to-go

where the states are predicted forward in time according to linear dynamics

Finite-Horizon LQR: algorithm summary

// n is the # of steps left

for n = 1…N

Optimal control for time t = N – n is with cost-to-go

One pass backward in time:

Matrix gains are precomputed based on the

dynamics and the instantaneous cost

where the states are predicted forward in time according to linear dynamics

Finite-Horizon LQR: algorithm summary

// n is the # of steps left

for n = 1…N One pass backward in time:

Matrix gains are precomputed based on the

dynamics and the instantaneous cost

One pass forward in time:

Predict states, compute

controls and cost-to-go

Optimal control for time t = N – n is with cost-to-go

where the states are predicted forward in time according to linear dynamics

Finite-Horizon LQR: algorithm summary

// n is the # of steps left

for n = 1…N

Potential problem for states of dimension >> 100:

Matrix inversion is expensive: O(k^2.3) for the best

known algorithm and O(k^3) for Gaussian Elimination.

Optimal control for time t = N – n is with cost-to-go

where the states are predicted forward in time according to linear dynamics

LQR: general form of dynamics and cost functions

Even though we assumed

we can also accommodate

but the form of the computed controls becomes

LQR with stochastic dynamics

Assume and

Then the form of the optimal policy is the same as in LQR

No need to change the algorithm, as long as you observe the state at each

step (closed-loop policy)

zero mean Gaussian

LQR with stochastic dynamics

Assume and

Then the form of the optimal policy is the same as in LQR

No need to change the algorithm, as long as you observe the state at each

step (closed-loop policy)

zero mean Gaussian

Linear Quadratic Gaussian
LQG

LQR summary

• Advantages:

• If system is linear LQR gives the optimal controller that takes the system’s
state to 0 (or the desired target state, same thing)

• Drawbacks:

LQR summary

• Advantages:

• If system is linear LQR gives the optimal controller that takes the system’s
state to 0 (or the desired target state, same thing)

• Drawbacks:

• Linear dynamics

• How can you include obstacles or constraints in the specification?

• Not easy to put bounds on control values

Today’s agenda

• Intro to Control & Reinforcement Learning

• Linear Quadratic Regulator (LQR)

• Iterative LQR

• Model Predictive Control

• Learning the dynamics and model-based RL

What happens in the general nonlinear case?

Arbitrary differentiable functions c, f

What happens in the general nonlinear case?

Arbitrary differentiable functions c, f

Idea: iteratively approximate solution by solving linearized versions of the problem via LQR

Iterative LQR (iLQR)

Given an initial sequence of states and actions

Linearize dynamics

Iterative LQR (iLQR)

Given an initial sequence of states and actions

Linearize dynamics

Taylor expand cost

Iterative LQR (iLQR)

Given an initial sequence of states and actions

Linearize dynamics

Taylor expand cost

Use LQR backward pass on the approximate dynamics and cost

Iterative LQR (iLQR)

Given an initial sequence of states and actions

Linearize dynamics

Taylor expand cost

Use LQR backward pass on the approximate dynamics and cost

Do a forward pass to get and and update state and action sequence and

Iterative LQR: convergence & tricks

• New state and action sequence in iLQR is not guaranteed to be close
to the linearization point (so linear approximation might be bad)

• Trick: try to penalize magnitude of and

Replace old LQR linearized cost with

• Problem: Can get stuck in local optima, need to initialize well

• Problem: Hessian might not be positive definite

Today’s agenda

• Intro to Control & Reinforcement Learning

• Linear Quadratic Regulator (LQR)

• Iterative LQR

• Model Predictive Control

• Learning the dynamics and model-based RL

Open loop vs. closed loop

• The instances of LQR and iLQR that we saw were open-loop

• Commands are executed in sequence, without feedback

Open loop vs. closed loop

• The instances of LQR and iLQR that we saw were open-loop

• Commands are executed in sequence, without feedback

• Idea: what if we throw away all commands except the first

• We can execute the first command, and then replan Takes into account the changing

state

Model Predictive Control

while True:

observe the current state

run LQR/iLQR or LQG/iLQG or other planner to get

Execute

Model Predictive Control

while True:

observe the current state

run LQR/iLQR or LQG/iLQG or other planner to get

Execute

Possible speedups:

1. Don’t plan too far ahead with LQR

2. Execute more than one planned action

3. Warm starts and initialization

4. Use faster / custom optimizer

(e.g. CPLEX, sequential quadratic programming)

Online trajectory optimization / MPC

Online trajectory optimization / MPC

Online trajectory optimization / MPC

Online trajectory optimization / MPC

Today’s agenda

• Intro to Control & Reinforcement Learning

• Linear Quadratic Regulator (LQR)

• Iterative LQR

• Model Predictive Control

• Learning the dynamics and model-based RL

Learning a dynamics model

Test distribution is different

from training distribution

(covariate shift)

Idea #1: Collect dataset

do supervised learning to minimize

and then use the learned model for planning

Learning a dynamics model

Test distribution is different

from training distribution

(covariate shift)

Idea #1: Collect dataset

do supervised learning to minimize

and then use the learned model for planning

Possibly a better idea: instead of minimizing single-step

prediction errors, minimize multi-step errors.

See “Improving Multi-step Prediction of Learned Time

Series Models” by Venkatraman, Hebert, Bagnell

Learning a dynamics model

Test distribution is different

from training distribution

(covariate shift)

Idea #1: Collect dataset

do supervised learning to minimize

and then use the learned model for planning

Possibly a better idea: instead of predicting next state

predict next change in state.

See “PILCO: A Model-Based and Data-Efficient Approach

to Policy Search” by Deisenroth, Rasmussen

Model-based RL

Collect initial dataset

Fit dynamics model

Plan through to get actions

Execute first action, observe new state

Append to

Today’s agenda

• Intro to Control & Reinforcement Learning

• Linear Quadratic Regulator (LQR)

• Iterative LQR

• Model Predictive Control

• Learning the dynamics and model-based RL

• Appendix

Appendix #1 (optional reading)
LQR extensions: time-varying systems

• What can we do when and ?

• Turns out, the proof and the algorithm are almost the same

// n is the # of steps left

for n = 1…N

Optimal controller for n-step horizon is with cost-to-go

Appendix #2 (optional reading)
Why not use PID control?

• We could, but:

• The gains for PID are good for a small region of state-space.
• System reaches a state outside this set → becomes unstable
• PID has no formal guarantees on the size of the set

• We would need to tune PID gains for every control variable.
• If the state vector has multiple dimensions it becomes harder to tune every control variable

in isolation. Need to consider interactions and correlations.

• We would need to tune PID gains for different regions of the state-space and
guarantee smooth gain transitions
• This is called gain scheduling, and it takes a lot of effort and time

Appendix #2 (optional reading)
Why not use PID?

• We could, but:

• The gains for PID are good for a small region of state-space.
• System reaches a state outside this set → becomes unstable
• PID has no formal guarantees on the size of the set

• We would need to tune PID gains for every control variable.
• If the state vector has multiple dimensions it becomes harder to tune every control variable

in isolation. Need to consider interactions and correlations.

• We would need to tune PID gains for different regions of the state-space and
guarantee smooth gain transitions
• This is called gain scheduling, and it takes a lot of effort and time

LQR addresses these problems

Appendix #3 (optional reading)
Examples of models and solutions with LQR

LQR example #1:
omnidirectional vehicle with friction

• Similar to double integrator dynamical system, but with friction:

Force

applied

to the vehicle

Control

applied

to the vehicle

Friction

opposed to

motion

LQR example #1:
omnidirectional vehicle with friction

• Similar to double integrator dynamical system, but with friction:

• Set and then you get:

LQR example #1:
omnidirectional vehicle with friction

• Similar to double integrator dynamical system, but with friction:

• Set and then you get:

• We discretize by setting

LQR example #1:
omnidirectional vehicle with friction

• Define the state vector

Q: How can we express this as a linear system?

LQR example #1:
omnidirectional vehicle with friction

• Define the state vector

LQR example #1:
omnidirectional vehicle with friction

• Define the state vector

LQR example #1:
omnidirectional vehicle with friction

• Define the state vector

A B

LQR example #1:
omnidirectional vehicle with friction

• Define the state vector

• Define the instantaneous cost function

A B

LQR example #1:
omnidirectional vehicle with friction

With initial state

Instantaneous cost function

LQR example #1:
omnidirectional vehicle with friction

With initial state

Instantaneous cost function

LQR example #1:
omnidirectional vehicle with friction

With initial state

Instantaneous cost function

Notice how the controls tend to zero. It’s because

the state tends to zero as well.

LQR example #1:
omnidirectional vehicle with friction

With initial state

Instantaneous cost function

Notice how the controls tend to zero. It’s because

the state tends to zero as well.

Also note that in the current LQR framework,

we have not included hard constraints on the controls,

i.e. upper or lower bounds. We only penalize large

norm for controls.

LQR example #1:
omnidirectional vehicle with friction

With initial state

Instantaneous cost function

Notice how the state tends to zero.

LQR example #2:
trajectory following for omnidirectional vehicle

LQR example #2:
trajectory following for omnidirectional vehicle

A B

We are given a desired trajectory

Instantaneous cost

LQR example #2:
trajectory following for omnidirectional vehicle

A B

Define We want

LQR example #2:
trajectory following for omnidirectional vehicle

A B

Define

Need to get rid of this additive term

We want

LQR example #2:
trajectory following for omnidirectional vehicle

A B

Define

Need to get rid of this additive term

Redefine state:

c

We want

LQR example #2:
trajectory following for omnidirectional vehicle

A B

Define

Need to get rid of this additive term

Idea: augment the state

Redefine state:

c

Redefine cost function:

We want

LQR example #2:
trajectory following for omnidirectional vehicle

With initial state

Instantaneous cost function

LQR example #2:
trajectory following for omnidirectional vehicle

With initial state

Instantaneous cost function

Appendix #4 (optional reading)
LQR extensions: trajectory following

• You are given a reference trajectory (not just path, but states and times,

or states and controls) that needs to be approximated

Linearize the nonlinear dynamics around the reference point

where
Trajectory following can be implemented as

a time-varying LQR approximation. Not

always clear if this is the best way though.

Appendix #5 (optional reading)
LQR with nonlinear dynamics, quadratic cost

LQR variants:
nonlinear dynamics, quadratic cost

What can we do when but the cost is quadratic ?

We want to stabilize the system around state

But with nonlinear dynamics we do not know if will keep the system at the zero state.

LQR variants:
nonlinear dynamics, quadratic cost

What can we do when but the cost is quadratic ?

We want to stabilize the system around state

But with nonlinear dynamics we do not know if will keep the system at the zero state.

→ Need to compute such that

LQR variants:
nonlinear dynamics, quadratic cost

What can we do when but the cost is quadratic ?

We want to stabilize the system around state

But with nonlinear dynamics we do not know if will keep the system at the zero state.

→ Need to compute such that

Taylor expansion: linearize the nonlinear dynamics around the point

A B

LQR variants:
nonlinear dynamics, quadratic cost

What can we do when but the cost is quadratic ?

We want to stabilize the system around state

But with nonlinear dynamics we do not know if will keep the system at the zero state.

→ Need to compute such that

Taylor expansion: linearize the nonlinear dynamics around the point

Solve this via LQR

LQR examples:
code to replicate these results

• https://github.com/florianshkurti/comp417.git

• Look under comp417/lqr_examples/python

https://github.com/florianshkurti/comp417.git

