CSC2621
Imitation Learning for Robotics

Florian Shkurti

Week 10: Inverse Reinforcement Learning (Part Il)

Today’s agenda

e Guided Cost Learning by Finn, Levine, Abbeel
* Inverse KKT by Englert, Vien, Toussaint
* Bayesian Inverse RL by Ramachandran and Amir

* Max Margin Planning by Ratliff, Zinkevitch, and Bagnell

Today’s agenda

e Guided Cost Learning by Finn, Levine, Abbeel

Recall: Maximum Entropy IRL [ziebart et al. 2008]

1 argmax H(p)

p(710)
subject to Z p(7]f) =1
p(rl6) =7 < T

1
Breprio) il = 150 26

Assumption: Trajectories (states and action sequences) here are discrete

Recall: Maximum Entropy IRL [ziebart et al. 2008]

1 argmax H(p)

p(7|0)

exp(0T£,) subject to Y p(r]6) =1

p(7]6) = 700) <

1
Breprio) il = 150 26

Linear Reward Function

Ro(1) =0"*£,

Recall: Maximum Entropy IRL [ziebart et al. 2008]

) pe eX T
p(7]0) = p(xo) H p(@ei1|ze, up) mo(ue|zy) = pgfg)()
exp(0'f;) =
p(rlo) = — 0)
\

Linear Reward Function

Ro(1) =0"*£,

Recall: Maximum Entropy IRL [ziebart et al. 2008]

) T-—1
exp(Ry(7))
p(7]0) = p(xo) p(x £, Up) To(Ug|Ts) = b
exp(0T£,) g // Z(0)

Z(Q) Assumption: known and
> deterministic dynamics

p(7|0) =

Linear Reward Function

Ro(T) =0"f.

Recall: Maximum Entropy IRL [ziebart et al. 2008]

exp(6'£,)

p(7|0) = 2(0)

Linear Reward Function

Ro(1) =0"*£,

p(rl0) =pieo)] puy@m rofunfer) = L)

Assumption: known and
deterministic dynamics

Log-likelihood of observed dataset D of trajectories

Zlogp'r\ﬁ] ZeTf — log Z(6)

TED TED

Recall: Maximum Entropy IRL [ziebart et al. 2008]

exp(6'£,)

p(7|0) = 2(0)

Linear Reward Function

Ro(1) =0"*£,

p(rl0) =pieo)] puy@m rofunfer) = L)

Assumption: known and
deterministic dynamics

Log-likelihood of observed dataset D of trajectories

Zlogp'r\ﬁ] ZeTf — log Z(6)

TED TED

‘Zf —Zp'r\ﬂ

TeED

Recall: Maximum Entropy IRL [ziebart et al. 2008]

_exp(0'fr)

Linear Reward Function

Ro(1) =0"*£,

Hand-Engineered Features

p(r1) = o) TT plresptéoe) ol = xp(Ro(r)

Assumption: known and
deterministic dynamics

Log-likelihood of observed dataset D of trajectories

L(#) = ﬁ > log p(7|0) = \%I > 67f —log Z(6)

TeD TeD
Serious problem:

Vo L(Q) — i E £ — E f_ > Need to compute Z(theta)
|D| every time we compute

the gradient

Guided Cost Learning [Finn, Levine, Abbeel et al. 2016]

p(7]0) = exp(—co(7))

Z(6)

Nonlinear Reward Function
Learned Features

\

p(T‘Q) — p(.fCo)]H) p($t+1‘£€t,ut) Wﬂ(ut‘xt) — eXp(Z_(CQ(J;(T))

Y

True and stochastic dynamics (unknown)

Log-likelihood of observed dataset D of trajectories

Dl Z log p(7]0) = D] Z —cy(T) — log Z(0)

TED TED

Guided Cost Learning [Finn, Levine, Abbeel et al. 2016]

~exp(—cq(7))

Nonlinear Reward Function
Learned Features

\

p(T‘Q) — p(CC())]H) p($t+1\xt,ut) Wﬂ(ut‘xt) — eXp(Z_(C;;(T))

Y

True and stochastic dynamics (unknown)

Log-likelihood of observed dataset D of trajectories

Z log p(7]0) = D] Z —co(1) — log Z(0)

TED TED

Serious problem
Vo L E Vo CQ E VQCQ) remains

TED

Approximating the gradient of the log-likelihood

Vo L ———Zveca +ZPT\9) Voco(T)
N TED
\ J
(~co(r)) M
EXP\—Co\T How do you approximate this expectation?
(710) =

Z(6)

Nonlinear Reward Function
Learned Features

Approximating the gradient of the log-likelihood

Vo L __—ZVQCH —|—ZPT‘9 VQCQ()
) TED
\ J
Y
(|9) eXp (_CQ (T)) How do you approximate this expectation?
T p—
Z(H) |dea #1: sample from p(T|9)
> (can you do this?)

Nonlinear Reward Function
Learned Features

Approximating the gradient of the log-likelihood

Vo L :_—ZVQCH ‘|‘ZPT‘9 VQCQ()
A TED \ ,
Y
(|9) eXp (_CQ (T)) How do you approximate this expectation?
T p—
Z(H) |dea #1: sample from p(T|9)
> (don’t know the dynamics ®)

Nonlinear Reward Function
Learned Features

Approximating the gradient of the log-likelihood

Vo L :——ZV(; co(T +ZPT\9 Voco(T)

) TED \ y
Y
(|9) exXp (—Cg (7_)) How do you approximate this expectation?
T p—
Z(G) Idea #1: sample from p(7'|9)
> (don’t know the dynamics ®)

|dea #2: sample from an easier distribution q(’r|9)

Nonlinear Reward Function that approximates p(7|6)

Learned Features

Importance Sampling

see Relative Entropy Inverse RL
) by Boularias, Kober, Peters

Importance Sampling

How to estimate properties/statistics of one distribution (p) given samples from another distribution (q)

 Eelf@) = [@)

Weights = likelihood ratio,
i.e. how to reweigh samples to obtain statistics of p from samples of q

Importance Sampling: Pitfalls and Drawbacks

What can go wrong!?
Problem #1:

If q(x) = 0 but f(x)p(x) > 0
for x in non-measure-zero
set then there is estimation
bias

Emmp(m) [f(l’)] -

Importance Sampling: Pitfalls and Drawbacks

What can go wrong!?

Eﬂrmp(ﬂt) [f(.ﬂb’)]

Problem #1:

If q(x) = 0 but f(x)p(x) > 0
for x in non-measure-zero
set then there is estimation
bias

Problem #2:

Weights measure mismatch
between q(x) and p(x). If
mismatch is large then some
weights will dominate. If

x lives in high dimensions a
single weight may dominate

Importance Sampling: Pitfalls and Drawbacks

What can go wrong!?

Eﬂrmp(ﬂt) [f(.ﬂb’)]

Problem #1:

If q(x) = 0 but f(x)p(x) > 0
for x in non-measure-zero
set then there is estimation
bias

Problem #2:

Weights measure mismatch
between q(x) and p(x). If
mismatch is large then some
weights will dominate. If

x lives in high dimensions a
single weight may dominate

Problem #3:

Variance of estimator
is high if (q — fp)(x) is high

Importance Sampling: Pitfalls and Drawbacks

What can go wrong!?

0.3} 1 EZENP(-’L') [f(l’)] —

For more info see:
#1, #3: Monte Carlo theory, methods, and examples, Art Owen, chapter 9
#2: Bayesian reasoning and machine learning, David Barber, chapter 27.6 on importance sampling

Problem #1:

If q(x) = 0 but f(x)p(x) > 0
for x in non-measure-zero
set then there is estimation
bias

Problem #2:

Weights measure mismatch
between q(x) and p(x). If
mismatch is large then some
weights will dominate. If

x lives in high dimensions a
single weight may dominate

Problem #3:

Variance of estimator
is high if (q — fp)(x) is high

Importance Sampling

What is the best approximating distribution q?

Best approximation ¢(x) o< f(x)p(x)

Ewmp(m) [f(l’)]

Importance Sampling

How does this connect back to partition function estimation?

200) = Y exp(—co(r))

Ervq(rio) {equ(mg)(’f))]

Importance Sampling

How does this connect back to partition function estimation?

Z0) = > exp(—co(r))

Ervq(rio) {equ(mg)(’f))]

Best approximating distribution ¢(7]0) o exp(—cg(7))

Importance Sampling

How does this connect back to partition function estimation?

L 20) = Y exp(-eo(r)
- = > exp(—o(r)
- = 3 AT ep(—otr)

q(7(6)
_ exp(~co(7)
= Eeesen |

Cost function estimate changes at each gradient step

Best approximating distribution ¢(7]0) o eXP(Therefore the best approximating distribution should change as well

Approximating the gradient of the log-likelihood

Vo L :——ZV(; co(T +ZPT\9 Voco(T)

) TED \ y
Y
(|9) exXp (—Cg (7_)) How do you approximate this expectation?
T p—
Z(G) Idea #1: sample from p(7'|9)
> (don’t know the dynamics ®)

|dea #2: sample from an easier distribution q(’r|9)

Nonlinear Reward Function that approximates p(7|6)

Learned Features

Importance Sampling

see Relative Entropy Inverse RL
) by Boularias, Kober, Peters

Approximating the gradient of the log-likelihood

exp(—cy(7))

p(7|0) = 7(0)

Nonlinear Reward Function
Learned Features

\

Vg L

Zveca +ZPT\9 Voco(T)

TED
\ J
Y

How do you approximate this expectation?

|dea #1: sample from p(7-|9)
(don’t know the dynamics ®)

|dea #2: sample from an easier distribution q(’r|9)
that approximates p(T|9)

Previous papers used { Importance Sampling

. see Relative Entropy Inverse RL
a fixed Q(T|9) by Boularias, Kober, Peters

Approximating the gradient of the log-likelihood

~exp(—cq(7))

Nonlinear Reward Function
Learned Features

\

VQ — Z V@ Cg

TED

—|—ZPT‘9 VQCQ()

\

J

Y

How do you approximate this expectation?

Idea #1:

ldea #2:

Previous papers used
a fixed q(760)

This paper uses
adaptive ¢(7|60)

<

sample from p(7_|9)
(don’t know the dynamics ®)

sample from an easier distribution q(’r|6’)
that approximates p(T|9)

Importance Sampling

see Relative Entropy Inverse RL
by Boularias, Kober, Peters

Adaptive Importance Sampling
see Guided Cost Learning
By Finn, Levine, Abbeel

Guided Cost Learning

How do you select q?

How do you adapt it as the cost ¢ changes!?

Guided Cost Learning: the punchline

How do you select q?

How do you adapt it as the cost ¢ changes!?

Given a fixed cost function c, the distribution of trajectories that Guided Policy Search computes is close to exp(—c(7))

i.e. it is good for importance sampling of the partition function Z Z

Recall: Finite-Horizon LQR

P = Q

/Il nis the # of steps left
forn=1...N
K,=—-(R+B"P,_1B)"'B"P,_A
P, = Q+K!'RK,+ (A+ BK,)"P,_1(A+ BK,)

Optimal control for time t =N —nis u; = K;x; with cost-to-go J;(x) = x! P;x

where the states are predicted forward in time according to linear dynamics

Recall: LOQG = LQR with stochastic dynamics

Assume Xi41 = Axy + Buy + Wy and c(xq,uy) = X?th -+ u?Rut

|

zero mean Gaussian

Then the form of the optimal policy is the same as in LQR u; = K;X; <—estimate of the state

No need to change the algorithm, as long as you observe the state at each
step (closed-loop policy)

Linear Quadratic Gaussian
LQG

Deterministic Nonlinear Cost &
Deterministic Nonlinear Dynamics

N
Ugs -, U1 = argmin c(X¢, uy)
UQ gy UN +—0
S.t.
X1 = f(XO7 uo) Arbitrary differentiable functions c, f
X2 = f(x1,u1)
xy = f(xXy_1,un_1)

iILQR: iteratively approximate solution by solving linearized versions of the problem via LOR

Deterministic Nonlinear Cost &
Stochastic Nonlinear Dynamics

N
Ugy -, U1 = argmin c(x¢, uy)
UQ sy UN +—0
S.t.
X1 — f(XO’ uo) + Wo Arbitrary differentiable functions c, f
X = f(xi,u1)+ws e~ N (0. W)
xy = f(Xy—1,un—1)+WnN_1

ILQG: iteratively approximate solution by solving linearized versions of the problem via LQG

Recall from Guided Policy Search

argmin Erq(r) [e(T)]
q(7)

subject to q(xX¢p1|xe, up) = N (Xea1; ferXe + furg, Fy) — Learn linear Gaussian dynamics
KL(q(7) || gprev(T)) <€

Recall from Guided Policy Search

argmin Erq(r) [e(T)]
q(7)

subject to q(xX¢p1|xe, up) = N (Xea1; ferXe + furg, Fy) — Learn linear Gaussian dynamics

KL(q(7) || gprev(7)) < €

QgPS(T) — arg(n;in E‘rwq(r) [C(T)] T H(Q(T))

subject to q(x¢y1[x¢, up) = N (Xeq1; farXe + furte, Fy)

Recall from Guided Policy Search

argmin Erq(r) [e(T)]
q(7)

subject to q(xX¢p1|xe, up) = N (Xea1; ferXe + furg, Fy) — Learn linear Gaussian dynamics

KL(q(7) || gprev(7)) < €

QgPS(T) — arg(ll;in E'rwq(‘r) [C(T)] - %(Q(T))

subject to q(x¢y1[x¢, up) = N (Xeq1; farXe + furte, Fy)

Ggps(T) = q(X0) 1:[q(Xe+1]xt, ur)g(ue|x¢)

I

Linear Gaussian
dynamics and controller

Recall from Guided Policy Search

argmin Erq(r) [e(T)]
q(7)

subject to q(xX¢p1|xe, up) = N (Xea1; ferXe + furg, Fy) — Learn linear Gaussian dynamics

KL(q(7) || gprev(T)) < €

PN
Qaps(T) = arg(m)in Er g le(T)] = H(g(T))
q\T
subject to q(Xgy1|xe,) = N(Xpp1; foeXe + furte, Fy)

T—1
Qgps(T) — Q(XO) H Q(Xt—Fl’Xta ut)Q(ut‘Xt) I

= T

Linear Gaussian Run controller on the robot

dynamics and controller Collect trajectories

Qprev = {gps

Recall from Guided Policy Search

argmin Erq(r) [e(T)]
q(7)

subject to q(xX¢p1|xe, up) = N (Xea1; ferXe + furg, Fy) — Learn linear Gaussian dynamics

KL(q(7) || gprev(T)) < €

Qgps(T) — argmin []E'rwq(‘r) [C(T)] - %(Q(T)) } > KL (Q(T) ||

q(T)

exp(—ZC(T)))

subject to (%t [xi, ur) = N(Xtﬂ; JarXe + furae, Fe) Given a fixed cost function c, the linear

Gaussian controllers that GPS computes
induce a distribution of trajectories close to
exp(—¢(7))

Z
i.e. good for importance sampling of the

partition function Z

Guided Cost Learning [rough sketch]

Collect demonstration trajectories D
Initialize cost parameters 6

Do forward optimization using Guided Policy Search for cost function Co, (7)
and compute linear Gaussian distribution of trajectories quS(T)

Vo L ———Zveca +ZPT\9) Voco(T)

TED

\ J
Y

Importance sample trajectories from Ydgps (T)

9t+1 — Ht + ’YVQL(Qt)

Regularization of learned cost functions

Qe (1) =) [(co(wes1) — col@r)) — (co(ms) — co(zi-1))]?

T+ET

Gmono(T) = Z [max (0, co(z;) — co(xs—1) — 1)]*

T+ET

Guided Cost Learning:
Deep Inverse Optimal Control via Policy Optimization

Chelsea Finn, Sergey Levine, Pieter Abbeel
UC Berkeley

Today’s agenda

* Inverse KKT by Englert, Vien, Toussaint

Setting up trajectory optimization problems

[e.g. for manipulation]

XOT ZQT(I)2 Xt

argmin co(Xo.7)
X0:T

subject to g(xo.7) <
h(XO:T) —

®(x;) Non-learned features of the current state, e.g. distance to object

Features and their weights are time-dependent

Setting up trajectory optimization problems

[e.g. for manipulation]

o (X0.7) E 9T<I)2 (X¢) ®(x;) Non-learned features of the current state, e.g. distance to object

Features and their weights are time-dependent

argmin co(Xo.7)
X0:T

- Constraints such as “stay away from an obstacle”,
0 or “acceleration should be bounded”
0

IN

subject to g(xq.7)
h(xo:7)

Setting up trajectory optimization problems

[e.g. for manipulation]

XO T 9T<I)2 Xt ®(x;) Non-learned features of the current state, e.g. distance to object
& J
Features and their weights are time-dependent
argmin Co(Xo:
EO‘T 9(O'T) . Constraints such as “stay away from an obstacle”,

or ‘“acceleration should be bounded”

+<—— Constraints such as “always touch the door handle”

subject to g(xp.7) <0
0

Solving constrained optimization problems

XOT ZQT(I)Q Xt

argmin co(Xo.7)
X0:T
subject to g(xp.7) <0
h(XOzT) = 0

Lagrangian function for this problem:

Lo(x0.7, \) = co(x0.7) + A" [

9(Xo:T)
h(XO:T)

|

KKT conditions for trajectory optimization

Lagrangian function for this problem:

XO T Z QT(I)Q Xt]
Lo(x0.7, A) = co(x0.7) + A" [iggg]

argmin co(Xo.7)
X0:T

subject to g(xq.7)
h(XO:T)

A

0
0 One of the necessary conditions for optimal motion Xg.p

vXo:T LQ(XS:TJ)\) =0

2Ja(xg,r) " diag(0) (xg.7) + A" Je(xg.r) =0

KKT conditions for trajectory optimization

Lagrangian function for this problem:

o(X0.7) ZQT(I)Q X¢))
Lo (XO:Tv)\) = Co (XO:T) +AT [}QL(XET)]

argmin co(Xo.7)
X0:T

subject to g(xo.7) <
h(XO:T) —

0
0 One of the necessary conditions for optimal motion Xg.p

vXO:T LQ(XS:T:)\) =0

2Jo (xg.7) " diag(d) ®(xp.p) + A Je(x5.0) =
H_J
What are the conditions on

the feature weights to ensure
optimality of demonstrated motion?

Inverse KKT conditions: optimality of cost

Lagrangian function for this problem:

XO T Z QT(I)Q Xt
Lo(x0.7, A) = co(x0.7) + A" [zggg]

argmin co(Xo.7)
X0:T

subject to g(xo.7) <
h(XO:T) —

0
0 One of the necessary conditions for optimal motion Xg.p

vXO:T LQ(XS:T:)\) =0

T 7 T
2Je(x0.r) diag(f) ®(xp.r) + A Je(Xp.1) =
H_J
Minimize 1(0) = ||Vx,.» Lo(X{.7,)\(9))”2 What are the conditions on
the feature weights to ensure
optimality of demonstrated motion?

Inverse KKT conditions: optimality of cost

XOT ZQT(I)2 Xt

argmin co(Xo.7)
X0:T

subject to g(xo.7) <
h(XO:T) —

Minimize [(f) = QTA(X

Lagrangian function for this problem:

Lot) = calsor) 37 (1)

One of the necessary conditions for optimal motion Xg.p

vXO:T LQ(XS:T:)\) =0

2Ja(xg,r) " diag(0) (xg.7) + A" Je(xgr) =
H_J

0.17)0 {—= What are the conditions on

the feature weights to ensure
optimality of demonstrated motion?

Inverse KKT conditions: optimality of cost

XOT ZQT(I)2 Xt

argmin co(Xo.7)
X0:T
subject to g(xp.7) <0
h(XO:T) =0
Minimize TA(xE.)0

1(0) =
subjectto 6 > O

Lagrangian function for this problem:

Lo(x0.7, A) = co(x0.7) + A" [

o)

One of the necessary conditions for optimal motion Xg.p

vXO:T LQ(XS:T:)\) =0

2Jp(x4p) " diag() ®(xg.7) +
H—J

<:| What are the conditions on

the feature weights to ensure

A Je(x5.r) = 0

optimality of demonstrated motion?

Inverse KKT conditions: optimality of cost

XOT ZQT(I)2 Xt

argmin co(Xo.7)
X0:T
subject to g(xp.7) <0
h(XO:T) = 0

Minimize [(0) = QTA(XS:T)G
subject to g > 0, ZQZ. =1

Lagrangian function for this problem:

Lo(x0.7, A) = co(x0.7) + A" [

o)

One of the necessary conditions for optimal motion Xg.p

vXO:T LQ(XS:T:)\) =0

2Js(x5,7) | diag(6)
——

O (xp.r) + A

<:| What are the conditions on

the feature weights to ensure

optimality of demonstrated motion?

Je(%p.7) =0

Inverse KKT conditions: optimality of cost

Lagrangian function for this problem:

XO T Z QT(I)Q Xt (X)
L) = .)\T g\Xo:T
o(X0.7, A) = co(X0.7) + [h(onT)
argmin co(X0.7)
X0:T
subject to g(xp.7) <0
h(Xo T) 0 One of the necessary conditions for optimal motion XQ). 7
Vxor Lo(Xg.7,A) =0
Quadratic program « AT 1 % T * o
Efficient solvers exist (CPLEX, CVXGEN, Gurobi) 2Jo(xq.7) diag(d) ®(xg.p) + A Je(xp.p0) =0
H—J
Minimize [(§) = 6" A(x}.7)0 3 What are the conditions on

9 — 1 the feature weights to ensure
E ;=

subjectto g >,
- optimality of demonstrated motion?

Inverse KKT: Learning Cost Functions of
Manipulation Tasks from Demonstrations

Peter Englert, Marc Toussaint
U Stuttgart

Part 1: Opening a door with PR2 Part 2: Sliding a box in simulation

Features

transition: Squared acceleration at each time step in joint space
posBox: Relative position between the box and the target.
vecBox: Relative orientation between the box and the target.
posFingerl/2: Relative position between the robots fingertips and the box.
posHand: Relative position between robot hand and box.

vecHand: Relative orientation between robot hand and box.

e Relative position & orientation between gripper and handle before and after unlocking the handle.

e Position of the final door state.

end-effector orientation during the whole opening motion.

Feature weights over time

3| mmmtransition
ms DOSBOX

ol mn \/2CBOX
w== nOSFinger1

== posFinger2
1} mmm posHand
=== vecHand
U |

0 10 20 30 40 50 60
timesteps

70

80

90

100

Today’s agenda

* Bayesian Inverse RL by Ramachandran and Amir

Bayesian updates of deterministic rewards

Demonstration trajectory
T = {(807 aQ, S1, A1, .-, ST)}

Reward parameters ¢

Qg(S, a) — RG(Sv a’) + 'YES’NP(S’IS,G) [VGW(S)]

How does our belief in the reward
change after a demonstration?

y _ p(r]0)p(0)
p(0]7) o (7)

Bayesian updates of deterministic rewards

Demonstration trajectory
T = {(807 aQ, S1, A1, .-, ST)}

Reward parameters ¢

Qg(S, a) — RG(Sv a’) + 'YES’NP(S’IS,G) [VGW(S)]

How does our belief in the reward
change after a demonstration?

o(0l7) = P1OPO) o(716) aexp(Z .y st,at)

p(7)

In this paper it is assumed that

MCMC sampling of the posterior

Algorithm Pol1icyWalk(Distribution P, MDP M, Step Size &)
1. Pick a random reward vector R € R!S1 /5.
2. w:=PolicyIteration(M, R)
3. Repeat
(a) Pick a reward vector R uniformly at random from the Next candidate reward vector
neighbours of R in RI°!/§.
(b) Compute Q" (s,a, R) for all (s, a) €S, A. . .
(c) If 3(s,a) € (S, A), Q7 (s,7(s), R) < Q™ (s,a R) > If the optimal policy has changed

. , , then do policy iteration starting from
i, 7= PollcyIteratlon(M R,)) the old policy

picked randomly from current one

.Set R := R and m := # with probability
R 7)
mm{l) }
Else)
i. Set R := R with probability min{1, - (ﬁ =3
4. Return R

The paper has results on mixing

Figure 3: PolicyWalk Sampling Algorithm times for the MCMC walk

Interesting result

4.2 Apprenticeship Learning

For the apprenticeship learning task, the situation 1s more in-
teresting. Since we are attempting to learn a policy 7, we can
formally define the following class of policy loss functions:

Lgolz’cy(R? m) = VI(R) - V*(R) ||,

where V*(R) is the vector of optimal values for each state
acheived by the optimal policy for R and p 1s some norm.

Theorem 3. Given a distribution P(R) over reward
functions R for an MDP (S, A,T,~), the loss function

Lgo licy (R,) is minimized for all p by 7, the optimal policy

for the Markov Decision Problem M = (S, A,T,~, Ep[R)).

Today’s agenda

¢ Max Mar in Plannin by Ratliff, Zinkevitch, and Bagnell
4

Max Margin Planning [Ratliff, Zinkevitch, and Bagnell]

Assumptions:

- Linear rewards with respect to handcrafted features

- Discrete states and actions

Main idea: (reward weights should be such that) demonstrated trajectories
collect more reward than any other trajectory, by a large margin

Max Margin Planning [Ratliff, Zinkevitch, and Bagnell]

Assumptions:

- Linear rewards with respect to handcrafted features

- Discrete states and actions

Main idea: (reward weights should be such that) demonstrated trajectories
collect more reward than any other trajectory, by a large margin

How can we formulate
this mathematically?

Detour: solving MDPs via linear programming

argmin Z dsvs

v
subject to wvg > 14 + Z T;}’avsf Vse€ S,ac A
s'eS

d 1s the initial state distribution

Detour: solving MDPs via linear programming

argmax Z Hs,als,a
a seS,aeA
subject to Z W' q = dgr + 7y Z TS psa Vs €S
acA seS,acA
tsaq = 0

Discounted state action counts / occupancy measure

@)
(s, a) = thp(st = s,ar = a)
t=0

Optimal policy

7" (s) = argmax u(s,a)
ac€A

Detour: solving MDPs via linear programming

argmin Z d Vg

v
subject to vy > 154 + Z T;:avsf Vse S,ae A Primal LP
s'eS
d is the initial state distribution

argmax Z Us.aTs.a
1)
seb,acA Dual LP
subject to Z Ws' q = dg + Z Ts atbs,a Vs e S
acA seS,acA

Max Margin Planning [Ratliff, Zinkevitch, and Bagnell]

argmin [|w||?
w,

subject to fwaT%_ >w' f, V1 €D, Vr
Is.q 1s the visitation frequency of a state action pair

F' a matrix indicating the presence of a feature at a state action pair

fr is the accumulated feature frequency along trajectory 7

d |S[x|A]
we R, peRE

Max Margin Planning [Ratliff, Zinkevitch, and Bagnell]

. 2 . N
argmin [w]] Is searching over visitation
w frequencies the same as searching
subject to w' fr. >w'f, Vr € D, V7 over policies?

[,uS,a is the visitation frequency of a state action pair]

F' a matrix indicating the presence of a feature at a state action pair

fr is the accumulated feature frequency along trajectory 7

d S|x|A
’UJGR_H/LERL' 4]

Max Margin Planning [Ratliff, Zinkevitch, and Bagnell]

Feature frequencies
for i-th demonstrated trajectory

argmin
w,

subject to wTZ w V1, € D, Vu
Is.q 1s the visitation frequency of a state action pair

for any trajectory or state action pair

F' a matrix indicating the presence of a feature at a state action pair

d S|x|A
weRY, pe R

Max Margin Planning [Ratliff, Zinkevitch, and Bagnell]

Impose large margin that is

: 9 dependent on state action pairs
argmin l|w]|
w, @

subject to ’LUTF/JTi >w' Fpu V1, € D, YV

ls.q 1s the visitation frequency of a state action pair
F' a matrix indicating the presence of a feature at a state action pair

[; a demonstration-specific weight vector for margins at each state action pair

d S|x|A
wER_F,;LGR'_F' |4l

Max Margin Planning [Ratliff, Zinkevitch, and Bagnell]

argmin [w||?
w

subject to w' Fpu,, > max [wTFu + l,iT,u] V1, € D
7

ls.q 1s the visitation frequency of a state action pair
F' a matrix indicating the presence of a feature at a state action pair

[; a demonstration-specific weight vector for margins at each state action pair

d S|x|A
weRY, peREZHMA

Max Margin Planning [Ratliff, Zinkevitch, and Bagnell]

argmin [|w||?
w,Q

subject to fwTF/ULTfi max [wTFu + l;r,u} V1, € D
I

ls.q 1s the visitation frequency of a state action pair
F' a matrix indicating the presence of a feature at a state action pair

[; a demonstration-specific weight vector for margins at each state action pair

(; a slack variable for optimality of reward

weRL, e Rf'X'A|, G e Ry

Max Margin Planning [Ratliff, Zinkevitch, and Bagnell]

Don’t allow too much slack

—

r N
| D
argmin [w||* + CZC@
w,Q
=1

subject to wTF,uT%. + ¢ 2 max [wTF,u -+ l;ru} V1, € D
Y

Is.q 1s the visitation frequency of a state action pair
F' a matrix indicating the presence of a feature at a state action pair
[; a demonstration-specific weight vector for margins at each state action pair

(; a slack variable for optimality of reward

Max Margin Planning [Ratliff, Zinkevitch, and Bagnell]

D Is this a proper formulation of a quadratic program? NO

argmin [w||? —I—CZC@- /
i=1

w,Q
7

subject to wTFuﬂ. + ¢ z[max [wTF,u -+ l;ru}] V1, € D
Y

Is.q 1s the visitation frequency of a state action pair
F' a matrix indicating the presence of a feature at a state action pair

[; a demonstration-specific weight vector for margins at each state action pair

(; a slack variable for optimality of reward

Max Margin Planning [Ratliff, Zinkevitch, and Bagnell]

But it optimizes a linear objective with linear constraints,

| D]
so we can use duality in linear programming

argmin [w||? —I—CZC@-
i=1

w,Q
7

subject to wTF/uT%. + ¢ z[max [wTF,u -+ lZ-Tu}] V1, € D
Y

Is.q 1s the visitation frequency of a state action pair
F' a matrix indicating the presence of a feature at a state action pair

[; a demonstration-specific weight vector for margins at each state action pair

(; a slack variable for optimality of reward

Max Margin Planning [Ratliff, Zinkevitch, and Bagnell]

argmin HwH2—I—CZC¢
w6 i=1

subject to wTF,uT%. + (; > min [diT'U] Vr; € D

v is the value function

d; is the initial state distribution for demonstration ¢

Is.q 1s the visitation frequency of a state action pair

F' a matrix indicating the presence of a feature at a state action pair

[; a demonstration-specific weight vector for margins at each state action pair

(; a slack variable for optimality of reward

weRL, peRI ¢ eRr,

Max Margin Planning [Ratliff, Zinkevitch, and Bagnell]

waCavi

argmin HwH2—I—CZC¢
i=1

subject to wTFuTi + (> dz-Tvi V71, € D
v > (w' F+ 1) + Z Tj:afusl Ve D,se S,ac A

)
reward >\ ~ 7/ s'€S

d; 1s the initial state distribution

Its.q 1s the visitation frequency of a state action pair

F' a matrix indicating the presence of a feature at a state action pair

[; a demonstration-specific weight vector for margins at each state action pair

(; a slack variable for optimality of reward

weRL, peR ¢ eRry

Max Margin Planning [Ratliff, Zinkevitch, and Bagnell]

: 2 Is this sufficient to make v_i the optimal value function?
argmin |w||*+ C E Gi
w,(,v; i=1

subject to wTFuTi + (> dz-Tvi V1, € D
vi > (W F+1)"+) TP VYreDseSacA
s’'eS
d; 1s the initial state distribution
Its.q 1s the visitation frequency of a state action pair
F' a matrix indicating the presence of a feature at a state action pair
[; a demonstration-specific weight vector for margins at each state action pair

(; a slack variable for optimality of reward

weRL, peR ¢ eRry

esults

mode 1 - training mode 1 - learned cost map over novel region mode 1 - learned path over novel region

mode 2 - training mode 2 - learned cost map over novel region mode 2 - learned path over novel region

