CSC2621
Imitation Learning for Robotics

Florian Shkurti

Week 1: Behavioral Cloning vs. Imitation



New robotics faculty in CS

Jessica Burgner-Kahrs Animesh Garg Myself



Today’s agenda

* Administrivia

* Topics covered by the course

* Behavioral cloning

* Imitation learning

* Quiz about background and interests

* |dentify first group of presenters for week 3



Administrivia



Administrivia
This is a graduate level seminar course

Course website: http://www.cs.toronto.edu/~florian/courses/imitation learning/

Discussion forum + announcements: https://q.utoronto.ca (Quercus)

Request improvements anonymously: https://www.surveymonkey.com/r/L||JV5LY

Course-related emails should have C5C2621 in the subject


http://www.cs.toronto.edu/~florian/courses/imitation_learning/
https://q.utoronto.ca/
https://www.surveymonkey.com/r/LJJV5LY

Prerequisites

Mandatory:

* Introductory machine learning (e.g. CSC411/ECE521 or equivalent)
* Basic linear algebra + multivariable calculus

* Intro to probability

* Programming skills in Python or C++ (enough to validate your ideas)

Recommended:

* Experience training neural networks or other function approximators

* Introductory concepts from reinforcement learning or control (e.g. value function/cost-to-go)



Prerequisites

Mandatory:
* Introductory machine learning (e.g. CSC411/ECE521 or equivalent)

If you’re missing any of
these this is not the course
* Basic linear algebra + multivariable calculus for you.

* |Intro to probabilit
P 4 You’re welcome to audit.

* Programming skills in Python or C++ (enough to validate your ideas)

Recommended: o
If you're missing this we can
* Experience training neural networks or other function approximators organize tutorials to help you.

* Introductory concepts from reinforcement learning or control (e.g. value function/cost-to-go)



Grading

One assignment: 20%
Paper presentation in class: 20%

Course project: 60%
* Project proposal: 10%
* Midterm progress report: 10%
* Project presentation: 10%
* Final project report (6-8 pages) + code: 30%
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One aSSignment: 20% } Individual submissions

Paper presentation in class: 20%

Each group will give a practice talk to me
on the Monday of the week they present

Course project: 60%
* Project proposal: 10%
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* Final project report (6-8 pages) + code: 30%



Grading

One aSSignment: 20% Individual submissions

. . We will discuss 4 papers per lecture
. o
PaPer presentatlon in class: 20% 7 students will be presenting per lecture

i.e. 1-2 students presenting each paper

Course project: 60% )
* Project proposal: 10%
* Midterm progress report: 10% > Groups of 2-3
* Project presentation: 10%
* Final project report (6-8 pages) + code: 30%
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Robots do not operate in a vacuum. They do not need to learn everything from scratch.
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Guiding principles for this course

Robots do not operate in a vacuum. They do not need to learn everything from scratch.
Humans need to easily interact with robots and share our expertise with them.

Robots need to learn from the behavior and experience of others, not just their own.



Main questions

How can robots incorporate others’
decisions into their own?

How can robots easily understand our
objectives from demonstrations?

How do we balance autonomous
control and human control in the
same system?



Main questions

How can robots incorporate others’
decisions into their own?

How can robots easily understand our
objectives from demonstrations?

How do we balance autonomous
control and human control in the
same system?

Learning from demonstrations
Apprenticeship learning
Imitation learning

Reward/cost learning

Task specification

Inverse reinforcement learning
Inverse optimal control
Inverse optimization

Shared or sliding autonomy



Applications

Any control problem where:
- writing down a dense cost function is difficult
- there is a hierarchy of decision-making processes

- our engineered solutions might not cover all cases

- unrestricted exploration during learning is slow or dangerous

https://www.youtube.com/watch?v=M8r0gmQXm1Y



Applications

Any control problem where:
- writing down a dense cost function is difficult
- there is a hierarchy of interacting decision-making processes

- our engineered solutions might not cover all cases

- unrestricted exploration during learning is slow or dangerous

https://www.youtube.com/watch?v=Q3LX]Gha7Ws
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Any control problem where:

writing down a dense cost function is difficult

there is a hierarchy of interacting decision-making processes

our engineered solutions might not cover all cases
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unrestricted exploration during learning is slow or dangerous

https://www.youtube.com/watch?v=RjGe0GiiFzw
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Any control problem where:

writing down a dense cost function is difficult

there is a hierarchy of interacting decision-making processes

our engineered solutions might not cover all cases

unrestricted exploration during learning is slow or dangerous

Robot videographer / documentarian
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Applications

Any control problem where:
- writing down a dense cost function is difficult
- there is a hierarchy of interacting decision-making processes

- our engineered solutions might not cover all cases

- unrestricted exploration during learning is slow or dangerous

https://www.youtube.com/watch?v=0XdC1HUp-rU



Back to the future

https://www.youtube.com/watch?v=2KMAAmkz9go https://www.youtube.com/watch?v=ilP4aPDTBPE

Navlab 1 (1986-1989) Navlab 2 + ALVINN (Dean Pomerlau’s PhD thesis, 1989-1993)

30 x 32 pixels, 3 layer network, outputs steering command
~5 minutes of training per road type



ALVINN: architecture

Sharp Straigh Sharp
Left Ahead Right

4 Hidden
Units

30x32 Sensor
Input Retina

https://drive.google.com/file/d/0Bz9namoRIUKMaO0p)YzRGSFVwbm8/view

Dean Pomerlau’s PhD thesis

Straight Ahead

§ 1O Sharp Left Sharp Right
5
8
o
< -
1 15 30
Output Unit
g 1
.o .
L
g
-1.0
1 15 30
Output Unit

Figure 2.7: The representation of two steering directions using a “one-of-N" encoding.
The top graph represents a straight ahead steering direction, since the middle output
unit is activated. The bottom graph represents a slight right turn, since an output unit
slightly right of center is activated.
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Figure 2.10: The representation of two steering directions using a gaussian output
encoding. The top graph represents a straight ahead steering direction, since the
gaussian “hill” of activation is centered on the middle output unit. The bottom graph
represents a slight right turn, since the “hill” of activation is centered slightly right of

the middle unit.



ALVINN: training set

To generate synthetic training data for the task of autonomous road following, I
developed a program that generated aerial views of simulated stretches of roads and
then used a model of the camera to back-project the aerial map into a 2D image of the
road ahead. The simulated road image generator used nearly 200 parameters in order
to generate a variety of realistic road images. Some of the most important parameters
are listed in Figure 3.1.

Figure 3.2: A low resolution video image of a single lane road (left) and an artificial
single lane road image created by the road image generator (right).

Online updates via

3.2 Training “on-the-fly”’ with Real Data backpropagation



Test distribution is different
from training distribution
(covariate shift)

Problems Identified by Pomerlau

the vehicle back to the middle of the road. The second problem is that naively training
the network with only the current video image and steering direction may cause it to
overlearn recent inputs. If the person drives the Navlab down a stretch of straight road
at the end of training, the network will be presented with a long sequence of similar
images. This sustained lack of diversity in the training set will cause the network to
“forget” what it had learned about driving on curved roads and instead learn to always

steer straight ahead.

Catastrophic forgetting



(Partially) Addressing Covariate Shift
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Figure 3.4: The single original video image is shifted and rotated to create multiple

Original Extrapolation
Scheme

Improved Extrapolation
Scheme

training exemplars in which the vehicle appears to be at different locations relative to

the road.




(Partially) Addressing Catastrophic Forgetting

1. Maintains a buffer of old (image, action) pairs

2. Experiments with different techniques to ensure diversity and avoid outliers



Behavioral Cloning = Supervised Learning



25 years later
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https://www.youtube.com/watch?v=ghUvQiKec2U



How much has changed?
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Figure 3: The trained network is used to generate steering commands from a single front-facing

center camera.
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End to End Learning for Self-Driving Cars, Bojarski et al, 2016
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Figure 3: The trained network is used to generate steering commands from a single front-facing
center camera.

“Our collected data is labeled with road type, weather condition, and the driver’s

o . . . . . . bR
activity (staying in a lane, switching lanes, turning, and so forth).

End to End Learning for Self-Driving Cars, Bojarski et al, 2016



How much has changed?
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Figure 5: Block-diagram of the drive simulator.



How much has changed?

Training the classifier

Autonomous
‘@, £ b drone navigation

experiments

A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots, Giusti et al., 2016
https://www.youtube.com/watch?v=umRdt3zGgpU



How much has changed?

Not a lot for learning lane following with neural networks.

But, there are a few other beautiful ideas that do not involve end-to-end learning.



Visual Teach & Repeat

Human Operator or
Planning Algorithm
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Visual Path Following on a Manifold in Unstructured Three-Dimensional Terrain, Furgale & Barfoot, 2010



Visual Teach & Repeat

Key Idea #1: Manifold Map

Build local maps relative to the
path. No global coordinate frame.

| == Reference path | . -

-14
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Fig. 5. A view of six overlapping submaps with the reference path plotted
above.

Visual Path Following on a Manifold in Unstructured Three-Dimensional Terrain, Furgale & Barfoot, 2010



- = = GPS
Vision

Visual Teach & Repeat

Key Idea #1: Manifold Map Key Idea #2: Visual Odometry

Build local maps relative to the Given two consecutive images,
path. No global coordinate frame. N how much has the camera

~._moved? Relative motion.

—— Reference path Sl

E
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y (m) x(m) Fig. 6. The visual reconstruction of a five kilometer rover traverse plotted
against GPS (Top). Although the reconstruction is wildly inaccurate at this
Fig. 5. A view of six overlapping submaps with the reference path plotted scale, locally it is good enough to enable retracing of the route. The bottom
above images show views from either end of the path, with the reference path

plotted as a series of chevrons. To the rover, the map is locally Euclidean.

Visual Path Following on a Manifold in Unstructured Three-Dimensional Terrain, Furgale & Barfoot, 2010



Visual Teach & Repeat
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https://www.youtube.com/watch?v=_ZdBfU4xJnQ https://www.youtube.com/watch?v=9dNOwwXDuqo

Centimeter-level precision in tracking the demonstrated path over kilometers-long trails.



Today’s agenda
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Back to Pomerlau

(Ross & Bagnell, 2010): How are we sure these errors are not due to
overfitting or underfitting?

1. Maybe the network was too small (underfitting)
2. Maybe the dataset was too small and the network overfit it

. T
:> Steering commands 7a(s) =0 ' s
where s are image features

Test distribution is different
from training distribution
(covariate shift)



Back to Pomerlau

(Ross & Bagnell, 2010): How are we sure these errors are not due to
overfitting or underfitting?

1. Maybe the network was too small (underfitting)
2. Maybe the dataset was too small and the network overfit it

. T
:> Steering commands 7a(s) =0 ' s
where s are image features

Test distribution is different
from training distribution
(covariate shift)

It was not 1: they showed that even a linear policy can work well.
It was not 2: their error on held-out data was close to training error.



Imitation learning # Supervised learning

(Ross & Bagnell, 2010): IL is a sequential decision-making problem.

 Your actions affect future observations/data.
* This is not the case in supervised learning

Supervised Learning
Assumes train/test data are i.i.d.

If expected training error is €
Expected test error after T decisions

Test distribution is different Te
from training distribution
(covariate shift) Errors are independent



Imitation learning # Supervised learning

(Ross & Bagnell, 2010): IL is a sequential decision-making problem.

 Your actions affect future observations/data.
* This is not the case in supervised learning

Imitation Learning

Supervised Learning

A

Train/test data are not i.i.d. Assumes train/test data are i.i.d.
If expected training error is € If expected training error is €
Expected test error after T decisions Expected test error after T decisions
- - is up to 9
Test distribution is different 1€ T'e

from training distribution
(covariate shift) Errors compound Errors are independent



DAgger

(Ross & Gordon & Bagnell, 2011): DAgger, or Dataset Aggregation

* Imitation learning as interactive supervision
* Aggregate training data from expert with test data from execution

Algorithm 1 DAgger

1: D ={(s,a)} initial expert demonstrations

2: 01 + train learner’s policy parameters on D

3: for:=1..N do

4 Execute learner’s policy my,, get visited states Sy, = {sqg, ..., 7}
5: Query the expert at those states to get actions A = {ag, ..., ar}
6 Aggregate dataset D = DU{(s,a) | s € Sy, a € A}
7 Train learner’s policy 7, , on dataset D
8

: Return one of the policies mp, that performs best on validation set




DAgger

(Ross & Gordon & Bagnell, 2011): DAgger, or Dataset Aggregation

* Imitation learning as interactive supervision
* Aggregate training data from expert with test data from execution

Imitation Learning via DAgger Supervised Learning

Train/test data are not i.i.d. Assumes train/test data are i.i.d.

If expected training error on aggr. dataset is € If expected training error is €
Expected test error after T decisions is Expected test error after T decisions

O(TE) Te

Errors do not compound Errors are independent
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https://www.youtube.com/watch?v=V00npNnWzSU



DAgger
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DAgger

Q: Any drawbacks of using it in a robotics setting?



'ves a human expert pilot the drone

BeS

https://www.youtube.com/watch?v=hNsP6-K3Hn4

Learning Monocular Reactive UAV Control in Cluttered Natural Environments, Ross et al, 2013



Today’s agenda

* Quiz about background and interests

* |dentify first group of presenters for week 3



DAgger: Assumptions for theoretical guarantees

Strongly convex loss
No-regret online learner

(Ross & Gordon & Bagnell, 2011): DAgger, or Dataset Aggregation

* Imitation learning as interactive supervision
* Aggregate training data from expert with test data from execution

Imitation Learning via DAgger Supervised Learning

Train/test data are not i.i.d. Assumes train/test data are i.i.d.

If expected training error on aggr. dataset is € If expected training error is €
Expected test error after T decisions is Expected test error after T decisions

O(TE) Te

Errors do not compound Errors are independent



Appendix: No-Regret Online Learners

Intuition: No matter what the distribution of input data, your online policy/classifier will do
asymptotically as well as the best-in-hindsight policy/classifier.

1 & 1 &
N =~ ; L;(6;) — mingee [ﬁ ZL@-(H)]

A

Policy has access to Policy has access to
data up to round i data up to round N
No-regret: lim ry =0
& N —o00



