
CSC2621: Assignment 1

Due Tuesday, February 5 at 6pm

January 22, 2019

1 Introduction

The goal of this assignment is to help you get familiar with imitation learning and DAgger applied to the driving
domain, and to also ensure that you are able to solve supervised learning tasks with neural networks. In order to
automate the process of expert demonstrations, without relying on human input, we have modified a car racing
environment in OpenAI Gym to also provide expert demonstrations from a feedback controller that allows the
car to do road following. Unlike the feedback controller that has access to the true state and coordinates of the
track, your driving policy will only have access to an image and will output a steering command.

2 Setting Up

This assignment assumes that you are running some version of Ubuntu between 16.04 to 18.04. If you are a
Windows or Mac user and you are experiencing issues, please email the instructor early on to try to resolve them.

Starter code Run git clone https://github.com/florianshkurti/csc2621w19.git in order to get the
starter code for this assignment. This should create the directory csc2621w19.

Virtualenv Set up a python virtualenv environment in the directory csc2621w19/assignments/, so that you
can install python packages without requiring administrative rights in the computer you are using. Specifically,
run virtualenv -p python3 myenv, which will setup a Python3 environment under the directory myenv. Run
source ./myenv/bin/activate in order to activate that virtual environment. Now you can begin installing
python dependencies. Start with pip3 install scikit-image

Pytorch Follow the instructions at https://pytorch.org/get-started/locally/ to install Pytorch 1.0 for
CPU or GPU, depending on whether your system has access to a GPU. If you have a GPU you will also need
to know which version of CUDA is your system running. You can do this by executing nvcc --version. If you
don’t have a GPU select None when choosing the CUDA version.

OpenAI Gym Run pip3 install gym and then pip3 install box2d-py. This assignment has been tested
with Gym version 0.10.9.

Initial training set The assignment repository includes an initial dataset of images annotated with expert
actions, which you can use for the first round of training a steering network. Run cd assignments/A1 and then
unzip dataset.zip.

Run the expert Try to run python3 racer.py --expert drives=True. If you see a car driving in the middle
of the track your installation works. The expert in this case is a feedback controller with only 4 parameters that
have been tuned. However, the expert has access to extra information, such as the distance of the car from the
middle of the road, while your learner will only have access to the image.

3 Supervised Learning (10 pts)

Fill in the code for the training procedure in train policy.py. If you have a GPU make sure that in utils.py

the device is set to cuda. Otherwise, set it to cpu. To start the training procedure run python3 train policy.py

--n epochs=50 --batch size=256 --weights out file=./weights/learner 0 supervised learning.weights

--train dir=./dataset/train/ --weighted loss=False

1



Also fill the network architecture in driving policy.py. Start with an architecture that is similar, but not
identical, to the NVIDIA end-to-end driving paper, even though it likely has too many parameters for fitting the
dataset used in this assignment. For the features of the convolutional network start with this sequential model:
24 conv, relu, 36 conv, relu, 48 conv, relu, 64 conv, relu, flatten, where each convolutional layer
(called Conv2d in Pytorch) uses a kernel/window of size 4, stride of size 2, and 1 pixel padding. For the classifier
start with this fully connected model: fc 4096, relu, fc 128, relu, fc 64, relu, fc n classes, relu

where fc stands for a fully-connected layer (called Linear layer in Pytorch). The output of the network will be
the probability of n class possible steering directions, just like in the ALVINN paper. You are not however
required to implement the gaussian-shaped discrete predictions that Pomerlau used to make consecutive classes
nearby in terms of the angle they represent. You should optimize the categorical cross-entropy loss to learn a
mapping from images to actions.

Now, try to execute the learner’s policy on the simulator. You should see that the initial policy eventually gets
outside the race track before completing one full round of driving. You should also observe that the steering
policy is wobbly on straight lines. You are not required to fix that for the purposes of this assignment.

4 Weighted Classification Loss (5 pts)

The majority of the expert demonstrations you will have in your dataset will be for driving straight ahead. Your
training set will have a significant class imbalance, where the labels corresponding to driving straight ahead (e.g.
classes 9,10,11 if n classes=20) will occur much more frequently than sharp turns. One reasonable question
to ask is whether taking this class imbalance into account when training the learner could help. To answer
that question use a weighted loss that weighs errors in each class according to the inverse frequency of occur-
rence. In Pytorch the cross entropy loss function allows you to specify such weights. Implement this minor
change in train policy.py and rerun supervised learning with the weighted loss: python3 train policy.py

--n epochs=50 --batch size=256 --weights out file=./weights/learner 0 weighted loss.weights

--train dir=./dataset/train/ --weighted loss=True

You will see that the vehicle still veers off track.

5 DAgger (5 pts)

Implement DAgger in dagger.py and run python3 dagger.py. For 10 DAgger iterations you will need to wait
about 6-7 hours if you have a GPU or about double that if you only have a CPU. If you face any problems with
this please let me know. This process should generate weights learner 0.weights, ..., learner 10.weights

at the end of each DAgger iteration. Also, keep in mind that when you run this procedure the training set in
dataset/train will be augmented with expert-labeled images from the execution of the learner’s policy. Images
from the ith DAgger run will be saved under dataset/train/expert i t cmd.jpg, where t is the timestep of
the image recorded during the ith run, and cmd is the corresponding steering command that the expert issued
for that image in [-1,1].
You should observe that as the training set increases the resulting policy will eventually be able to remain within
the track and fully traverse it.

6 What/How to submit

Submit a file called assignment_firstname_lastname_studentid.zip that contains the starter code and your
extensions to the provided starter code, under the directory assignments/A1. This zip file will include your
changes to the files train policy.py, driving policy.py, dagger.py and the learner weights for each ques-
tion (12 weight files in total). Submissions should be done on Quercus. You do not need to include a writeup of
your solutions.

2


