CSC 477 Tutorial
Probability Refresher

Radian Gondokaryono
October 5, 2022

Slides adapted from:

CSC 2515 Introduction to Machine Learning. Credit: Amir Massoud Farahmand, et. Al CSC 2515 Fall 2021:
Introduction to Machine Learning | IntroML-Fall2021 (amfarahmand.github.io)

and CSC477 (toronto.edu) Week 7



https://amfarahmand.github.io/IntroML-Fall2021/
http://www.cs.toronto.edu/~florian/courses/csc477_fall22/

Outline

* Probability Overview

* Bayes Rule

* Expectation and Variance
* Gaussian Distributions

* Covariance



Motivation

Uncertainty arises through:

* Noisy measurements

* Variability between samples
* Finite size of data sets

Probability provides a consistent framework for the quantification and
manipulation of uncertainty.



Sample Space

Sample space Q is the set of all possible outcomes of an experiment.

Observations w € Q are points in the space also called sample
outcomes, realizations, or elements.

Events E C Q) are subsets of the sample space.

In this experiment we flip a coin twice:
Sample space All outcomes Q = {HH, HT, TH, T T}
Observation w = HT valid sample since w € Q
Event Both flips same E = {HH, T T} valid event since E Cc Q



Probability

The probability of an event E, P(E), satisfies three axioms:
1: P(E) > O for every E

2: P(Q) =1

3:IfE1, E2, ... aredisjoint then

P(U E;) = ZP(Ei)




Joint and Conditional Probabilities

Joint Probability of A and B is denoted P(A, B).
Conditional Probability of A given B is denoted P(A|B).

Joint: p(A,B) = p(ANB)

A ANB B

p(ANB)

Conditional: p(4|B) = p(B)

p(A, B) = p(A|B)p(B) = p(B|A)p(A)



Conditional Example

Probability of passing the midterm is 60% and probability of passing
both the final and the midterm is 45%. What is the probability of
passing the final given the student passed the midterm?

P(F

M) = P(M,F)/P(M)
— 0.45/0.60
= 0.75



Independence
P(A|B) = P(A)

Events A and B are independent if P(A, B) = P(A)P(B).

* Independent: A: first toss is HEAD; B: second toss is HEAD;
P(A, B)=0.5 * 0.5 = P(A)P(B)

* Not Independent: A: first toss is HEAD; B: first toss is HEAD;
P(A, B) =0.5 = P(A)P(B)



Marginalization and Law of Total Probability

Law of Total Probability P(X)=) P(X,Y)=) PX[Y)P(Y)
Y Y
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Law of Total Probability | Partitions | Formulas (probabilitycourse.com)



https://www.probabilitycourse.com/chapter1/1_4_2_total_probability.php

Bayes’ Rule

(B|A)P(A)
(A|B)
P(B)
P(x|0)P(0)
, Likelihood x Prior
Posterior = :
Evidence

Posterior o< Likelihood x Prior



Probability Distribution Statistics

Mean: First Moment, u

E|[X] = Z xip(x;) (univariate discrete r.v.)
1=1
E|[X] = ] rp(x)dx (univariate continuous r.v.)
o p(x)

Variance: Second (central) Moment, o
Var(X) = E[(X - E[X]))]
— E[X? — 2X E[X] + E[X]*]
= E[X?] - 2E[X] E[X] + E[X]*
=E[X*] - E[X]?

Mean



Univariate Gaussian Distribution

Also known as the Normal Distribution, A (u, )
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Multivariate Gaussian Distribution

Multidimensional generalization of the Gaussian.

x 1s a D-dimensional vector

1t 1s a D-dimensional mean vector

Y is a D x D covariance matrix with determinant |X|
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Multivariate Gaussian Distribution

1

N (x|p, X) = (QW;D/z |z:|11/2 exp (—§(x — @) T (x - u))
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Covariance

* Measures linear dependence between random variables X, Y. Does
not measure independence.

Cov|X,Y] = E[XY] - E[X]E[Y]

* Variance of X

Var[X] = Cov[X] = Cov[X, X| = E[X?] — E[X]?

Cov[AX +b] = ACov[X]AT

Cov[X 4+ Y] = Cov[X] 4 Cov[Y]| — 2Cov[X, Y]



Covariance Matrix
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Understanding the Covariance Matrix | DataScience+ (datascienceplus.com)



https://datascienceplus.com/understanding-the-covariance-matrix/

Covariance Matrix

* Measures linear dependence between random variables X, Y. Does
not measure independence.

Cov[X,Y] = E[XY] — E[X]E[Y]

* Entry (i,j) of the covariance matrix measures whether changes in
variable X; co-occur with changes in variable Y/

* |t does not measure whether one causes the other.



