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Outline

e Notation reminder, and a couple useful facts
e Intro to linear least squares (with an example)
e Singular Value Decomposition

o Relationship to eigendecomposition



Notation Reminder - Inverse

AX =] <= X =41

e If Alexists, A is nonsingular.
e All the following are equivalent
o A is nonsingular
o det(A)!=0
o rank(A)=n
o AX =0 has a unique solution x =0



Notation Reminder - Orthogonal Matrix
R'Q=0QQ" =1

e Equivalently, if all the rows & columns are orthonormal ie

Q: [QI:QQ:'”:Q?’E}



Notation Reminder - Vector Norms ””U H

e P-Norms
1/p

n
Jollp= | D luil?
i=1

e 1-Norm = Sum of elements, 2-Norm = Euclidean Distance,
Infinity-Norm = Largest Element



Linear Least Squares by Example



How to Estimate the Location of the Wall?

Idea: Fit a line to the sample points.

This is an over-determined system



Least Squares: Minimize Sum of Squared Error
b
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Least Squares: Minimize Sum of Squared Error

N

. 1/2

T = arg min Z(bi — a?;:t:)Q
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Least Squares: Minimize Sum of Squared Error

N

r = argmin ||b — Aa:||§
I



Least Squares Criterion
f(x)
~ : 2
Very general formulation: £ = al'g 1111 Hb — hm(A) Hz
xr

Most common options (not covered much in this course):

1. Take gradient of f(x) wrt. x
2. Approximate h with a linear function h = A X

Can use Linear or nonlinear least squares to set up all kinds
of modelling problems as optimization problems.
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Least Squares: Solution
Vf(z)=2A"(Az —b) =0

if b=Az" +v, v~N(0,0]) this produces the
optimal estimator (BLUE)

To calculate with numpy:

®¢ numpy.linalg.pinv (A)
® x hat = numpy.linalg.lstsg(A, b)



Issues Computing the Solution
—1
i (AT4)  ATh— alb

Computing (A7 A)~! by Gaussian Elimination is
numerically unstable and slow!

We can do better if we decompose A

(Cholesky Factorization, skip)
o A=[Q Q] IO% (QR Factorization, skip)
e A=UxV! (Singular Value Decomposition)



Singular Value Decomposition (SVD)




Singular Value Decomposition (SVD)

A=UxVv?
T

Orthogonal Diagonal Orthogonal
(Squared eigenvalues)

ZT = Reciprocal of each diagonal entry, transpose

Very useful fact:

ATA=vzivtuzsv? =v(Zie)v?



nxn nxd dxd

SVD Example A UEVT

Y. has diagonal elements

01 > 09 >...2 0 > Ofy] = Oy =...= 0

Where O are the square root of the eigenvalues of AT Aand k = rank(A)

A=[1 0]

AT A — {(1)][1 0] = [é 3}

det(ATA—M)=0= X\ =1, rank(4) = 1

S=[1 0]



nxn nxd dxd

SVD Example A UZVT

V — [’Ul V2 ... Vg Vt1 - .- ’Ud]
N J J
N Y

N.ormalizted ” Obtained from ATA’UJ' =0
eigenvectors o such that orthogonality of V is

AT A satisfied
AT Av, = 0
(ATA—XDvy; =0, A\ =1 o
1 0
0 0 [ ]WZO
_ 1
V1 * Vg — O O 1



SVD Example

nxn nxd dxd

A Uxsv?

U —

Uy U ... Up Upr] ... Uy

AN
~
Normalized Obtained from
i t f
elgenveczczrs o) AATuj — 0
AA

AAT =[1 0] Ll)] =1
det(AAT — M) =0= )\ =1
AATu = Muy <= u =g
u; =1
U=1




SVD and Solving Least Squares A=Uxv!

If we can compute AT = (ATA)_lAT stably, we can
solve LS problems.

Recall: ATA — V (ETE) VT
so Al = VXIU!

To calculate with numpy
e U,S,V = numpy.linalg.svd(A)
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