
Introduction to ROS

Slides adapted from: http://courses.csail.mit.edu/6.141/spring2014/pub/lectures/Lec05-ROS-Lecture.pptm

A meta-operating system for
robots

What is ROS?

• A “Meta” Operating System.
• Open source
• Runs in Linux (esp. Ubuntu)
• OS X support
• Ongoing Windows implementation

• Nodes
• Message passing

• Publish
• Subscribe
• Services via remote invocation

• Supports numerous programming languages (C++, Python, Lisp, Java)

What is ROS?

• Low level device abstraction
• Joystick
• GPS
• Camera
• Controllers
• Laser Scanners
• …

• Application building blocks
• Coordinate system transforms
• Visualization tools
• Debugging tools
• Robust navigation stack (SLAM with loop closure)
• Arm path planning
• Object recognition
• ...

Application
building
blocks

System
software

ROS

What is ROS?

• Software management (compiling, packaging)
• Remote communication and control

What is ROS?

• Founded by Willow Garage
• Exponential adoption
• Countless commercial, hobby, and academic robots use ROS

(http://wiki.ros.org/Robots)

ROS Philosophical goals

• “Hardware agnosticism”
• Peer to peer
• Tools based software design
• Multiple language support (C++/Java/Python)
• Lightweight: runs only at the edge of your modules
• Free
• Open source
• Suitable for large scale research and industry

ROS software
development

Conceptual levels of design

10

Node 1
Laser Scanning

Node 2:
Map Building

Node 3:
Planning

(C) File-system level: ROS Tools for managing source code,
build instructions, and message definitions.

Node 4 (B) Computation Graph: Peer-to-Peer Network of
 ROS nodes (processes).

Node 5

Node 6
Node7

Carnegie Mellon

(A) ROS Community: ROS Distributions, Repositories

Tools-based software design

Tools for:

• Building ROS nodes (catkin_make)
• Running ROS nodes (rosrun, roslaunch)
• Viewing network topology (rqt_graph)
• Monitoring network traffic (rostopic)

Many cooperating processes, instead of a single monolithic program.

Multiple language support

• ROS is implemented
natively in each
language.

• Quickly define
messages in language-
independent format.

Python Node:
Laser Scanner

C++ Node :
Map Building

Topic:
“LaserData”

PublicationSubscription

Header header
Points32[] pointsXYZ
int32 numPoints

File: PointCloud.msg
File-system level

Lightweight

• Encourages standalone libraries with no ROS dependencies:

Don’t put ROS dependencies in the core of your algorithm!

• Use ROS only at the edges of your interconnected software modules: Downstream/Upstream interface

• ROS re-uses code from a variety of projects:

• OpenCV : Computer Vision Library

• Point Cloud Library (PCL) : 3D Data Processing

• MoveIt : Motion Planning Carnegie
Mellon

ROS Community

Peer to Peer Messaging

• No Central Server through which all messages are routed.
• “Master” service run on 1 machine for name registration +

lookup
• Messaging Types:

• Topics : Asynchronous data streaming
• Parameter Server

Computation Graph

Peer to Peer Messaging

• Master: Lookup information, think DNS
roscore command  starts master, parameter server, logging

• Publish: Will not block until receipt, messages get queued.
• Delivery Guarantees: Specify a queue size for publishers: If publishing too

quickly, will buffer a maximum of X messages before throwing away old ones
• Transport Mechanism: TCPROS, uses TCP/IP
• Bandwidth: Consider where your data’s going, and how

Computation Graph

Free & Open Source

• BSD License : Can develop commercial applications
• Drivers (Kinect, Joystick, Lasers, and others)
• Perception, Planning, Control libraries
• Interfaces to other libraries: OpenCV, PCL, etc.

ROS Debugging

17

• Shutdown “Object” node  re-compile  restart : won’t disturb system

• Logging (VIDEO)

Kinect Driver
Object

Recognition

Laser Scanner

Logger

Object
RecognitionLogger Playback

• Playback (VIDEO)

http://youtu.be/pwlbArh_neU
http://youtu.be/HacG_FWWPOw

Useful ROS Debugging Tools

• rostopic: Display debug information about ROS topics: publishers, subscribers, publishing
rate, and message content.

rostopic echo [topic name]  prints messages to console

rostopic list  prints active topics

… (several more commands)
• rqt_plot : Plot data from one or more ROS topic fields using matplotlib.

rqt_plot /turtle1/pose/x,/turtle1/pose/y  graph data from 2 topics in 1 plot

Record data from published to
topics
rosbag record [topics] -o <output_file>

Play back recording
rosbag play <input_file> --clock

Useful ROS Debugging Tools

rqt_graph

ROS Visualization

Visualize:

• Sensor data
• Robot joint states
• Coordinate frames
• Maps being built
• Debugging 3D markers

VIDEO

http://youtu.be/i--Sd4xH9ZE

rviz

ROS Transformations

• “TF” = Name of Transform package

• TF Handles transforms between coordinate
 frames : space + time

• tf_echo : print updated transforms in console

Example:
rosrun tf tf_echo [reference_frame] [target_frame]

Packages

• Perception

• Point Cloud Library (PCL)

• OpenCV

• Kinect/OpenNI

ROS Simulator

Gazebo

● Can simulate different robots, sensors, and
environments

● Develop algorithms and test in the simulator
● If model is good enough, same code will work on the real
robot with similar performance.

ROS Resources

• http://www.ros.org

• http://wiki.ros.org

• ROS Tutorials: http://wiki.ros.org/ROS/Tutorials
• Gazebo: http://gazebosim.org/

http://www.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/ROS/Tutorials

	Introduction to ROS
	Slide 2
	A meta-operating system for robots
	What is ROS?
	What is ROS?
	What is ROS?
	What is ROS?
	ROS Philosophical goals
	ROS software development
	Conceptual levels of design
	Tools-based software design
	Multiple language support
	Lightweight
	Peer to Peer Messaging
	Peer to Peer Messaging
	Free & Open Source
	ROS Debugging
	Useful ROS Debugging Tools
	rosbag
	Useful ROS Debugging Tools
	ROS Visualization
	rviz
	ROS Transformations
	Packages
	Slide 25
	ROS Resources

