Linear Algebra and Least Squares Refresher

Arnold Kalmbach Comp 417 Tutorial #2 Jan. 20, 2017

Outline

- Notation reminder, and a couple useful facts
- Intro to linear least squares (with an example)
- Singular Value Decomposition
 - Relationship to eigendecomposition

Notation Reminder - Inverse

$$AX = I \iff X = A^{-1}$$

- If A⁻¹ exists, A is nonsingular.
- All the following are equivalent
 - \circ **A** is nonsingular
 - o det(A) != 0
 - o rank(A) = n
 - Ax = 0 has a unique solution x = 0

Notation Reminder - Orthogonal Matrix

$$Q^T Q = Q Q^T = I$$

• Equivalently, if all the rows & columns are orthonormal ie

$$Q = \begin{bmatrix} q_1, q_2, \dots, q_n \end{bmatrix}$$
$$q_i^T q_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Notation Reminder - Vector Norms $\|v\|$

• P-Norms

$$\|v\|_{p} = \left(\sum_{i=1}^{n} |v_{i}|^{p}\right)^{1/p}$$

 1-Norm = Sum of elements, 2-Norm = Euclidean Distance, Infinity-Norm = Largest Element

Linear Least Squares by Example

How to Estimate the Location of the Wall?

Idea: Fit a line to the sample points.

This is an over-determined system

Least Squares: Minimize Sum of Squared Error

Least Squares: Minimize Sum of Squared Error

Least Squares: Minimize Sum of Squared Error

Least Squares Criterion

Very general formulation: $\hat{x} = \arg\min_{x} \|b - h_x(A)\|_2^2$

Most common options (not covered much in this course):

- 1. Take gradient of *h*(*A*) wrt. *x*
- 2. Approximate *h* with a linear function

Can use Linear or nonlinear least squares to set up all kinds of modelling problems as optimization problems. Least Squares: Solution

$$\nabla f(\hat{x}) = 2A^T (A\hat{x} - b) = 0$$
$$(A^T A)\hat{x} = A^T b$$
$$\hat{x} = (A^T A)^{-1} A^T b = A^{\dagger} b$$

If $b = Ax^{\star} + v$, $v \sim \mathcal{N}(0, \sigma I)$ this produces the **optimal** estimator (BLUE)

To calculate with numpy:

- numpy.linalg.pinv(A)
- x_hat = numpy.linalg.lstsq(A, b)

Issues Computing the Solution

$$\hat{x} = \left(A^T A\right)^{-1} A^T b = A^{\dagger} b$$

Computing $(A^T A)^{-1}$ by Gaussian Elimination is numerically unstable and slow!

We can do better if we decompose A

• $A = LL^T$ (Cholesky Factorization, **skip**) • $A = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix}$ (QR Factorization, **skip**) • $A = U\Sigma V^T$ (Singular Value Decomposition)

Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD)

 $\Sigma^{\dagger} \stackrel{\Delta}{=}$ Reciprocal of each diagonal entry, transpose

Very useful fact:

$$A^T A = V \Sigma^{\dagger} U^T U \Sigma V^T = V (\Sigma^{\dagger} \Sigma) V^T$$

SVD and Eigendecomposition $\ \ A = U \Sigma V^T$

Recall: For nonsingular A, eigenvectors x and eigenvalues lambda are the solutions to $Ax = \lambda x$

Or equivalently with x the rows of orthogonal matrix Q

$$AQ = Q\Lambda \leftrightarrow A = Q\Lambda Q^{-1}$$

Recall: $A^T A = V \left(\Sigma^{\dagger} \Sigma \right) V^T$

So $\Sigma^{\dagger}\Sigma$ is the diagonal eigenvalue matrix for A^TA and V is the eigenvector matrix (similar for $AA^T, \Sigma\Sigma^{\dagger}, U$)

If we can compute $A^{\dagger} = (A^T A)^{-1} A^T$ stably, we can solve LS problems.

Recall:
$$A^T A = V \left(\Sigma^\dagger \Sigma \right) V^T$$
 So $A^\dagger = V \Sigma^\dagger U^T$

To calculate with numpy

• U,S,V = numpy.linalg.svd(A)