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Abstract

Satistical inefficiency often limits the effectiveness of
particle filters for high-dimensional Bayesian tracking
problems. To improve sampling efficiency on continuous
domains, we propose the use of a particle filter with hybrid
Monte Carlo (HMC), an MCMC method that follows
posterior gradients toward high probability states, while
ensuring a properly weighted approximation to the poste-
rior. We use HMC filtering to infer the 3D shape and motion
of people from natural, monocular image sequences. The
approach currently uses an empirical, edge-based likeli-
hood function, and a second-order dynamical model with
soft bio-mechanical joint constraints.

1 Introduction

Statistical inefficiency often limits the effectiveness
of Monte Carlo methods for probabilistic inference and
Bayesian tracking. Most applications of particle filters,
for example, have been limited to problems in which the
number of state variables is relatively small. In high di-
mensions they quickly become computationally expensive
as the required number of samples grows exponentially
with dimension. One promising direction for improving
statistical efficiency involves the use of Markov chain
Monte Carlo (MCMC) updates after particle propagation
[5, 23]. In experiments with synthetic data, it was shown
that MCMC updates can produce Bayesian state estimates
several orders of magnitude faster than conventional par-
ticle filters yet with similar estimator variance [5]. In this
paper, we use hybrid Monte Carlo (HMC) to infer the 3D
shape and motion of people from natural image sequences.
The HMC filter uses an empirical edge-based likelihood
function and a second-order dynamical model with soft
bio-mechanical joint constraints.

2 Bayesian Filtering and People Tracking

The goal of Bayesian filtering is to compute the poste-
rior probability distribution P, = p(s;|z;.:) over a hid-
den state s; at time ¢, conditioned on image observations,

21+ = (z1,-.-,2), Up to time ¢. Like many tracking prob-
lems, we model the time-varying state as a Markov process,
and we assume that observations are independent given s;.
Then we may factor the posterior, p(s; | z;.¢), to obtain

(St Z1:e) = kp(Ze|S) P(St|Z1ie—1) s ()

where « is a constant, independent of s;. Here, p(z; |s;)
is the likelihood function, and the prediction distribution,
(St | Z1.4—1), is easily shown to be

p(S | 21s) = / (S Si—1) D(S—t | Z1tm) dS—1 . (2)

When the posterior distribution is complex, nonGaus-
sian, and multimodal, it is often appropriate to compute non-
parametric approximationsto it. Particle filters approximate
the posterior using a discrete set of weighted states (or par-
ticles) [1, 7, 11, 12, 16]. Simple particle filters draw states,
st, directly from the prediction distribution in order to bound
the search for high probability states. These states are then
weighted so they properly approximate the posterior, rather
than the prior from which they were drawn. The importance
weights, w¢, are simply equal to the normalized likelihood
values, p(z; | ), i.e., the probability that the current obser-
vations were generated by the hypothesized state. The re-
sulting samples, S; = {si,w!} ,, are said to be properly
weighted when sample averages approximate expectations
under the posterior P, [16]; i.e.,

N
Eslf(8)] = Dwif(s) =F Enlf®)], @)

for sufficiently smooth functions f.

The success of a Monte Carlo method depends on its abil-
ity to maintain a good approximation to the posterior. Fol-
lowing (3), one way to assess the quality of the filter is to
examine the expected distance between the sample mean,
Es,[s:], and the true posterior mean, pu; = Ep,[S], over
many runs of the filter; e.g.,

E[Eslsl-m)’] = TEr[(s — ] . @

Here, « is often referred to as an inefficiency factor. If the
N samples in S; were drawn independently from P; then it
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Figure 1. Particle filters draw independent samples from a
prediction volume (solid ellipse) in order to find high prob-
ability states inside the posterior volume (dashed circle).

is straightforward to show that a = 1. By comparison, in
trying to find posterior states, particle filters draw indepen-
dent samples from the prediction distribution. In this case,
the effective number of independent samples will be given
by the number of samples drawn which are also high prob-
ability states. As illustrated in Fig. 1, the expected fraction
of high probability samples depends on the ratio of the effec-
tive volumes of the prediction density and the posterior den-
sity. Unfortunately, this ratio, and hence the required num-
ber of particles, grows exponentially with the dimension of
the problem. A common measure of the effective number of
(independent) samples is given by a/N and approximated
as N/ > (wi)? [3, 15, 17].

One can reduce the number of particles by choosing a bet-
ter prediction distribution, e.g., by improving the dynamical
model or by finding a low-dimensional subspace in which
the tracking can be performed [14, 22]. This is appropriate
when low-dimensional representations are available. Other
ways to obtain better proposals involve importance sam-
pling, partitioned sampling [17], or sampling from low-level
detectors in order to rapidly inject good hypotheses into the
sample set [1, 13]. Deutscher et al. [6], Cham and Rehg
[4], and Plankers and Fua [21] tackle the problem of track-
ing people in high dimensional spaces by following gradi-
ents to good hypotheses. Although such methods produce
maximal-likelihood parameter estimates, they do not pro-
duce an approximation to the desired posterior. Even with
multiple hypotheses [4], the samples are not likely to be
properly weighted with respect to the posterior.

HMC is an MCMC method that follows the gradient of
the posterior to good hypotheses, while designed to ensure
that it draws fair samples from the posterior [8, 19]. When
properly tuned, it allows for long trajectories through state
space so the posterior can be sampled rapidly. Choo and
Fleet [5] proposed an HMC filter that uses multiple Markov
chainsto explore multiple minima. They found the HMC fil-
ter to be several orders of magnitude more efficient than con-
ventional particle filters. Sminchisescu and Triggs [23] pro-
posed a variation on HMC that lowers the effective energy
walls between neighboring extrema to facilitate the explo-
ration of local maxima of the posterior. Although encourag-
ing, both these papers did experimental work with synthetic
data; Choo and Fleet required labeled moving light displays,
while Sminchisescu and Triggs used hand-marked 2d joint
locations. This paper, by comparison, describes progress to-
ward an HMC filter for tracking 3D people directly from
monocular, grayscale image sequences.
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Figure 2. Human model: (left) frontal view. (right) 3D view.

3 Generative Model Formulation

Before discussing the HMC filter in detail, we begin by
formulating our state-space model, along with the genera-
tive model for the observations and the temporal dynam-
ics. These probabilistic formulations provide the foundation
from which we derive the form of the likelihood function
and the prediction distributions, as well as their gradients.

3.1 Articulated Human M odel

Our human body model (Fig. 2) is an articulated collec-
tion of cylindrical parts. Each limb comprises two tapered
cylinders with circular cross-sections. The torso is tapered
with an elliptical cross section, and the head is spherical.
Quadratic part definitions were chosen to simplify image
projections of occluding boundaries.

Rigid transformations specify the relative positions and
orientations of parts with respect to one another in a hierar-
chical manner. Each elbow and knee joint has one rotational
degree of freedom. Each hip and shoulder joint has three de-
grees of freedom, represented using Euler angles. Finally,
six degrees of freedom are used to specify the location and
orientation of the torso with respect to a camera-centered co-
ordinate system. The state, s;, therefore includes 4 variables
for each limb, and 6 more for the torso.

3.2 Edge-Based Likelihood Function

The likelihood is derived from an empirical model of
image structure in the neighborhood of occluding surface
boundaries. Following [20], the observation density is de-
termined from the response behavior of orientation-tuned,
band-pass filters [10] that are steered to the orientation of
the boundary. Nestares and Fleet [20] showed that, condi-
tioned on the image position and orientation of a surface
boundary, the responses of filters on the boundary, steered
to the boundary orientation, were well modeled as functions
of their complex-phase and amplitudes.

The density for a phase measurement, ¢ € [0, 7), condi-
tioned on log amplitude p and the edge state, is well modeled
by a mixture of a Gaussian and a uniform density [20]:

p(@1p,5) = e(p) G(¢ip,0%) + (L—e(p))pe, (5)



Probability Density

o

1 2 3 4 5
Log Amplitude

Probability Density

o

0.2 0.4 0.6 0.8 1
Phase (n radians)

Figure 3. (left) Conditioned on the state, the white dots de-
note image locations where amplitude and phase responses
are measured. (right) Examples of observation densities for
log amplitude and phase measurements.

where p. = 1/ is the uniform outlier probability, the Gaus-
sian mean and standard deviation can be fixed at p = 7/2
and ¢ = 0.157, and the mixing probability, e(p), is well
modeled as a linear function of p. The density for the nor-
malized IOQ amplitUde’ i-e'1 pl = (p_pmin)/(pmaz_pmin)y
is similarly well modeled by a Beta distribution [20]; i.e.,

plpls) = {”"(“vb) (P’)“a1 (1—p/)tt o

where x(a, b) is the appropriate normalization constant. Fig
3 shows examples of the observation densities in (5) and (6).

Given the state sand the quadratic form of the body parts,
it is relatively easy to solve analytically for the location
and orientation of each part’s occluding boundaries. Un-
der pseudo-orthographic projection, the visible boundaries
of each part lie in a plane that bisects the part and is perpen-
dicular to the line of sight. Here, we first find the boundary
end-points of each part givenby by p = etr (exc)/||lexc]|,
where eis an end-point of the part’s cylindrical axis, r is the
part radius, and c is the camera viewing direction. These
endpoints are then projected into the image under perspec-
tive projection, yielding a polygonal approximation to the
shape of each part. We then use the convexity of the parts
to detect the regions of each part that occluded one another.

Along each part boundary we obtain measurements at eg-
uispaced pixel locations (see Fig. 3). For the visible edge
segments, the likelihood function is simply the observation
density for the band-pass filter responses in (5) and (6). An
outlier noise process is used to model samples that are oc-
cluded from view. This yields a likelihood function, at im-
age location 4, for body part j, of the form:

Lij = {p(ﬁbi,j | pij»S) ppij|'s) ifvisible

0<p' <1
otherwise

Poce otherwise , 0
where p,.. is a constant occlusion probability, and L ; ; is of
course a function of the state s.

Based on the observation model in (7), we formulate the
edge-based log likelihood for the body in terms of the joint

probability over measurements on all .J body parts, normal-
ized by the number of measurements » ; on each part:

191 G

j=1 =1

L(s) = p({9ij,pij}19)

Normalization with n ; and the constant occlusion probabil-
ity in (7) are motivated by computational, rather than the-
oretical issues. They account for the lack of a background
model for model comparison, and they broaden the likeli-
hood somewhat so that narrow peaks are easier to find.

Unlike the particle filter, the HMC filter requires the gra-
dient of the log likelihood. Given (8), the partial derivative
of log L(s) with respect to the k" state variable is

j

810gL XJ:Z 1 8logL,J ©)

- Osp
k j=11i=1

The derivative for an individual measurement is given by

610gL,'7j o 6lOgLi7j %2 + 6lOgLi7j %ﬂ (10)
0sy, - 0¢p  OX Osyg dp  OXOsy

if the sample is visible, and 0 otherwise. The phase deriva-
tive of log L; ; is given by

dlogLi; _ _ —1 <¢—u
o — p(@lps) \ o2

and the derivative with respect to log amplitude is

dlogL;;  0e(p) G(d;p,0)—1 . a—1l  b-1
dp ap  p(¢]p,9) P—Pmin  Pmaz—P
The phase and amplitude gradients with respect to spatial
position in (10) are computed as in [9], and the derivative of
measurement locations, x, with respect to the state variable
Sk, is obtained by differentiating the projection of the limb
boundaries onto the image plane.

3.3 Second-Order Stochastic Dynamics

To complete the generative model, the temporal dynam-
ics specifies the stochastic evolution of states from one time
to the next. Unlike previous approaches that assumed highly
constrained models, such as walking [22], the goal here is a
generic model of smooth 3D motion. Accordingly, we as-
sume a simple second-order Markov process. Towards this
end, it is convenient to define an augmented state y; [2]:

Yi= Bg - [&Stl] ' ()

> G(¢;m,0),

With this one can derive new filtering equations that are
identical to those in (1) and (2) but with s, replaced by y:

P(yi|z1:e) = Kp(z ] Yt+)p(Yt |Z1:6-1) - (12)
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Figure 4. Examples of Beta noise densities with modes cen-
tered at the predicted joint angle (0).

The likelihood depends solely on the current body configu-
ration; the full augmented state is used only for prediction.

The dynamics consist of a deterministic prediction, y;” =
a1y;_, — azy,_,, and additive process noise, 7:

yi =y +n@7), and y, =y, . (13)

Here, the coefficient a5 controls the extent to which velocity
influences the prediction; i.e., we can rewrite the prediction
as y?_ = (041—042) yg_—l +a2 Vi1 where Vi1 = yg_—l_yt_—l
is a measure of the velocity from time ¢—2 to time ¢t —1.

For torso position and rotation variables we use Gaussian
and wrapped Gaussian process noise respectively. For the
remaining joint angles the process noise must respect the ap-
propriate bio-mechanical joint limits. As depicted in Fig. 4,
we let the noise n have a Beta density, with fixed variance
and a mode that is bounded softly above and below. In ef-
fect, we simply set the mode to be the prediction y;", but
clipped at the physical joint limits. As shown in Fig. 4, the
densities become increasingly skewed as the clipped predic-
tion state parameter approaches the joint boundaries.

3.4 Prediction Distribution

With Monte Carlo approximations to the posterior, the
integration in (2) yields a mixture model. For N equally
weighted particles {y:_, }%¥ ,, the prediction density is

N
1 .
p(yt|zie-1) = N E p(yelyir=yi ). (14

i=1

With the HMC filter we also require the gradient of the log
prediction distribution:

N Op(ye|ye—1=yi_,)
1 2imi— 5y

Ologp(yt|Zi:t—1) i=1 By,

aytk N

p(ye|Zi—1) ’
where the partial derivatives of the transition probability are
found by differentiating the process-noise densities.

The HMC filter begins each frame with mixture model
prediction. The particles used in our current HMC filter are
the expected values from the individual HMC chains de-
scribed below.

4 Hybrid Monte Carlo Filtering

Like particle filters, the HMC filter uses a Monte Carlo
approximation to Py = p(s;|zi.). The sample states

Figure 5. HMC simulation from the initial to final states,
with all variables except the torso held fixed.

are, however, drawn using an MCMC procedure. A sin-
gle Markov chain could eventually explore the entire state
space, but it often requires many samples to move between
different modes of the posterior. Therefore, following [5],
we use several Markov chains at each time. Let there be A/
Markov chains, each with R+ 1 samples, where s;** denotes
the it sample from the ¢t Markov chain.

The first step is to find M initial states. Ideally one
draws these states from an approximate posterior to reduce
the number of burn-in samples (i.e., the time before chains
reaches equilibrium and yield samples from P,). Here, we
find initial states using a sampling-importance-resampling
step. We draw M samples from the prediction distribu-
tion (14), {ui};—1 s, and then compute weights wi =
kp(zi|s = uf), where k= = Y. p(z|s = uf). In
this way, the samples are properly weighted samples from
P:. Resampling then yields M equally weighted initial
states. The HMC filter is therefore like a particle filter, be-
ginning each time step with M particles, but each particle
then spawns a Markov chain that convergesto the target pos-
terior. Fig. 5 depicts this convergence.

To obtain samples from the target posterior P(s), hybrid
Monte Carlo performs a physical simulation of an energy-
conserving system with a potential energy bowl equal to
—logP(s) [8, 19]. The intuition is that if you observe the
state of the system at regular intervals, then the collection
of observed states forms a Markov chain that comes from
P, provided you replace the system’s momentum after ev-
ery observation by a random Gaussian draw. The momen-
tum resamplings ensure that the system can acquire enough
energy to visit unlikely states with nonzero probability.

In the physical simulation, each state variable s ; is paired
with a momentum variable p;. On this extended state space,
the Hamiltonian is defined as H(s,p) = E(s) + K(p),
where E(s) = —logP(s) is the potential energy and
K(p) = $p"Mp is the kinetic energy for a system with a
diagonal mass matrix M. The target distribution is then de-



fined as
P'(s,p) = Cexp(—=H(s,p)) , (15)

where C'is a normalizing constant. By construction P’ is
separable, so the marginal distribution of sunder P’ is sim-
ply the desired posterior P. Thus, if we were to draw sample
(s,p) from P’, then swould be a fair sample from P.

Hybrid Monte Carlo produces MC samples with a tran-
sition (s",p") — (s"*1, p"*1) that leaves P’ invariant. (In
what follows, we drop the superscript ¢ and the subscript ¢
with the understanding that the discussion applies to chain
c at time ¢.) The HMC transition is composed of two steps,
each of which leaves P’ invariant. First, p” is replaced by
p", sampled from a mean-zero Gaussian with covariance
M~!. This leaves P’ invariant as p is independent of s, and
we have not changed p’s marginal distribution.

The second step, (s",p") — (774 p"*!), involves the
physical simulation. Starting from (s",p"), the system
evolves according to Hamiltonian dynamics:

dp ds

prl VE(s), prili Mp . (16)
Because Hamiltonian dynamics conserves H, is reversible,
and preserves the phase space volume, it leaves P’ invari-
ant [19]. In practice, however, the Hamiltonian simulation
is performed numerically, in an iterative manner with a finite
step-size (we use a sequence of deterministic leapfrog steps
called a leapfrog trajectory [5, 8, 19]). As a result, the simu-
lation is not guaranteed to conserve H exactly and leave P’
invariant. To ensure that the Markov chain has the correct
stationary distribution, we therefore perform a Metropolis
rejection test to the state, (s*, p*), at the end of each leapfrog
trajectory [8, 18]; i.e., we accept (s*, p*) with probability

H(s",p")]} . (17)

If accepted, we set (s"t1, p™*1) to be (s*, p*). Otherwise,
it is set to the value of (s",p").

The Metropolis test yields transitions with a stationary
distribution if used with deterministic proposals that are
self-inverting and have Jacobian 1. Our physical simulation
has both properties. Although other types of proposals can
be used with Metropolis tests to obtain samples from P’, the
key advantage of the Hamiltonian simulation is that H re-
mains roughly constant even for long trajectories. One can
see from (17) that keeping H roughly constant keeps rejec-
tion rates, and thus Markov chain autocorrelations low. Fur-
thermore, long trajectories avoid random walks, and there-
fore produce samples efficiently from distributions [19].

Finding suitable step-sizes for the Hamiltonian simula-
tion is important. If they are too small then the acceptance
rates are high but we explore the space slowly relative to the
amount of computation. If too big, then H may diverge and
the rejection rates increase. ldeally, the step-size in each di-
rection should scale with the width of the energy bowl in that

min{1, exp[—H(s", p*) +

direction. Based on Gaussian target distributions, Neal [19]
suggests that the step-size for each state variable should be
close to one standard deviation of the corresponding target
marginal. One can show that this is achieved by setting the
elements of the diagonal mass matrix M as follows:

2\ 3
M = diag(e?,...,e3), where ¢, = (%) , (18)
k

where d is the state space dimension. Remember that the
mass matrix may depend on the initial state sq, but any other
dependence of the step-sizes on s would violate the self-
inverting property of the transition. Therefore to find €, we
compute derivative approximations using only sg.

The second derivative of the log posterior in (18) is equal
to the sum of the derivatives of the log prior and the log like-
lihood. We approximate the log prior derivative using the
variance of the process noise in the temporal dynamics. In
deriving an approximation to the log likelihood derivative,
we note that the phase observation density tends to domi-
nate the shape of the likelihood surface. We therefore con-
sider only the Gaussian component of the phase likelihood
(5). Under this simplified model, suppose we have phase
measurements at the mid-points x;(S) of each edge on the
J body parts, and formulate the joint likelihood as

log L(s) = log;ﬁ1 (m exp {% }) g (19)
= in% {logn - —(d)(xjg?g_'uy} , (20
j=1

where & is the Gaussian normalization constant.

To complete the approximation we exploit the pseudo-
linearity of phase [9], and we adopt a first-order model for
the spatial dependence of edge mid-points on the state, x(s).
Together, these approximations yield a simple approxima-
tion for ¢(x;(s)) in the neighborhood of g, i.e.,

¢(x;(8)) ~ do+ Vo' (S %) 5 (21)
where ¢y is a constant independent of sand V¢ is the spatial
phase gradient. Finally, we substitute this linear approxima-
tion into (20), and take the second derivative with respect to
the state sto obtain:

PlogL(s) 1 e=1 (o r0X(%))
~ s, ~ an_j(w’ D5, ) . (22)

To complete the estimation of €, in M, we approximate the
phase gradient, V¢, by the tuning frequency of the filter [9],
and we approximate the position gradients by

O%j(00) , Xi(So+Ask) —X;(S0)

8sk - Ask (23)




Figure 6. Cropped images showing every 4th frame (left-to-right) of 14D lower body trackers through self-occlusions. (top) HMC
filter; (bottom) particle filter. The same computation time was used by both filters (about 3 min/frame on a 750 MHz processor).
The HMC parameters were M = 1, R = 200, b = 50, L = 60, and € = 0.2. The particle filter used 20,000 particles.

Figure 7. Every 2nd frame (left-to-right) of results from a 23D full body tracker, for the HMC filter (top) and for the particle filter
(bottom). The same computation time was used by both filters (about 7 min/frame on a 750 MHz processor). The HMC parameters
were M =10, R = 50, b = 30, L = 20, and ¢ = 0.1. The particle filter used 36,000 particles.

5 Experiments

We have used the HMC filter for tracking people in
cluttered outdoor environments from grayscale, monocular
video taken with an uncalibrated camera. We manually set
the initial state at the first frame, and we roughly estimate
the body dimensions and the intrinsic camera parameters by
hand.

51 HMC and ParticleFilter Parameters

While the particle filter has one main parameter (i.e., the
number of particles) the HMC filter has several parameters.
These include the number of chains M, the chain length R,
the leapfrog trajectory length L, a stepsize adjustment factor
€, and, b, the number of burn-in samples at the beginning of
each chain that are discarded. Both b and R depend on the

convergence diagnostics of the Markov chain. While heuris-
tic methods to detect convergence exist, one cannot deter-
mine when one reaches equilibrium with certainty.

To set these parameters we observed the samples from a
long Markov chain in the first 3 frames. We then set b to the
number of samples after which the posterior appears to have
stabilized. We then set R so that we would obtain a suffi-
ciently large sample set after equilibrium. The stepsize fac-
tor, €, is used with M to control the Hamiltonian simulation
step-sizes. Although e ~ 1 should be close to optimal given
the approximate mass matrix in (18), for high-dimensional
problems with correlated variables like the problems con-
sidered here a smaller ¢ is often preferred [19]. For small
step-sizes more leapfrog steps are needed to avoid random
walks, therefore L depends on e. Based on HMC samples
over the first 3 frames, we set L to keep autocorrelations be-
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Figure 8. Estimator variance as a function of computation
time for the 3-DOF right hip, and the right knee. Time is
expressed in terms of the computation required by a single
particle of the particle filter. Variances are based on 50 in-
dependent runs. Vertical bars indicate one standard error.

tween adjacent samples low. The specific parameters used
are specified in figure captions associated with the results.
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Figure 9. Estimator variance for estimates of the mean torso
position over a 20-frame sequence. The vertical bars indi-
cate one standard error, obtained from 40 independent runs
of the filter.

5.2 Experimental Results

Fig. 6 shows the mean posterior state at every fourth
frame for a typical run of the HMC and particle filters. This
case illustrates results of tracking a 14D lower body model.
It is easy to see that HMC filter yields better state estimates,
especially in the presence of the self-occlusion of the legs.
After the Markov chains reach equilibrium, HMC main-
tains a compact sample representation around the posterior
mean. The average rejection rate in our HMC simulations
was about 70%. This is higher than one might like, and
certainly higher than that reported in [5]. We attribute the
higher rejection rate to the more complex, noisy likelihood
function associated with real images.

Similar results are shown in Fig. 7. In this case the
subject is walking toward the camera, thereby undergoing
scale changes. The human body model used here had 23 di-
mensions that also included arms and a nonlinearly tapered
cylinder for the torso. Again, we find the HMC filter pro-
duces more accurate estimates of the body pose.

In comparing the two filter-based trackers it is also of in-
terest to examine estimator variability (4). This is important
since a reliable stochastic algorithm will generally produce
reliable results when it is applied to the same data multiple
times. Smaller deviations from ground truth are preferred.
Furthermore, with an analysis of estimator variance one can
hold variance fixed, and ask what computation time would
be required to achieve such a level of confidence in the esti-
mator.

Towards this end Fig. 8 shows examples of the estima-
tor variances for mean state estimates for individual state
variables. The image sequence was the same as that used in
Fig. 6. The estimator variance was computed as the mean
squared deviation from the ground truth mean state. The
ground truth mean state was found using a particle filter with
4 x 10% particles, many more than used in the estimator vari-
ance experiments. The mean squared estimates are com-



puted from mean state estimates obtained in 50 independent
runs of each filter. Fig. 8 shows estimator variances for the
HMC filter and the particle filter as a function of compu-
tation time (measured in terms of the computation time re-
quired by a single particle of the particle filter). Here we
show results for the 4 state variables of the right leg, includ-
ing the 3 degrees of freedom of the hip, and the knee angle.

These figures are typical of the types of results we have
observed across different runs and different points in the
gate cycle. The estimator variance of the HMC filter is usu-
ally 5-20 times smaller than that of the particle filter. More-
over, in the range of computation times shown here the dif-
ference between the variance typically grows as the avail-
able computation time increases. The effective number of
samples for the particle filter remains small until one typ-
ically has several hundred thousand particles. The result
shown in the top panel of Fig. 8 in which the HMC filter and
the particle filter perform similarly is typical of only a very
small number of variables on different runs.

Finally, it is also of interest to consider how the estima-
tor variances change as a function of time. Toward this end,
Fig. 9 shows the mean state variance for a torso positional
variable, over 20 frames of the sequence used in Fig. 6.
Again it is clear that the HMC filter has a lower estimator
variance in general.

6 Discussion and Future Work

This paper describes the use of hybrid Monte Carlo for
inferring the 3D shape and motion of people from monocu-
lar video. The HMC filter is shown to be more effective for
high-dimensional Bayesian filtering problems than a con-
ventional particle filer. Nevertheless, there remain many av-
enues for future work, including the formulation of better
prediction distributions and initial states for HMC Markov
chains, the integration of edge and motion information for
improved likelihoods, and adaptive tuning of HMC param-
eters to improve convergence and mixing.
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