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Abstract
We advocate the use of Gaussian Process Dynamical

Models (GPDMs) for learning human pose and motion pri-
ors for 3D people tracking. A GPDM provides a low-
dimensional embedding of human motion data, with a den-
sity function that gives higher probability to poses and
motions close to the training data. With Bayesian model
averaging a GPDM can be learned from relatively small
amounts of data, and it generalizes gracefully to motions
outside the training set. Here we modify the GPDM to per-
mit learning from motions with signi�cant stylistic varia-
tion. The resulting priors are effective for tracking a range
of human walking styles, despite weak and noisy image
measurements and signi�cant occlusions.

1. Introduction
Prior models of pose and motion play a central role in

3D monocular people tracking, mitigating problems caused
by ambiguities, occlusions, and image measurement noise.
While powerful models of 3D human pose are emerging,
sophisticated motion models remain rare. Most state-of-
the-art approaches rely on linear-Gaussian Markov models
which do not capture the complexities of human dynam-
ics. Learning richer models is challenging because of the
high-dimensional variability of human pose, the nonlinear-
ity of human dynamics, and the relative dif�culty of acquir-
ing large amounts of training data.

This paper shows that effective models for people track-
ing can be learned using the Gaussian Process Dynamical
Model (GPDM) [22], even when modest amounts of train-
ing data are available. The GPDM is a latent variable model
with a nonlinear probabilistic mapping from latent positions

� to human poses � , and a nonlinear dynamical mapping on
the latent space. It provides a continuous density function
over poses and motions that is generally non-Gaussian and
multimodal. Given training sequences, one simultaneously
learns the latent embedding, the latent dynamics, and the
pose reconstruction mapping. Bayesian model averaging is
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used lessen problems of over-�tting and under-�tting that
are otherwise problematic with small training sets [10, 12].

We propose a form of GPDM, the balanced GPDM, for
learning smooth models from training motions with stylis-
tic diversity, and show that they are effective for monocular
people tracking. We formulate the tracking problem as a
MAP estimator on short pose sequences in a sliding tem-
poral window. Estimates are obtained with deterministic
optimization, and look remarkably good despite very noisy,
missing or erroneous image data and signi�cant occlusions.

2. Related Work
The dynamical models used in many tracking algorithms

are weak. Most models are linear with Gaussian pro-
cess noise, including simple �rst- and second-order Markov
models [3, 9], and auto-regressive (AR) models [14]. Such
models are often suitable for low-dimensional problems,
and admit closed-form analysis, but they apply to a re-
stricted class of systems. For high-dimensional data, the
number of parameters that must be manually speci�ed or
learned for AR models is untenable. When used for peo-
ple tracking they usually include large amounts of process
noise, and thereby provide very weak temporal predictions.

Switching LDS and hybrid dynamics provide much
richer classes of temporal behaviors [8, 14, 15]. Never-
theless, they are computationally challenging to learn, and
require large amounts of training data, especially as the di-
mension of the state space grows. Non-parametric models
can also handle complex motions, but they also require very
large amounts of training data [11, 17]. Further, they do
not produce a density function. Howe et al [7] use mixture
model density estimation to learn a distribution of short se-
quences of poses. Again, with such high-dimensional data,
density estimation will have problems of under- and over-
�tting unless one has vast amounts of training data.

One way to cope with high-dimensional data is to learn
low-dimensional latent variable models. The simplest case
involves a linear subspace projection with an AR dynamical
process. In [2, 4] a subspace is �rst identi�ed using PCA,
afterwhich a subspace AR model is learned. Linear models
are tractable, but they often lack the ability to capture the
complexities of human pose and motion.



Richer parameterizations of human pose and motion
can be found through nonlinear dimensionality reduction
[5, 16, 18, 21]. Geometrical methods such as Isomap and
LLE learn such embeddings, yielding mappings from the
pose space to the latent space. But they do not provide
a probabilistic density model over poses, a mapping back
from pose space to latent space, nor a dynamical model.
Thus one requires additional steps to construct an effec-
tive model. For example, Sminchisescu and Jepson [18] use
spectral embedding, then a Gaussian mixture to model the
latent density, an RBF mapping to reconstruct poses from
latent positions, and a hand-speci�ed �rst-order, linear dy-
namical model. Agarwal and Triggs [1] learn a mapping
from silhouettes to poses using relevance vector machines,
and then a second-order AR dynamical model.

Rahimi et al [16] learn an embedding through a nonlinear
RBF regression with an AR dynamical model to encourage
smoothness in the latent space. Our approach is similar in
spirit, as this is a natural way to produce well-behaved la-
tent mappings for time-series data. However, our model is
probabilistic and allows for nonlinear dynamics.

We use a form of probabilistic dimensionality reduc-
tion similar in spirit to the Gaussian Process latent variable
model (GPLVM) [10]. The GPLVM has been used to con-
strain human poses during interactive animation [6], as a
prior for 2D upperbody pose estimation [19], and as a prior
for 3D monocular people tracking [20]. While powerful,
the GPLVM is a static model; it has no intrinsic dynam-
ics and does not produce smooth latent paths from smooth
time-series data. Thus, even with an additional dynamical
model, our GPLVM-based people tracker often fails due to
anomalous jumps in the latent space and to occlusions [20].

3. Gaussian Process Dynamical Model
The GPDM is a latent variable dynamical model, com-

prising a low-dimensional latent space, a probabilistic map-
ping from the latent space to the pose space, and a dynam-
ical model in the latent space [22]. The GPDM is derived
from a generative model for zero-mean poses ��������� and
latent positions � �����
	 , at time � , of the form

� �
� ����� ������� � ��������� �"!$# � (1)

��� � �$%'& %�()%*� � � ���+�", # � (2)

for weights - �/. � �10 ��2 0435363 7 and 8 �9. & �:0 &"2 0�36353 7 , basis
functions

� �
and

()%
, and additive zero-mean white Gaussian

noise � !;# � and �", # � . For linear basis functions, (1) and (2)
represent the common subspace AR model (e.g., [4]). With
nonlinear basis functions, the model is signi�cantly richer.

In conventional regression (e.g., with AR models) one
�xes the number of basis functions and then �ts the model
parameters, - and 8 . From a Bayesian perspective,

- and 8 are nuisance parameters and should therefore
be marginalized out through model averaging. With an
isotropic Gaussian prior on each

& %
, one can marginalize

over 8 in closed form [12, 13] to yield a multivariate Gaus-
sian data likelihood of the form< �>=@?BA 0�CD �E�? FG? HI �KJ$L � H � ? MONP? �RQ�SUT

V�WYXJ[Z]\�^ M ���N =�F 2 =Y_"`�a
(3)

where

= �'. �)�$0�3636350 �

H 7 _ is a matrix of training poses,

A �. � �$0�3636350 �
H 7 _ contains the associated latent positions, and

MON
is a kernel matrix. The elements of kernel matrix are

de�ned by a kernel function,

�>MbN � � # % �dc NP� �

� 0 �

% � , which
we take to be a common radial basis function (RBF) [12]:

c N � � 0 ��e �E� D � Q�SfT
V�W D 2J ?6?

�
W

��e ?5? 2 a �hgji # i$kD�l 3 (4)

The scaling matrix

F monUprq$s[�ut � 043536350 t � � is used to ac-
count for the different variances in the different data di-
mensions; this is equivalent to a Gaussian Process (GP)
with kernel function c � � 0 � e �]v t 2w for dimension x . Finally,CD �zy D � 0 D 2 0�3635360 F|{ comprises the kernel hyperparameters
that control the output variance, the RBF support width, and
the variance of the additive noise � , # � .

The latent dynamics are similar; i.e., we form the joint
density over latent positions and weights, - , and then we
marginalize out - [22]. With an isotropic Gaussian prior
on the

� �
, the density over latent trajectories reduces to< �KAh? C} �E� < � � �4�I �KJ1L ��~ H ���B� 	 ? MY��? 	 QjSUT

V WYXJ�Z]\ ^ M ���� AE�B�:��A�_ �B�:� `�a
(5)

where

Ab�B��� �'. � 2 043536360 �
H 7 _ ,

MY�
is the

�K� W X ��� �K� W X �
kernel matrix constructed from

AY��� ��. � � 0�3635360 �
H ��� 7 , and

� � is given an isotropic Gaussian prior. For dynamics the
GPDM uses a �linear + RBF� kernel, with parameters } � :
c ��� � 0 ��e ��� } � QjSUT

V W } 2J ?6?
�
W

��e ?6? 2 a � } l �

_
��e � g i # i k})�

The linear term is useful for motion subsequences that are
approximately linear.

While the GPDM is de�ned above for a single input se-
quence, it is easily extended to multiple sequences y =
%1{ .
One simply concatenates all the input sequences, ignoring
temporal transitions from the end of one sequence to the
beginning of the next. Each input sequence is then associ-
ated with a separate sequence of latent positions, y A % { , all
within a shared latent space. Accordingly, in what follows,
let

= �9. = _� 0�3635360 = _� 7 _ be the � training motions. Let
A

denote the associated latent positions, and for the de�ni-
tion of (5) let

Ab�B�:�
comprise all but the �rst latent position

for each sequence. Let

MO�
be the kernel matrix computed

from all but the last latent position of each sequence.



3.1. Learning
Learning the GPDM entails estimating the latent posi-

tions and the kernel hyperparameters. Following [22] we
adopt simple prior distributions over the hyperparameters,
i.e., < � C} ��� � � } ���� , and < � CD ��� � � D ����

,1 with which
the GPDM posterior becomes< �>A 0 C} 0�CD

? = ��� < �u= ? A 0UCD � < �>A ? C} � <
�
C} � <
� CD � 3 (7)

The latent positions and hyperparameters are found by min-
imizing the negative log posterior

� � � J��	� ? MY��? � XJ[Z�\�^ M ���� AE�B��� A�_ �B�:� `W � �	� ? FG? � 
 J �	� ? MON ? � XJ Z�\ ^ M ���N =�F 2 = _ `
� � � ��� } � � � � ��� D � �
� 0 (8)

where � is a constant. The �rst two terms come from the
log dynamics density (5), and the next three terms come
from the log reconstruction density (3).

Over-Fitting: While the GPDM has advantages over the
GPLVM, usually producing much smoother latent trajecto-
ries it can still produce large gaps between the latent posi-
tions of consecutive poses; e.g., Fig. 1 shows a GPLVM and
a GPDM learned from the same golf swing data (large gaps
are shown with red arrows). Such problems tend to occur
when the training set includes a relatively large number of
individual motions (e.g., from different people or from the
same person performing an activity multiple times). The
problem arises because of the large number of unknown la-
tent coordinates and the fact that uncertainty in latent posi-
tions is not modeled. In practical terms, the GPDM learning
estimates the latent positions by simultaneously minimiz-
ing squared reconstruction errors in pose space and squared
temporal prediction errors in the latent space. In Fig. 1 the
pose space is 80D and the latent space is 3D, so it is not sur-
prising that the errors in pose reconstruction dominate the
objective function, and thus the latent positions.

3.2. Balanced GPDM:
Ideally one should marginalize out the latent positions to

learn hyperparameters, but this is expensive computation-
ally. Instead, we propose a simple but effective GPDM
modi�cation to balance the in�uence of the dynamics and
the pose reconstruction in learning. That is, we discount
the differences in the pose and latent space dimensions in
the two regressions by raising the dynamics density func-
tion in (7) to the ratio of their dimensions, i.e., � � 
 v � ;

1Such priors prefer small output scale (i.e., ��������������� ), large RBF sup-
port (i.e., small ��������� ), and large noise variances (i.e., small ��� �� � �!� �� ).
The fact that the priors are improper is insigni�cant for optimization.

(a) (b)

(c) (d)

Figure 1. Golf Swing: (a) GPLVM, (b) GPDM and (c) balanced
GPDM learned from 9 different golf swings performed by the
same subject. (d) Volumetric visualization of reconstruction vari-
ance; warmer colors (i.e., red) depict lower variance.

for learning this rescales the �rst two terms in (8) to be

�
V � J ��� ? M � ? � XJ Z�\ ^ M ���� A �B��� A _ �B�:� `�a 3 (9)

The resulting models are easily learned and very effective.

3.3. Model Results
Figures 1�4 show models learned from motion capture

data. In each case, before minimizing
�

, the mean pose," , was subtracted from the input pose data, and PCA or
Isomap were used to obtain an initial latent embedding of
the desired dimension. We typically use a 3D latent space
as this is the smallest dimension for which we can robustly
learn complex motions with stylistic variability. The hyper-
parameters were initially set to one. The negative log pos-
terior

�
was minimized using Scaled Conjugate Gradient.

Golf Swing: Fig. 1 shows models learned from 9 golf
swings from one subject (from the CMU database). The
body pose was parameterized with 80 joint angles, and
the sequence lengths varied by 15 percent. The balanced
GPDM (Fig. 1(c)) produces smoother latent trajectories,
and hence a more reliable dynamic model, than the orig-
inal GPDM. Fig. 1(d) shows a volume visualization of the
log variance of the reconstruction mapping,

J ���$#!%!& i # ' # ( #*)+ ,
as a function of latent position. Warmer colors correspond
to lower variances, and thus to latent positions to which the
model assigns higher probability; this shows the model’s
preference for poses close to the training data.
Walking: Figs 2 and 3 show models learned from one gait
cycle from each of 6 subjects walking at the same speed on a



(a) (b)

Figure 2. Walking GPLVM: Learned from 1 gait cycle from each
of 6 subjects. Plots show side and top views of the 3D latent space.
Circles and arrows denote latent positions and temporal sequence.

(a) (b)

(c) (d)

Figure 3. Walking GPDM: Balanced GPDM learned from 1 gait
cycle from 6 subjects. (a,b) Side and top views of 3D latent space.
(c) Volumetric visualization of reconstruction variance. (d) Green
trajectories are fair samples from the dynamics model.

treadmill. For each subject the �rst pose is replicated at the
end of the sequence to encourage cyclical paths in the latent
space. The body was parameterized with 20 joint angles.
With the treadmill we do not have global position data, and
hence we cannot learn the coupling between the joint angle
times series and global translational velocity.

Fig. 2 shows the large jumps in adjacent poses in the la-
tent trajectories obtained with a GPLVM. By comparison,
Fig. 3 (a,b) show the smooth, clustered latent trajectories
learned from the training data. Fig. 3(c) shows a volume
visualization of the log reconstruction variance. Fig. 3(d)
helps to illustrate the model dynamics by plotting 20 latent
trajectories drawn at random from the dynamical model.
The trajectories are smooth and close to the training data.

Figure 4. Speed Variation: 2D models learned for 2 different sub-
jects. Each one walking at 9 speeds ranging from 3 to 7 km/h. Red
points are latent positions of training poses. Intensity is propor-
tional to � �������	��
 ��
 ��
 ��
��� , so brighter regions have smaller pose
reconstruction variance. The subject on the left is healthy while
that on the right has a knee pathology and walks asymmetrically.

Speed Variation: Fig. 4 shows 2D GPDMs learned from
two subjects, each of which walked four gait cycles at each
of 9 speeds between 3 and 7km/h (equispaced). The learned
latent trajectories are approximately circular, and organized
by speed; the innermost and outermost trajectories corre-
spond to the slowest and fastest speeds respectively. Inter-
estingly, the subject on the left is healthy while the subject
on right has a knee pathology. As the treadmill speed in-
creases, the side of the body with the pathology performs
the motion at slower speeds to avoid pain, and so the other
side of the gait cycle must speed up to maintain the speed.
This explains the anisotropy of the latent space.

3.4. Prior over New Motions
The GPDM also de�nes a smooth probability density

over new motions

�>= e 0 A e � . That is, just as we did with
multiple sequences above, we write the joint density over
the concatenation of the sequences. The conditional density
of the new sequence is proportional to the joint density, but
with the training data and latent positions held �xed:< �KA e 0 = e ?�A 0 = 0 C} 0 CD � � < � . A 0 A e 7�0 . = 0 = e 7 ? C} 0 CD � (10)

This density can also be factored to provide:< �>= e ?�A e 0 A 0 = 0 CD � < �KA e ?�A 0 C} � 3 (11)

For tracking we are typically given an initial state � e� , so
instead of (11), we have< �u= e ?�A e 0 A 0 = 0 CD � < �>A e ?�A 0 C} 0 � e� � 3 (12)

4. Tracking
Our tracking formulation is based on a state-space

model, with a GPDM prior over pose and motion. The state
at time � is de�ned as

� � �@.�� ��0 ����0 � ��7 , where � � denotes
the global position and orientation of the body, �)� denotes
the articulated joint angles, and � � is a latent position. The
goal is to estimate a state sequence,

� ��� _ m ��� �$0�3636350 � _ � ,
given an image sequence, � ��� _ m'� � � 043536360�� _ � , and a learned
GPDM, �

m �KA 0 = 0 C} 0 CD � . Toward that end there are



two common approaches: Online methods infer

� � given
the observation history � ��� ����� . The inference is causal, and
usually recursive, but suboptimal as it ignores future data.
Batch methods infer states

� � given all past, present and fu-
ture data, ����� _ . Inference is optimal, but requires all future
images which is impossible in many tracking applications.

Here we propose a compromise that allows some use of
future data along with predictions from previous times. In
particular, at each time � we form the posterior distribution
over a (noncausal) sequence of � � X states< �K� � � �����

?
�4��� ����� 0 � �E�� < � ��� � �����

?B� � � ����� � < �K� � � �����
?
����� �����10 � � 3 (13)

Inference of

� � is improved with the use of future data, but
at the cost of a small temporal delay.2 With a Markov chain
model one could use a forward-backward inference algo-
rithm [23] in which separate beliefs about each state from
past and future data are propagated forward and backward
in time. Here, instead we consider the posterior over the
entire window, without requiring the Markov factorization.

With the strength of the GPDM prior, we also assume
that we can use hill-climbing to �nd good state estimates
(i.e., MAP estimates). In effect, we assume a form of ap-
proximate recursive estimation:< �K� � � �����

?
� ��� ����� 0 � �����< � � � � �����

?]� � � �����*� < �K� � � �����
?]� 	�

���� ����� 0 � � (14)

where

� 	�

���� ����� denotes the MAP estimate history. This has
the disadvantage that complete beliefs are not propagated
forward. But with the temporal window we still exploit data
over several frames, yielding smooth tracking.

At each time step we minimize the negative log poste-
rior over states from time � to time � � � . At this minima we
obtain the approximate MAP estimate at time � . The esti-
mate is approximate in two ways. First, we do not represent
and propagate uncertainty forward from time � W X in (14).
Second, because previous MAP estimates are in�uenced by
future data, the information propagated forward is biased.

Image Likelihood: The current version of our 3D tracker
uses a simplistic observation model. That is, the image
observations are the approximate 2D image locations of a
small number (

�
) of 3D body points (see Fig. 5). They were

obtained with the WSL image-based tracker [9].
While measurement errors in tracking are often corre-

lated over time, as is common we assume that image mea-
surements conditioned on states are independent; i.e.,

< � � � � �����
?B� � � �����*�b� ������ �

� � <
�
�
�[?B�[� � 3 (15)

2However an online estimate of ������� would still be available at ����� .

(a) (b) (c) (d) (e)
Figure 5. WSL Tracks: The 2D tracked regions for the different
tracked sequences (in yellow) are noisy and sometimes missing.

Further, we assume zero-mean Gaussian measurement
noise in the 2D image positions provided by the tracker. Let
the perspective projection of the � � � body point, !

%
, in pose

� � , be denoted "
�
!
% �K� �B�]� , and let the associated 2D image

measurement from the tracker be #$
%
� . Then, the negative

log likelihood of the observations at time � isW �	� < � � � ?]� �B�E� XJ # 2%
&�%
� �

''' #$
%
� W "

�
!
% ��� �B�]� ''' 2 3 (16)

Here we set
# % � X)( pixels, based on empirical results.

Prediction Distribution We factor the prediction density< ��� � � �����
?B� 	�

���� ����� 0 � � into a prediction over global motion,

and one over poses � and latent positions � . The reason,
as discussed above, is that our training sequences did not
contain the global motion. So, we assume that< ��� � � �����

?B� 	�

���� ����� 0 � �O�< �>A e ��0 = e � ? � 	�

������ 0 � � < � � � � �����
?
� 	�

�������� ��� 2 � 0 (17)

where

A e � m � � � ����� and

= e � m � � � ����� .
For the global rotation and translation, ��� , we assume a

second-order Gauss-Markov model. The negative log tran-
sition density is, up to an additive constant,W �	� < � � � ? � 	�

�������� ��� 2 �b�

?5?
�
� W #�
� ?6? 2J # 2* 0 (18)

where the mean prediction is just +�
� � J � 	�

������ W � 	�

���� 2 .
For the prior over

A e � , = e � , we approximate the GPDM
in two ways. First we assume that the density over the pose
sequence, < �>= e � ?fA e � 0 � � , can be factored into the den-
sities over individual poses. This is convenient computa-
tionally since the GPDM density over a single pose, given a
latent position, is Gaussian [6, 20]. Thus we obtainW ��� < �u= e � ? A e � 0�� �,�

W ������ %
� �

�	� < � �

% ?
�

% 0�-D 0 A 0 = �
� ������ %

� �
. F �

�

% W "
NP�

�

% �]� . 2J # 2 �
�

% � � 
 J �	� # 2 �
�

% ��� XJ . �

% . 2
(19)

where the mean and variance are given by"
NP�

� � � " � =Y_"M ���N0/ N �
� � 0 (20)# 2 �

� � � c N � � 0 � � W / NP�
� � _"M ���N / NP�

� � 0 (21)



Figure6. Tracking63 framesof a walking, with noisy andmissingdata. The skeletonof the recovered3D modelis projectedonto the
images.Thepointstrackedby WSL areshown in red.

and

/

N �

�

� is the vector with elementsc
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�
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� for all
otherlatentpositions�
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in themodel.
Second,we annealthedynamics<

�>A

e

�
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�
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�
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0�� � , be-
causethelearnedGPDMdynamicsoftendiffer in important
waysfrom the video motion. The mostcommonproblem
occurswhenthewalkingspeedin thevideodiffersfrom the
trainingdata.To accommodatethis,we effectively blur the
dynamics;this is achievedby raisingthedynamicsdensity
to a smallexponent,simply just usinga smallervalueof �

in (9), for which thekernelmatrix mustalsobeupdatedto
include

A

e

� . For tracking,we �x �
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3 � .

Optimization: Trackingis performedby minimizing the
approximatenegative log posteriorin (14). With the ap-
proximationsabovethis becomes
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To minimize
�

in (22) with respectto

�

� � ����� , we �nd that
thefollowing procedurehelpsto speedupconvergence,and
to reducegettingtrappedin local minima. Eachnew state
is �rst setto bethemeanprediction,andthenoptimizedin
a temporalwindow. For theexperimentswe use�

�

J

.
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One can also signi�cantly speedup the minimization
when one knows that the motion of the tracked object is
very similar to the training motions. In that case,onecan

assumethat there is negligible uncertaintyin the recon-
structionmapping,and hencea poseis directly given by

� �

"

N �

�

� . This reducesthe posereconstructionlikeli-
hoodin (19) to �
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, andthe stateat � to
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� �•0

�

� � , whichcanbeoptimizedstraightforwardly.

5. Tracking Results
Here we focus on tracking different stylesand speeds

for the sameactivity. We usethe BalancedGPDM model
shown in Fig.3 for trackingall walkingsequencesbelow. In
Fig.6 weuseawell-known sequenceto demonstratethero-
bustnessof ouralgorithmto dataloss.In the�rst frame,we
supplynine 2D points—thehead,left shoulder, left hand,
bothkneesandfeet,andcenterof thespine(theroot). They
arethentrackedautomaticallyusingWSL[9]. As shown in
Fig. 5(d) the tracked pointsarevery noisy; the right knee
is lost early in thesequenceandthe left kneeis extremely
inaccurate.By the endof the sequencethe right foot and
left handarealsolost. Givensuchpoorinput,ouralgorithm
canneverthelessrecover the correct3D motion, asshown
by theprojectionsof theskeletonontotheoriginal images.

While better imagemeasurementscan be obtainedfor
this sequence,this is not alwaysan option whenthereare
occlusionsandimageclutter. E.g.,Fig. 7 depictsacluttered
scenein whichthesubjectbecomeshiddenby ashrub;only
the headremainstracked by the endof the sequence(see
Fig.5(e)).For theseframesonly theglobaltranslationis ef-
fectively constrainedby theimagedata,sotheGPDMplays
acritical role. In Fig.7,notehow theprojectedskeletonstill
appearsto walk naturallybehindtheshrub.

Figure8 shows a sequencein which thesubjectis com-
pletely occludedfor a full gait cycle. Whenthe occlusion
begins, the trackingis governedmainly by theprior.3 The
3D tracker is thenswitchedbackon andtheglobalmotion
during the occlusionis re�ned by linear interpolationbe-
tweenthe3D trackedposesbeforeandafter theocclusion.
Beforeanocclusion,it is veryimportantto haveagoodesti-
mationof � , assubsequentpredictionsdependsigni�cantly

3We manuallyspecifythebeginningandendof theocclusion.We use
a templatematching2D detectorto automaticallyre-initialize WSL after
theocclusion,asshown in Fig 5(c).


