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Abstract

We advocate the use of Gaussian Process Dynamical
Models (GPDMs) for learning human pose and motion pri-
ors for 3D people tracking. A GPDM provides a low-
dimensional embedding of human motion data, with a den-
sity function that gives higher probability to poses and
motions close to the training data. Wth Bayesian model
averaging a GPDM can be learned from relatively small
amounts of data, and it generalizes gracefully to motions
outside the training set. Here we modify the GPDM to per-
mit learning from motions with signi cant stylistic varia-
tion. The resulting priors are effective for tracking a range
of human walking styles, despite weak and noisy image
measurements and signi  cant occlusions.

1. Introduction

Prior models of pose and motion play a central role in
3D monocular people tracking, mitigating problems caused
by ambiguities, occlusions, and image measurement noise.
While powerful models of 3D human pose are emerging,
sophisticated motion models remain rare. Most state-of-
the-art approaches rely on linear-Gaussian Markov models
which do not capture the complexities of human dynam-
ics. Learning richer models is challenging because of the
high-dimensional variability of human pose, the nonlinear-
ity of human dynamics, and therelative dif culty of acquir-
ing large amounts of training data.

This paper shows that effective models for people track-
ing can be learned using the Gaussian Process Dynamical
Model (GPDM) [22], even when modest amounts of train-
ing dataare available. The GPDM isalatent variable model
with anonlinear probabilistic mapping from latent positions
x to human posesy, and a nonlinear dynamical mapping on
the latent space. It provides a continuous density function
over poses and motions that is generally non-Gaussian and
multimodal. Given training sequences, one simultaneously
learns the latent embedding, the latent dynamics, and the
pose reconstruction mapping. Bayesian model averaging is

*This work was supported in part by the Swiss National Science Foun-
dation, NSERC Canada, and the Canadian Institute for Advanced Re-
search. We thank A. Hertzmann and J. Wang for many useful discussions.

used lessen problems of over- tting and under- tting that
are otherwise problematic with small training sets [10, 12].

We propose a form of GPDM, the balanced GPDM, for
learning smooth models from training motions with stylis-
tic diversity, and show that they are effective for monocular
people tracking. We formulate the tracking problem as a
MAP estimator on short pose sequences in a diding tem-
poral window. Estimates are obtained with deterministic
optimization, and look remarkably good despite very naisy,
missing or erroneousimage dataand signi  cant occlusions.

2. Related Work

The dynamical models used in many tracking algorithms
are weak. Most models are linear with Gaussian pro-
cessnoise, including simple  rst- and second-order Markov
models[3, 9], and auto-regressive (AR) models[14]. Such
models are often suitable for low-dimensional problems,
and admit closed-form analysis, but they apply to a re-
stricted class of systems. For high-dimensional data, the
number of parameters that must be manually speci ed or
learned for AR models is untenable. When used for peo-
ple tracking they usually include large amounts of process
noise, and thereby provide very weak temporal predictions.

Switching LDS and hybrid dynamics provide much
richer classes of temporal behaviors [8, 14, 15]. Never-
theless, they are computationally challenging to learn, and
require large amounts of training data, especialy as the di-
mension of the state space grows. Non-parametric models
can also handle complex motions, but they also require very
large amounts of training data [11, 17]. Further, they do
not produce a density function. Howe et al [7] use mixture
model density estimation to learn a distribution of short se-
guences of poses. Again, with such high-dimensional data,
density estimation will have problems of under- and over-

tting unless one has vast amounts of training data.

One way to cope with high-dimensional data is to learn
low-dimensional latent variable models. The simplest case
involvesalinear subspace projection with an AR dynamical
process. In[2, 4] a subspaceis rstidenti ed using PCA,
afterwhich a subspace AR model islearned. Linear models
are tractable, but they often lack the ability to capture the
complexities of human pose and motion.



Richer parameterizations of human pose and motion
can be found through nonlinear dimensionality reduction
[5, 16, 18, 21]. Geometrical methods such as Isomap and
LLE learn such embeddings, yielding mappings from the
pose space to the latent space. But they do not provide
a probabilistic density model over poses, a mapping back
from pose space to latent space, nor a dynamical model.
Thus one requires additional steps to construct an effec-
tivemodel. For example, Sminchisescu and Jepson [18] use
spectral embedding, then a Gaussian mixture to model the
latent density, an RBF mapping to reconstruct poses from
latent positions, and a hand-speci ed rst-order, linear dy-
namical model. Agarwal and Triggs [1] learn a mapping
from silhouettes to poses using relevance vector machines,
and then a second-order AR dynamical model.

Rahimi et a [16] learn an embedding through anonlinear
RBF regression with an AR dynamical model to encourage
smoothness in the latent space. Our approach is similar in
spirit, as thisis a natural way to produce well-behaved la-
tent mappings for time-series data. However, our model is
probabilistic and allows for nonlinear dynamics.

We use a form of probabilistic dimensionality reduc-
tion similar in spirit to the Gaussian Process latent variable
model (GPLVM) [10]. The GPLVM has been used to con-
strain human poses during interactive animation [6], as a
prior for 2D upperbody pose estimation [19], and asa prior
for 3D monocular people tracking [20]. While powerful,
the GPLVM is a static model; it has no intrinsic dynam-
ics and does not produce smooth latent paths from smooth
time-series data. Thus, even with an additional dynamical
model, our GPLV M-based people tracker often fails dueto
anomalousjumpsin the latent space and to occlusions[20].

3. Gaussian Process Dynamical M odel
The GPDM is a latent variable dynamical model, com-
prising alow-dimensional latent space, a probabilistic map-
ping from the latent space to the pose space, and a dynam-
ical model in the latent space [22]. The GPDM is derived
from a generative model for zero-mean posesy; € R” and
latent positionsx; € R, at timet, of the form
Xy =

Z a; ¢i(X¢—1) + Ny (2)

yo = D bji(x) +ny, 2
J
for weights A = [a;,as,..] and B = [by, by, ...], basis
functions¢; and +;, and additive zero-mean white Gaussian
noisen, ; and n, . For linear basis functions, (1) and (2)
represent the common subspace AR model (e.g., [4]). With
nonlinear basis functions, the model issigni cantly richer.
In conventional regression (e.g., with AR models) one
xes the number of basis functions and then ts the model
parameters, A and B. From a Bayesian perspective,

A and B are nuisance parameters and should therefore
be marginalized out through model averaging. With an
isotropic Gaussian prior on each b;, one can marginalize
over B in closed form [12, 13] to yield amultivariate Gaus-
sian data likelihood of the form

p(Y|X,B) =
WY
2m)NPIKy [P
whereY = [y1, ..., yn]7 isamatrix of training poses, X =
[x1,---,xn]T contains the associated latent positions, and
Ky isakernel matrix. The elements of kernel matrix are

de ned by akernel function, (Ky);,; = ky (xi,x;), which
we take to be acommon radial basis function (RBF) [12]:

ky(x,x') = B exp (—%“X—XIHZ) + % 4

exp (—%tr (KleWQYT)> (3)

The scaling matrix W = diag(wy, ..., wp) is used to ac-
count for the different variances in the different data di-
mensions; this is equivalent to a Gaussian Process (GP)
with kernel function k(x,x’) /w? for dimension . Finally,
B = {B1, B, ..., W} comprisesthe kernel hyperparameters
that control the output variance, the RBF support width, and
the variance of the additive noise n,, ;.

The latent dynamics are similar; i.e., we form the joint
density over latent positions and weights, A, and then we
marginalize out A [22]. With an isotropic Gaussian prior
on the a;, the density over latent trajectories reducesto

p(X|a) =

p(x1) 1 -1 T )
—tr (K3 X,u: X 5
VIR ( gt (K XouXow) | 9
where X ;s = [X2, ..., xn]T, Kx isthe (N —1) x (N-1)
kernel matrix constructed from X, = [x1, ..., xny—1], and
X1 IS given an isotropic Gaussian prior. For dynamics the
GPDM usesa linear + RBF kernel, with parametersa;; :

’

- 6xx
kx(x,x') = a1 exp (ﬂﬂx - x'||2> +agxTx'+ =%
2 Qy

The linear term is useful for motion subsequences that are
approximately linear.

While the GPDM is de ned above for a single input se-
quence, it is easily extended to multiple sequences {Y ;}.
One simply concatenates al the input sequences, ignoring
temporal transitions from the end of one sequence to the
beginning of the next. Each input sequence is then associ-
ated with a separate sequence of latent positions, {X; }, all
within a shared latent space. Accordingly, in what follows,
let Y = [YT,..., YZ]T be the m training motions. Let
X denote the associated latent positions, and for the de ni-
tion of (5) let X ,,,; compriseall but the rst latent position
for each sequence. Let K x be the kernel matrix computed
from all but the last latent position of each sequence.



3.1. Learning

Learning the GPDM entails estimating the latent posi-
tions and the kernel hyperparameters. Following [22] we
adopt simple prior distributions over the hyperparameters,
i.e, p@ o [[;a7", and p(B) « [I,B;"* with which
the GPDM posterior becomes

p(X, & B|Y) x p(Y|X,B)pX|a)p@)pB). (7

Thelatent positions and hyperparametersare found by min-
imizing the negative log posterior
d 1 -1 T

out
—NIn|W| + 21n|K L (K YW2YT
9 Y| + ztr( Y )

+) Ina; + Y W + C, (8)

where C' is a constant. The rst two terms come from the
log dynamics density (5), and the next three terms come
from the log reconstruction density (3).

Over-Fitting:  While the GPDM has advantages over the
GPLVM, usualy producing much smoother latent trajecto-
riesit can still produce large gaps between the latent posi-
tions of consecutive poses; e.g., Fig. 1 showsaGPLVM and
a GPDM learned from the same golf swing data (large gaps
are shown with red arrows). Such problems tend to occur
when the training set includes a relatively large number of
individual motions (e.g., from different people or from the
same person performing an activity multiple times). The
problem arises because of the large number of unknown la-
tent coordinates and the fact that uncertainty in latent posi-
tionsisnot modeled. In practical terms, the GPDM learning
estimates the latent positions by simultaneously minimiz-
ing squared reconstruction errorsin pose space and squared
temporal prediction errorsin the latent space. In Fig. 1 the
pose spaceis 80D and the latent spaceis 3D, so it isnot sur-
prising that the errors in pose reconstruction dominate the
objective function, and thus the latent positions.

3.2. Balanced GPDM;

I deally one should marginalize out the latent positionsto
learn hyperparameters, but this is expensive computation-
aly. Instead, we propose a simple but effective GPDM
modi cation to balance the in uence of the dynamics and
the pose reconstruction in learning. That is, we discount
the differences in the pose and latent space dimensionsin
the two regressions by raising the dynamics density func-
tion in (7) to the ratio of their dimensions, i.e, A = D/d;

1Such priors prefer small output scale (i.e., a1, a3, 81), large RBF sup-
port (i.e., small as, B2), and large noise variances (i.e, small a; ', 5 ).
Thefact that the priors are improper isinsigni cant for optimization.
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Figure 1. Golf Swing: (a) GPLVM, (b) GPDM and (c) baanced
GPDM learned from 9 different golf swings performed by the
same subject. (d) Volumetric visualization of reconstruction vari-
ance; warmer colors (i.e., red) depict lower variance.

for learning thisrescalesthe rst two termsin (8) to be
d 1 -1 T
A §ln|KX| + itr (Kx' XowXoy) | - 9)

The resulting models are easily learned and very effective.

3.3. Model Results

Figures 1 4 show models learned from motion capture
data. In each case, before minimizing £, the mean pose,
1, was subtracted from the input pose data, and PCA or
Isomap were used to obtain an initial latent embedding of
the desired dimension. We typically use a 3D latent space
asthisisthe smallest dimension for which we can robustly
learn complex motionswith stylistic variability. The hyper-
parameters were initially set to one. The negative log pos-
terior £ was minimized using Scaled Conjugate Gradient.
Golf Swing: Fig. 1 shows models learned from 9 golf
swings from one subject (from the CMU database). The
body pose was parameterized with 80 joint angles, and
the sequence lengths varied by 15 percent. The balanced
GPDM (Fig. 1(c)) produces smoother latent trajectories,
and hence a more reliable dynamic model, than the orig-
inal GPDM. Fig. 1(d) shows a volume visualization of the
log variance of thereconstructionmapping, 2Inoy |, x v 3
as a function of latent position. Warmer colors correspond
to lower variances, and thus to latent positions to which the
model assigns higher probability; this shows the model’'s
preference for poses close to the training data.
Walking: Figs2 and 3 show modelslearned from one gait
cyclefrom each of 6 subjectswalking at the same speedona
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Figure2. Walking GPLVM: Learned from 1 gait cycle from each
of 6 subjects. Plots show side and top views of the 3D latent space.
Circles and arrows denote latent positions and temporal sequence.

Figure 3. Walking GPDM: Baanced GPDM learned from 1 gait
cyclefrom 6 subjects. (a,b) Side and top views of 3D latent space.
(c) Volumetric visualization of reconstruction variance. (d) Green
trajectories are fair samples from the dynamics model.

treadmill. For each subject the rst poseisreplicated at the
end of the sequenceto encourage cyclical pathsin the latent
space. The body was parameterized with 20 joint angles.
With the treadmill we do not have global position data, and
hence we cannot learn the coupling between the joint angle
times series and global trandational velocity.

Fig. 2 shows the large jumpsin adjacent poses in the la-
tent trajectories obtained with a GPLVM. By comparison,
Fig. 3 (a,b) show the smooth, clustered latent trajectories
learned from the training data. Fig. 3(c) shows a volume
visualization of the log reconstruction variance. Fig. 3(d)
helpsto illustrate the model dynamics by plotting 20 latent
trajectories drawn at random from the dynamical model.
Thetrajectories are smooth and close to the training data.
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Figure4. Speed Variation: 2D models|earned for 2 different sub-
jects. Each onewalking at 9 speeds ranging from 3 to 7 km/h. Red
points are latent positions of training poses. Intensity is propor-
tional to —2In oy, x v 3, SO brighter regions have smaller pose
reconstruction variance. The subject on the left is healthy while
that on the right has a knee pathology and walks asymmetrically.

Speed Variation: Fig. 4 shows 2D GPDMs learned from
two subjects, each of which walked four gait cycles at each
of 9 speeds between 3 and 7km/h (equispaced). Thelearned
latent trajectories are approximately circular, and organized
by speed; the innermost and outermost trajectories corre-
spond to the slowest and fastest speeds respectively. Inter-
estingly, the subject on the left is healthy while the subject
on right has a knee pathology. As the treadmill speed in-
creases, the side of the body with the pathology performs
the motion at slower speedsto avoid pain, and so the other
side of the gait cycle must speed up to maintain the speed.
This explainsthe anisotropy of the latent space.

3.4. Prior over New Motions

The GPDM also de nes a smooth probability density
over new motions (Y', X'). That is, just as we did with
multiple sequences above, we write the joint density over
the concatenation of the sequences. The conditional density
of the new sequenceis proportional to the joint density, but
with the training data and latent positionsheld xed:

p(X,Y'|X,Y,a,8) « p([X,X'],[Y,Y]]aB) (10
Thisdensity can also be factored to provide:
p(Y'| X, X, Y, B)p(X' | X, &) . (11)

For tracking we are typically given an initial state xg, so
instead of (11), we have

p(Y'| X', X, Y, B)p(X' | X, &,xp) - (12)

4. Tracking

Our tracking formulation is based on a state-space
model, with aGPDM prior over pose and motion. The state
attimetisde nedas¢; = [Gy,y:,%¢], Wwhere G; denotes
the global position and orientation of the body, y; denotes
the articulated joint angles, and x, is a latent position. The
godl is to estimate a state sequence, ¢1.7 = (¢1, ..., ¢1),
given animage sequence, I1.7 = (14, ..., Ir), and alearned
GPDM, M = (X, Y, @, 3). Toward that end there are



two common approaches. Online methods infer ¢, given
the observation history I;.; ;. Theinferenceis causal, and
usually recursive, but suboptimal as it ignores future data.
Batch methods infer states ¢; given all past, present and fu-
ture data, I.7. Inferenceis optimal, but requires all future
images which isimpossible in many tracking applications.

Here we propose a compromise that alows some use of
future data along with predictions from previoustimes. In
particular, at each time ¢ we form the posterior distribution
over a(noncausal) sequence of 7+1 states

P(Dtqr | Listgr, M) =
¢ P(Letyr | rtar) P(Dtitar | Tiig—1, M) . (13)

Inference of ¢, isimproved with the use of future data, but
at the cost of asmall temporal delay.? With aMarkov chain
model one could use a forward-backward inference algo-
rithm [23] in which separate beliefs about each state from
past and future data are propagated forward and backward
in time. Here, instead we consider the posterior over the
entire window, without requiring the Markov factorization.

With the strength of the GPDM prior, we also assume
that we can use hill-climbing to nd good state estimates
(i.e., MAP egtimates). In effect, we assume a form of ap-
proximate recursive estimation:

P(betr | Lstr, M) =
MAP
Cp(Itit‘H’ | ¢t:t+7’) p(¢t:t+r | ¢1:t—1 , M) (14)

where ¢pM AP denotes the MAP estimate history. This has
the disadvantage that complete beliefs are not propagated
forward. But with the temporal window we still exploit data
over several frames, yielding smooth tracking.

At each time step we minimize the negative log poste-
rior over statesfromtimet¢ totimet + 7. At thisminimawe
obtain the approximate MAP estimate at time ¢t. The esti-
mate is approximatein two ways. First, we do not represent
and propagate uncertainty forward fromtime t—1 in (14).
Second, because previous MAP estimates arein  uenced by
future data, the information propagated forward is biased.

ImageLikelihood: The current version of our 3D tracker
uses a simplistic observation model. That is, the image
observations are the approximate 2D image locations of a
small number (J) of 3D body points(see Fig. 5). They were
obtained with the WSL image-based tracker [9].

While measurement errors in tracking are often corre-
lated over time, as is common we assume that image mea-
surements conditioned on states are independent; i.e.,

t+7

) = [ 4:) . (15)
i=t

p(It:t+‘r | ¢t:t+‘r

2However an online estimate of ¢ would still be available at t+7.
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Figure 5. WSL Tracks. The 2D tracked regions for the different
tracked sequences (in yellow) are noisy and sometimes missing.

Further, we assume zero-mean Gaussian measurement
noisein the 2D image positions provided by the tracker. L et
the perspective projection of the j** body point, p?, in pose
¢+, be denoted P(p? (¢;)), and let the associated 2D image
measurement from the tracker be rh]. Then, the negative
log likelihood of the observationsat timet is

— h’lp(It | ¢t

TCS)] D

6 ' =1
Herewe set o, = 10 pixels, based on empirical results.

Prediction Distribution We factor the prediction density

P(br.t4r | PMAY ) M) into aprediction over global motion,
and one over poses y and latent positions x. The reason,
as discussed above, is that our training sequences did not
contain the global maotion. So, we assume that

P(¢t t+r|¢{MtA113a ) =
p(X', Yo | x{24F ) M) p(Gpyr |GHAE L), (17)

where X' t = Xtit4r and Ylt = Ytttr-

For the global rotation and translation, G, we assume a
second-order Gauss-Markov model. The negative log tran-
sition density is, up to an additive constant,

|G — G2

- lnp(Gt | G%?f—z) = 20_2
G

; (18)
where the mean predictionisjust G, = 2GM4{P - GM4F.

For the prior over X’;, Y';, we approximate the GPDM
in two ways. First we assume that the density over the pose
sequence, p(Y'; | X'¢, M), can be factored into the den-
sities over individua poses. This is convenient computa-
tionally since the GPDM density over asingle pose, given a
latent position, is Gaussian [6, 20]. Thuswe obtain

t+7
—Inp(Y'|X's, M) = =) Inp(y;|x;, 5, X,Y)
j=t
t+1
W (y; — ny (x))I” Lo
Z 276 J) + 2 no?(x) + gl (19)

where the mean and variance are given by
py(x) = p+YTKy'ky(x), (20)
o?(x) = ky(x,x)—ky (x)TK;,1 ky(x), (21)



Figure6. Tracking 63 framesof a walking, with noisy andmissingdata. The skeletonof the recosered3D modelis projectedonto the

images.The pointstracked by WSL areshavn in red.

and is the vector with elements for all
otherlatentpositions  in themodel.
Secondwe anneakhe dynamics , be-

causdahelearnedcPDM dynamicoftendifferin important
ways from the video motion. The mostcommonproblem
occurswhenthewalking speedn thevideodiffersfrom the
trainingdata. To accommodatthis, we effectively blur the
dynamicsithis is achieved by raisingthe dynamicsdensity
to a small exponent,simply just usinga smallervalue of

in (9), for which the kernelmatrix mustalsobe updatedo
include . Fortracking,we x

Optimization: Trackingis performedby minimizing the
approximatenegative log posteriorin (14). With the ap-
proximationsabove this becomes

(22)

To minimize in (22) with respecto , we nd that
thefollowing procedurénelpsto speedip corvergenceand
to reducegettingtrappedin local minima. Eachnew state
is rst setto bethe meanprediction,andthenoptimizedin
atemporalwindow. For the experimentsve use

Algorithm 1 OptimizationStrateyy (ateachtime step )

for do
with respecto
with respecto
endfor
with respecto

One can also signi cantly speedup the minimization
when one knows that the motion of the tracked objectis
very similar to the training motions. In that case,onecan

assumethat thereis negligible uncertaintyin the recon-

structionmapping,and hencea poseis directly given by

. This reduceghe posereconstructiorik eli-

hoodin (19)to — - , andthe stateat to
, which canbe optimizedstraightforvardly.

5. Tracking Results

Here we focus on tracking different stylesand speeds
for the sameactiity. We usethe BalancedGPDM model
shavnin Fig. 3 for trackingall walking sequencekelow. In
Fig. 6 we useawell-known sequencéo demonstratéhero-
bustnes®f ouralgorithmto dataloss.In the rst frame,we
supply nine 2D points—thehead,left shoulder left hand,
bothkneesandfeet,andcenterof thespine(theroot). They
arethentracked automaticallyusingWSL[9]. As showvn in
Fig. 5(d) the tracked points are very noisy; the right knee
is lost earlyin the sequencandthe left kneeis extremely
inaccurate.By the end of the sequencéhe right foot and
left handarealsolost. Givensuchpoorinput, ouralgorithm
canneverthelessecover the correct3D motion, asshovn
by the projectionsof the skeletonontothe originalimages.

While betterimage measurementsan be obtainedfor
this sequencethis is not alwaysan option whenthereare
occlusionsandimageclutter. E.g.,Fig. 7 depictsacluttered
scendn whichthesubjectbecomesiddenby ashrub;only
the headremainstracked by the end of the sequencdsee
Fig. 5(e)). For theseramesonly theglobaltranslationis ef-
fectively constrainedy theimagedata,sothe GPDM plays
acriticalrole. In Fig. 7, notehow theprojectedskeletonstill
appearso walk naturallybehindthe shrub

Figure 8 shawvs a sequencén which the subjectis com-
pletely occludedfor a full gait cycle. Whenthe occlusion
begins, the trackingis governedmainly by the prior.3 The
3D tracker is thenswitchedbackon andthe global motion
during the occlusionis re ned by linear interpolationbe-
tweenthe 3D tracked posesheforeandafterthe occlusion.
Beforeanocclusionjt is veryimportantto have agoodesti-
mationof , assubsequerpredictionsdependsigni cantly

3we manuallyspecifythe beginningandendof the occlusion.We use
atemplatematching2D detectorto automaticallyre-initialize WSL after
theocclusionasshavn in Fig 5(c).



