


requiring two weeks on 300 cores to process a dataset with

200,000 images.

We introduce a framework for Cryo-EM density estima-

tion, formulating the problem as one of stochastic optimiza-

tion to perform maximum-a-posteriori (MAP) estimation in

a probabilistic model. The approach is remarkably efficient,

providing useful low resolution density estimates in an hour.

We also show that our stochastic optimization technique is

insensitive to initialization, allowing the use of random ini-

tializations. We further introduce a novel importance sam-

pling scheme that dramatically reduces the computational

costs associated with high resolution reconstruction. This

leads to speedups of 100,000-fold or more, allowing struc-

tures to be determined in a day on a modern workstation. In

addition, the proposed framework is flexible, allowing parts

of the model to be changed and improved without impacting

the estimation; e.g., we compare the use of three different

priors. To demonstrate our method, we perform reconstruc-

tions on two real datasets and one synthetic dataset.

2. Background and Related Work

In Cryo-EM, a purified solution of the target molecule

is cryogenically frozen into a thin (single molecule thick)

film, and imaged with a transmission electron microscope.

A large number of such samples are obtained, each of which

provides a micrograph containing hundreds of visible, in-

dividual molecules. In a process known as particle pick-

ing, individual molecules are selected, resulting in a stack

of cropped particle images. Particle picking is often done

manually, however there have been recent moves to partially

or fully automate the process [17, 40]. Each particle image

provides a noisy view of the molecule, but with unknown

3D pose, see Fig. 2 (right). The reconstruction task is to es-

timate the 3D electron density of the target molecule from

the potentially large set of particle images.

Common approaches to Cryo-EM density estimation,

e.g., [7, 11, 37], use a form of iterative refinement. Based

on an initial estimate of the 3D density, they determine the

best matching pose for each particle image. A new density

estimate is then constructed using the Fourier Slice The-

orem (FST); i.e., the 2D Fourier transform of an integral

projection of the density corresponds to a slice through the

origin of the 3D Fourier transform of that density, in a plane

perpendicular to the projection direction [13]. Using the

3D pose for each particle image, the new density is found

through interpolation and averaging of the observed particle

images.

This approach is fundamentally limited in several ways.

Even if one begins with the correct 3D density, the low SNR

of particle images makes accurately identifying the correct

pose for each particle nearly impossible. This problem is

exacerbated when the initial density is inaccurate. Poor

initializations result in estimated structures that are either

clearly wrong (see Fig. 9) or, worse, appear plausible but

are misleading in reality, resulting in incorrectly estimated

3D structures [12]. Finally, and crucially for the case of

density estimation with many particle images, all data are

used at each refinement iteration, causing these methods to

be extremely slow. Mallick et al. [25] proposed an approach

which attempted to establish weak constraints on the rela-

tive 3D poses between different particle images. This was

used to initialize an iterative refinement algorithm to pro-

duce a final reconstruction. In contrast, our refinement ap-

proach does not require an accurate initialization.

To avoid the need to estimate a single 3D pose for each

particle image, Bayesian approaches have been proposed in

which the 3D poses for the particle images are treated as la-

tent variables, and then marginalized out numerically. This

approach was originally proposed by Sigworth [35] for 2D

image alignment and later by Scheres et al. [33] for 3D es-

timation and classification. It was since been used by Jaitly

et al. [14], where batch, gradient-based optimization was

performed. Nevertheless, due to the computational cost of

marginalization, the method was only applied to small num-

bers of class-average images which are produced by cluster-

ing, aligning and averaging individual particle images ac-

cording to their appearance, to reduce noise and the number

of particle images used during the optimization. More re-

cently, pose marginalization was applied directly with par-

ticle images, using a batch Expectation-Maximization algo-

rithm in the RELION package [34]. However, this approach

is extremely computationally expensive. Here, the proposed

approach uses a similar marginalized likelihood, however

unlike previous methods, stochastic rather than batch op-

timization is used. We show that this allows for efficient

optimization, and for robustness with respect to initializa-

tion. We further introduce a novel importance sampling

technique that dramatically reduces the computational cost

of the marginalization when working at high resolutions.

3. A Framework for 3D Density Estimation

Here we present our framework for density estimation

which includes a probabilistic generative model of image

formation, stochastic optimization to cope with large-scale

datasets, and importance sampling to efficiently marginalize

over the unknown 3D pose of the particle in each image.

3.1. Image Formation Model

In Cryo-EM, particle images are formed as orthographic,

integral projections of the electron density of a molecule,

V ∈ R
D3

. In each image, the density is oriented in an un-

known pose, R ∈ SO(3), relative to the direction of the

microscope beam. The projection along this unknown di-

rection is a linear operator, which is represented by the ma-

trix PR ∈ R
D2×D3

. Along with pose, the in-plane transla-

tion t ∈ R
2 of each particle image is unknown, the effect of





(likelihood) then becomes

p(Ĩ|θ, Ṽ) ≈

MR
∑

j=1

wR

j

Mt
∑

ℓ=1

wt

kp(Ĩ|θ,Rj , tℓ, Ṽ)p(R)p(t)

(4)

where {(Rj , w
R

j )}MR

j=1 are weighted quadrature points over

SO(3) and {(tℓ, w
t

ℓ)}
Mt

ℓ=1 are weighted quadrature points

over R2. The accuracy of the quadrature scheme, and con-

sequently the values of MR and Mt, are set automatically

based on ω, the specified maximum frequency such that

higher values of ω results in more quadrature points.

Given a set of K images with CTF parameters D =
{(Ii, θi)}

K
i=1 and assuming conditional independence of the

images, the posterior probability of a density V is

p(V|D) ∝ p(V)

K
∏

i=1

p(Ĩi|θi, Ṽ) (5)

where p(V) is a prior over 3D molecular electron densities.

Several choices of prior are explored below, but we found

that a simple independent exponential prior worked well.

Specifically, p(V) =
∏D3

i=1 λe
−λVi where Vi is the value

of the ith voxel and λ is the inverse scale parameter. Other

choices of prior are possible and is a promising direction for

future research.

Estimating the density now corresponds to finding V
which maximizes Equation (5). Taking the negative log

and dropping constant factors, the optimization problem be-

comes argmin
V∈R

D3

+

f(V),

f(V) = − log p(V)−
K
∑

i=1

log p(Ĩi|θi, Ṽ) (6)

where V is restricted to be positive (negative density is phys-

ically unrealistic). Optimizing Eq. (6) directly is costly due

to the marginalization in Eq. (4) as well as the large num-

ber (K) of particle images in a typical dataset. To deal with

these challenges, the following sections propose the use of

two techniques, namely, stochastic optimization and impor-

tance sampling.

3.2. Stochastic Optimization

In order to efficiently cope with the large number of

particle images in a typical dataset, we propose the use

of stochastic optimization methods. Stochastic optimiza-

tion methods exploit the large amount of redundancy in

most datasets by only considering subsets of data (i.e., im-

ages) at each iteration by rewriting the objective as f(V) =
∑

k fk(V) where each fk(V) evaluates a subset of data.

This allows for fast progress to be made before a batch op-

timization algorithm would be able to take a single step.

There are a wide range of such methods, ranging from

simple stochastic gradient descent with momentum [28, 29,

36] to more complex methods such as Natural Gradient

methods [2, 3, 19, 20] and Hessian-free optimization [26].

Here we propose the use of Stochastic Average Gradient

Descent (SAGD) [21] which has several important advan-

tages. First, it is effectively self-tuning, using a line-search

to determine and adapt the learning rate. This is particu-

larly important, as many methods require significant man-

ual tuning for new objective functions and, potentially, each

new dataset. Further, it is specifically designed for the finite

dataset case allowing for faster convergence.

At each iteration τ , SAGD [21] considers only a single

subset of data, kτ , which defines part of the objective func-

tion fkτ
(V) and its gradient gkτ

(V). The density V is then

updated as

Vτ+1 = Vτ −
ǫ

KL

K
∑

j=1

dVτ
j (7)

where ǫ is a base learning rate, L is a Lipschitz constant of

gk(V), and

dVτ
k =

{

gk(Vτ ) k = kτ

dVτ−1
k otherwise

(8)

is the most recent gradient evaluation of datapoint j at it-

eration τ . This step can be computed efficiently by stor-

ing the gradient of each observation and updating a run-

ning sum each time a new gradient is seen. The Lipschitz

constant L is not generally known but can be estimated us-

ing a line-search technique. Theoretically, convergence oc-

curs for values of ǫ ≤ 1
16 [21], however in practice larger

values at early iterations can be beneficial, thus we use

ǫ = max( 1
16 , 2

1−⌊τ/150⌋). To allow parallelization and re-

duce the memory requires of SAGD, the data is divided into

minibatches of 200 particles images. Finally, to enforce the

positivity of density, negative values of V are truncated to

zero after each iteration. More details of the stochastic op-

timization can be found in the Supplemental Material.

3.3. Importance Sampling

While stochastic optimization allows us to scale to large

datasets, the cost of computing the required gradient for

each image remains high due to the marginalization over

orientations and shifts. Intuitively, one could consider ran-

domly selecting a subset of the terms in Eq. (4) and using

this as an approximation. This idea is formalized by impor-

tance sampling (IS) which allows for an efficient and accu-

rate approximation of the discrete sums in Eq. (4).1 A full

review of importance sampling is beyond the scope of this

paper but we refer readers to [38].

1One can also apply importance sampling directly to the continuous

integrals in Eq. (3) but it can be computationally advantageous to precom-

pute a fixed set of projection and shift matrices, P̃R and S̃t, which can be

reused across particle images.
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A. Stochastic Optimization

This section provides algorithmic details of the Stochas-

tic Averaged Gradient Descent (SAGD) optimization

method used for MAP estimation. See the original SAGD

paper [21] for details. Consider the objective function spec-

ified in Equation (6), rewritten as a sum of functions over

subsets of the data:

f(V) = − log p(V)−

K
∑

i=1

log p(Ĩi|θi, Ṽ)

=

K
∑

i=1

[

−
1

K
log p(V)− log p(Ĩi|θi, Ṽ)

]

=

K
∑

i=1

fi(V)

At each iteration τ , SAGD computes the update given by

Vτ+1 = Vτ −
ǫ

L

K
∑

j=1

[

dVτ
j −

1

K

∂

∂V
log p(V)

]

where dVτ
k is defined according to Equation (8). In practice,

the sum in the above update equation is not computed at

each iteration, but rather a running total is maintained and

updated as follows:

ĝτ =
K
∑

k=1

dVτ
k

ĝτ+1 = ĝτ − dVτ
kτ

+ gkτ
(Vτ )

The SAGD algorithm requires a Lipschitz constant L

which is not generally know. Instead it is estimated us-

ing a line search algorithm where an initial value of L is

increased until the instantiated Lipschitz condition f(V) −

f(V − L−1dV) <
‖dV‖2

2L is met. The line search for the

Lipschitz constant L is only performed once every 20 iter-

ations. Note that a more sophisticated line search could be

performed if desired. A good initial value of L is found us-

ing a bisection search where the upper bound is the smallest

L found so far to satisfy the condition and the lower bound

is the largest L found so far which fails the condition. In

between line searches, L is gradually decreased to try to

take larger steps. The entire SAGD algorithm is provided in

Algorithm (1).

B. Importance Sampling

Importance Sampling is a key part of the proposed recon-

struction method for Cryo-EM and provides large speedups



Algorithm 1 SAGD

Initialize V and L

Initialize ĝ← 0
Initialize dVk ← 0 for all k = 1..K
for τ = 1..τmax do

Select data subset kτ
Compute objective gradient gkτ

(V)
ĝ← ĝ − dVkτ

+ gkτ
(V)

dVkτ
← gkτ

(V)
V ← V − ǫ

L

[

ĝ − ∂
∂V

log p(V)
]

if mod(τ ,20) == 0 then

Perform line search

while fkτ
(V)− fkτ

(V − L−1dVkτ
) <

‖dVkτ
‖2

2L
do

L← 2L
end while

else

L← K

2

1
150

end if

end for

during optimization. We use importance sampling to effi-

ciently compute the discrete sum in Equation (4). Note that

importance sampling is applied independently for each im-

age in the dataset, since the orientations and shifts which

correspond to important terms in the discrete sum can be

different for each image.

In practice, we split the outer sum in Equation (4) into a

double summation, one over orientations on the sphere and

one over in-plane rotations of images and projections. We

then compute each of the three sums (over shift, in-plane

rotation, and orientation) with and independent importance

sampler. This is equivalent to computing the full sum in

Equation (4) using a single importance sampler with an im-

portance distribution that is factored into three parts, one

for each of shift, in-plane rotation, and orientation. This

factoring is necessary, as the memory requirements of stor-

ing a fully joint importance distribution for each image in

the dataset would become infeasible for high-resolution re-

constructions.

For each of the three importance samplers, the impor-

tance distribution at each iteration is constructed accord-

ing to Equation (14). At the first iteration during which a

particular image is seen, the importance distribution is sim-

ply uniform, and in fact we explicitly sample every point

once. The φ values resulting from this computation are

stored. At the next iteration during which the same image is

seen, these φ values are used in Equation (14) to construct

a non-uniform importance distribution which is then sam-

pled from. We use a number of samples proportional to the

effective sample size of the importance distribution, so the

number of samples used naturally decreases as the impor-

tance distribution becomes more peaked, leading to large

speedups at late iterations during optimization.

Algorithm 2 Importance Sampling

Given φi for i ∈ I from previous iteration

for j ∈ 1..J do

for i ∈ I do

Compute Ki,j

end for

end for

φ̂j ←
∑

i∈I
φ
1/T
i Ki,j ∀j ∈ 1..J

Z ←
∑

j φ̂j

qj ← (1− α)Z−1φ̂j + αψj ∀j ∈ 1..J

s←
(

∑

j q
2

j

)−1

N ← s0s

I← ∅

for k ∈ 1..N do

i← sample from q

insert i into I

end for

Use I to compute φi for next iteration

In Equation (14), the previous φ values are not directly

used, but rather they are annealed by a temperature param-

eter and then smoothed by a kernel matrix. Both of these

steps serve to guard against importance distributions which

are too peaked around large φ values, which would inhibit

the importance sampler from exploring the domain. The

kernel matrix also serves the purpose of allowing use of φ

values from a previous iteration even if the resolution of

quadrature points being used has increased at the current

iteration. The Von Mises-Fisher kernel is used for orienta-

tions and in-plane rotations, while a Gaussian kernel is used

for shift:

KV (di, dj ;κV ) ∝ exp(κV d
T
i dj)

KG(ti, tj ;κG) ∝ exp(−κG‖ti − tj‖
2)

where κV and κG are precision parameters for each ker-

nel which are set based on the resolution of the quadrature

scheme used at the previous φ values, di and dj are the

quadrature directions (in S2 for particle orientation and S1

for in-plane rotation, and ti and tj are the quadrature shift

values (in R
2).

The algorithm for constructing an importance distribu-

tion and sampling from it are given in Algorithm (2). The

sampled values are then used to compute (12). Note that

some quadrature points can end up being sampled multiple

times, this is detected and the value reused to reduce com-

putation.

C. Error Measures

Because ground-truth is rarely available for Cryo-EM,

measuring accuracy is often difficult. Traditionally, the field

has used the Fourier Shell Correlation (FSC) to measure



the resolution of a solved structure. The so-called gold-

standard FSC works by splitting the dataset in half, estimat-

ing two densities separately and the computing the normal-

ized correlation in Fourier space as a function of frequency.

This curve would then be thresholded to provide an estimate

of accuracy. However, we note that this measure is actually

estimating the variance of the estimator, not the accuracy of

the density it has produced. Further it is only theoretically

justifiable when the estimator is unbiased, which is not true

of the method proposed here or with other likelihood-based

Bayesian methods such as RELION.

Instead, we introduce a novel metric based on recon-

struction error of a held test set. To quantify the ability of

marginal likelihood methods, such as ours, to model and

explain the observed data we introduce the Expected Mean

Squared Error

E2(I|θ,V) ≡ ER,t|I,θ,V

[

‖I −CθStPRV‖2
]

(15)

to be the expectation of the squared error between the im-

age and its reconstruction under the image formation model.

Note that the expectation is conditioned on the current den-

sity and the CTF parameters and is taken over the unknown

pose and translation, R and t. After switching to Fourier

space and with some manipulation E2(I|θ,V) becomes

Z−1

∫

R2

∫

SO(3)

‖Ĩ−C̃θS̃tP̃RṼ‖2p(Ĩ|θ,R, t, Ṽ)p(R)p(t)dRdt

(16)

where the

Z =

∫

R2

∫

SO(3)

p(Ĩ|θ,R, t, Ṽ)p(R)p(t)dRdt (17)

is a normalization constant. Computing this would be com-

putationally expensive, instead we use an importance sam-

pling based approximation, Ê2(I|θ,V),

Ẑ−1
∑

j∈IR

∑

ℓ∈It

wR

j wt

ℓ

NRqRj Ntq
t

ℓ

pj,ℓ‖Ĩ − C̃θS̃tP̃RṼ‖2 (18)

where

Ẑ =
∑

j∈IR

∑

ℓ∈It

wR

j wt

ℓ

NRqRj Ntq
t

ℓ

pj,ℓ (19)

is the approximation of the normalization constant. The

above quantities can be readily computed along with the

main likelihood computation using the same importance

sampling scheme described above.

We compute the average value of Ê2(I|θ,V) on a held

out set of test images whose gradients are never used. To

normalize for different datasets we report the Relative Root

Expected Mean Squared Error (RREMSE) as

√

1

σ2Ntest

∑

I

Ê2(I|θ,V) (20)

where the sum is taken over the test set which has Ntest
images and σ2 is the noise variance of the dataset. Values

near 1 indicate that the data is being well explained.


