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The measurement of image disparity is a fundamental precur-
sor to binocular depth estimation. Recently, Jenkin and Jepson
(in Computational Processes in Human Vision (V. Pylyshyn, Ed.),
Ablex, New Jersey, 1988) and Sanger (Biol. Cybernet. 59, 1988,
405-418) described promising methods based on the output phase
behavior of bandpass Gabor filters. Here we discuss further justifi-

cation for such techniques based on the stability of bandpass phase -

behavior as a function of typical distortions that exist between left
and right views. In addition, despite this general stability, we
show that phase signals are occasionally very sensitive to spatial
position and to variations in scale, in which cases incorrect mea-
surements occur. We find that the primary cause for this instabil-
ity is the existence of singularities in phase signals. With the aid of
the local frequency of the filter output (provided by the phase
derivative) and the local amplitude information, the regions of
phase instability near the singularities are detected so that poten-
tially incorrect measurements can be identified. In addition, we
show how the local frequency can be used away from the singular-
ity neighbourhoods to improve the accuracy of the disparity esti-
mates. Some experimental results are reported. © 1991 Academic Press,
Inc.

1. INTRODUCTION

The use of local, bandpass, linear filters (channels) has
become the focus of considerable research on early bio-
logical and computational visual processing. It is readily
accepted that the amplitude and zero-crossings of such
filter outputs provide a useful source of information for
texture analysis and the measurement of binocular dis-
parity, image orientation, and optical flow (e.g., [1-7]).
Recently, considerable promise has been exhibited by a
new technique for binocular (stereo) disparity measure-
ment in which disparity is expressed in terms of phase
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differences in the output of local, bandpass filters applied
to the left and right views [8~10]. (Burt et al. [11] have
suggested a similar approach with respect to the mea-
surement of image velocity.) Although Gabor filters have
been a natural choice for the bandpass prefiltering of the
input, any quadrature pair of bandpass, constant-phase
filters will suffice.

The main advantage of such local, phase-based ap-
proaches is that disparity estimates are obtained with
subpixel accuracy, without requiring explicit subpixel
signal reconstruction or subpixel feature detection and
localization. The measurements may be used directly, or
iteratively as predictions for further, more accurate, esti-
mates. Because there are no restrictions to specific val-
ues of phase (e.g., zeros) that must first be detected and
localized, the density of measurements is also expected
to be high. Finally, the computations may be imple-
mented efficiently in parallel.

In this paper we introduce another major advantage of
phase-based approaches, namely, the stability of band-
pass phase behavior with respect to image deformations
that typically exist between left and right stereo views, so
that similar structure is generally available for matching.
In particular, we argue that phase information is stable
under scale perturbations and smooth contrast varia-
tions. We then describe two sources of measurement er-
ror with phase-based approaches. The first is caused by
the occasional sensitivity of phase to small changes in
scale between left and right views. The second is the
result of using an implicit local model of phase, which
becomes inappropriate where the phase behavior is too
sensitive to changes in spatial position. Both of these
problems are linked to the existence of singularities in the
phase signal. We describe the properties of singularity
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neighbourhoods for 1-d signals, and show that they can
be detected easily, so that incorrect measurements may
be removed. It is also shown that the accuracy of the
disparity measurements can be improved, at little extra
computational cost, using the same information that is
already required to detect the singularity neighborhoods.

These results are of general interest for several rea-
sons. First, they also apply to zero-crossings of the filter
output in that zero-crossings can be thought of as con-
tours of constant phase. For example, zero phase in
the response of a complex Gabor filter corresponds to a
zero in the response of an odd-symmetric sine-Gabor ker-
nel. Similarly, zero-crossings of the Laplacian of a Gaus-
sian amount to zeros in the phase response of its corre-
sponding analytic filter, the imaginary part of which is
provided by its Hilbert transform. Second, the issues and
results are relevant to phase-based approaches to the
measurement of image velocity (e.g., from the spatiotem-
poral phase gradient [12]) and to phase-correlation tech-
niques (e.g., see [13—15]). Third, problems that cause
incorrect measurements, such as scale variations be-
tween left and right views, are not unique to phase-based
approaches. They exist for any technique that tries to
match features between two views. Therefore, the gen-
eral stability of phase information and the fact that we
can easily detect regions of instability should be viewed
as unique advantages of phase-based approaches.

2. PHASE-DIFFERENCE TECHNIQUES

If the geometric configuration of two cameras is
known, then the scene-point disparity (i.e., the relative
distance between the projections of a single scene point
onto the two imaging surfaces) encodes the 3-d depth of
the point. By convention, assume that crossed dispari-
ties, which correspond to scene features nearer than the
fixation point, are negative. Uncrossed disparities, which
correspond to scene features farther away than the fixa-
tion point, are positive. The computation of image-point
disparity (or simply image disparity) refers to the match-
ing of image features in one view with those in the other
in order to derive an approximation to scene-point dis-
parity. One major constraint on candidate image proper-
ties for the measurement of image disparity is that they
must be stable (nearly invariant) under the typical defor-
mations that we expect between the left and right views.

Most approaches to disparity measurement assume an
initial stage of linear, bandpass smoothing in order to
reduce the effects of noise, and to isolate (i.e., separate)
image properties of interest, such as multiple scales.
Here we assume a stage of prefiltering based on Gabor
functions [16]. Let R\(x, k) and R.(x, ky) be the left and

199

right views after convolution with a Gabor kernel given
by

Gabor(x; o, ko) = e*™G(x; o), 1

where G(x; o) is a Gaussian window with standard devia-
tion o, and kg is referred to as the peak tuning frequency
(in radians) to which the filter responds maximally. The
amplitude spectrum of (1) is Gaussian-shaped and cen-
tered at k. In vision applications it is common to define
the extent of the amplitude spectra to be one standard
deviation o = o, with bandwidths close to one octave.
Because the filters are complex, so are the responses
Ri(x, ko) and R.(x, ko). Therefore, they may be written as

Ri(x; ko) = pl(x)ei[kox*'!h(x)]’

Ri(x; k) = pe(x)etortv:ol,

where p(x) and ¢(x) = [kox + ¥(x)] denote the amplitude
and phase components of response. The phase compo-
nent has been split into two terms, a linear term kox that
is determined by the peak frequency of the Gabor filter,
and y(x). We do this to emphasize that the response R(x;
ko) of a band-pass filter can be viewed as a slowly varying
modulation of the base signal e** to which the filter is
tuned. More precisely, we can write R(x, ko) as

@)

R(x; ko) = M(x; ko)e™*, (3)

where M(x; ky) = p(x)e™¥® is a lowpass signal. (This fol-
lows from the modulation property of Fourier transforms
[17].) Following Whitham [18] or Papoulis [19], the local
(instantaneous) frequency can be defined as the spatial
derivative of the phase signal, k(x) = ¢'(x). If the phase
of M(x, ko) is linear, as in ¥(x) = k;x, then R(x; ko) is just
an amplitude-modulated sinusoid with constant fre-
quency ko, + k;. Otherwise, the phase derivative ¢'(x) =
ko + ¥'(x) provides a local, constant-frequency approxi-
mation to R (x; k). The local frequency plays a key role in
what follows.

Following Jenkin and Jepson [8] and Sanger [9], the
problem of computing binocular disparity can be formu-
lated in terms of phase matching, that is, determining the
shift required so that the phases of the left and right sig-
nals become equal.! The local image disparity, at a spe-
cific position x, for an initial guess dj, is defined to be the
shift d(x) such that

! Some authors (e.g., [9, 11]) motivate the use of phase information
from the Fourier shift theorem, which states that the translation of a
signal amounts to a phase shift of each Fourier component by a propor-
tion of its wavelength [17]. Here, we argue that the more important
justification for the use of phase information is that it is a stable image
property for matching (see Section 3).
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and |d(x) — di| is as small as possible. Because of phase
periodicity, this approach can only be expected to deal
with shifts of less than half a wavelength to either side of
the initial guess. If the disparity is too large (i.e., if the
local wavelength is too small with respect to the shift)
then the computed phase difference can be wrong by a
multiple of 277. This yields incorrect disparity measure-
ments. In order to use filters tuned to higher frequencies
with relatively large disparities, a control strategy, such
as coarse-to-fine propagation, is necessary [7-10]. In
what follows we concentrate on the basic disparity mea-
surements while assuming that the initial guess is suffi-
ciently close to the true disparity; the control strategy is
beyond the scope of this paper.

If the initial guess is sufficiently good and the filter
outputs are sinusoidal with constant frequency ko, then
the shift necessary to match the phases of the left and
right filter outputs is given by (cf. [8, 9])

(f1x) — dr(x)]2n

Jo(x) = ko

)

where [6 ], denotes the principal part of 9, that is, [0],, €
(—m, m]. However, if the outputs are not sinusoidal with
constant frequency kg, then the disparity estimates pro-
vided by d, will not be exact. For example, if the left and
right filter outputs are shifted versions of one another
with disparity 8, then the phase difference in the numera-
tor of (5) becomes

A¢(x)=qb<x+g>—¢><x—§>. ©)

If ¢(x) is smooth (singularities are discussed below), we
can rewrite (6) with ¢(x) expressed as a Taylor series
about x as Ad(x) = 8¢'(x) + O(8°¢"(x)). The disparity
error, £(x) = d(x) — dp(x), with dy(x) = Ad(x)/ky as in (5),
can now be written as

e(x) = 8 — dy(x)

=5 (1 - ‘bk—(()x)) +0 (—53";'(’“)). @

Note that the order-6 term in (7) arises from the discrep-
ancy between the peak tuning frequency .y and the local
frequency of the filter output ¢'(x).

We can improve this technique by adopting a more
general model, for which frequency should be locally
constant, but not necessarily equal to the peak frequency
ky. More precisely, replace ky in (5) by the average local
frequency between the left and right views. This yields
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[$1(0) = b:(D)]an

di(x) = %(x)

2

®
where k(x) = %(qﬁ{(x) + ¢r(x).

Then, d(x) yields the exact disparity when the left and
right views both have locally constant frequencies, but
not necessarily equal to the filter tuning k. When the left
and right outputs are shifted versions of one another, but
do not have constant frequency, the disparity error &(x)
= & — dy(x) for (8) reduces to
B 52 ¢1/1 (x))
o) = 0 (2he). ©
In comparison to (7), note that (9) contains no order-8
term.

When the disparity estimates are not exact, then shift-
ing the signals by d,(x) will not precisely match the
phases in the left and right filter outputs as required by
(4). Because the error depends on the initial disparity
(i.e., 8 in (7) and (9)), one way to improve the accuracy is
to iterate the basic measurements. On one cycle of the
iteration the images are shifted according to the current
disparity approximation, the local image disparity be-
tween the shifted left and right signals is computed using
either dy or d;, and the disparity approximation is up-
dated with the result. That is, with an initial guess d;, the
disparity approximation at iteration ¢ + 1 is given by

d™i(x) = d'(x) + Ad'(x), (10)
where
d'x) = d,,
Adi) = B = @@12) - )Ec)pr(x ullCACIP)))

and k(x) is given by k(x) in (8) for the new predictor, or by
ko for the old predictor (5). The estimate d'(x) converges
to the exact disparity, as defined by (4). Note that with
bandwidths of one octave the local frequency may be up
to ko/2 away from kg, in which case the first-order errors
in (7) can be as large as 8/2. Therefore, an upper bound
on the convergence rate for the old disparity predictor
dy(x) is 1 bit per iteration. The new predictor d;(x)
converges quadratically.

3. PHASE STABILITY AND
SCALE-SPACE SINGULARITIES

The transformation between the left and right stereo
views is often assumed to be reasonably well approxi-
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mated by image translation (i.e., L(x) = I.(x + d)). We
argue that an affine transform,

(11)

L(a(x) = I.(x), where a(x) = ay + ax,
is a more realistic first approximation. For, even in the
case of a nearly planar surface, scale variations of up to
20% between the two views are not uncommon [20].

If we assume an affine transformation as in (11), then,
because the filters have constant (octave) bandwidths,
the two output signals R| and R, will satisfy

R{a(x), k1)) = R.(x, ky), where ky = kja,. (12)
That is, a rescaling of the input can be matched by chang-
ing the peak tuning frequency so that the same image
structure is extracted by the filters. In this case, the two
outputs are related by the same affine transformation,
provided that differently tuned filters were applied to the
left and right inputs. We might expect to recover a(x) by
matching R\(x, k) with R.(x, k;). Unfortunately, k, de-
pends on the unknown scale factor a,. Instead, we at-
tempt to recover a(x) from the left and right responses of
the same filter, that is, from R(x, k;) and R.(x, k). For
this to succeed, with a useful result, the structure of R.(x,
ky) should be well approximated by the structure of R, (x,
ky). In other words, the image property used for binocular
matching must be stable under small scale perturbations.

3.1. Gabor Scale-Space

To demonstrate the dependence of Gabor output on
spatial position and scale we use a Gabor scale-space
expansion that expresses the filter output as a function of
spatial position and the principal wavelength to which the
filter is tuned. Similar expansions have been considered
by Witkin [21], Koenderink [22], Mallat [23], Lindeberg
[24], and others based on Gaussians (lowpass filtering)
and derivatives of Gaussians (bandpass filtering). Let the
scale-space expansion of I(x) be given by

S{x, A} = Gabor(x; o(\), k(\)) * I(x), (13)
where * denotes convolution, Gabor(x; o, k) is defined in
(1), and A is the scale parameter. The peak tuning fre-
quency of the filter is given by

2

k) =27 (14)

With a bandwidth of 8 octaves (assumed to be near 1),
and with one standard deviation as a measure of the ex-
tent of the Gaussian envelope (1), the standard deviation
of the amplitude spectra o should satisfy 8 = log,[(k(\)

201

+ o)/ (k(\) — o)]. From this, it is easy to show that the
approximate radius of spatial support is given by

o = o (Z21)

k(\) \28 — 1 (15

The amplitude and phase components of S(x, \) are given
by

p(x, A) = [S(x, V| = V(Re[S(x, V])? + Im[S(x, M]?,
(16a)

d(x, \) = arg[S(x, )] = Im[log. S(x, A)]. (16b)
Figure 1 (top) shows a signal composed of white Gaus-
sian noise concatenated with a scanline from a real im-
age. The two middle images show p(x, A} and ¢(x, A) over
an interval of two octaves. Level contours of constant
amplitude and phase are shown below. In the context of
the scale-space expansion, an image property is said to
be stable where its level contours are vertical.

It is clear from Fig. 1 that p(x, \) depends significantly
on scale because its level contours are not generally ver-
tical. As a consequence, the amplitude signal and the raw
filter output (which has a significant amplitude compo-
nent) are not good candidate properties for matching. By
contrast, the phase structure is generally stable with re-
spect to scale perturbations. It is also clear, however,
that in some regions phase does depend significantly on
scale. As explained below, a major source of instability is
the occurrence of singularities in the phase signal.

3.2. Singularity Neighbourhoods

For a general image I(x), the scale-space defined by
(13) is analytic, and contains a number of isolated zeros,
where S(x, A) = 0. In the amplitude signal shown in Fig.
1, zeros appear as black spots. The phase signal ¢(x, A) is
also analytic, except at the zeros of S(x, \), where ¢ (x, A)
is undefined. The expected density of these singularities
is proportional to the peak tuning frequency [19, 25].
They can be generated easily by superimposing two com-
plex exponentials with the same amplitudes and nearby
frequencies. At a phase singularity, the bandpass signal
passes through the origin of the complex plane. From the
continuity of S(x, A) it can be argued that at scales just
above and below the singular point the bandpass signal
passes very close to the origin. As a consequence, phase
and/or amplitude change quickly as a function of spatial
position. Below we describe this characteristic behavioyr
of p(x, A) and ¢(x, \) near singular points; a more techni-
cal discussion and details can be found in [25]. In what
follows, let (x5, Ag) denote the location of a singularity.

The neighborhoods just above singular points (i.e. for A
> o) are characterized by local frequencies that are sig-



202

200 -

Input 100
Intensity 0 - |
-100

-200 —

T T I 1§ I I ] I ]
0 25 50 75 100 125 150 175 200

Pixel Location

AL

FIG. 1. Gabor Scale-Space Expansion. The input signal (top) con-
sists of white Gaussian noise (left) and a scanline from a real image
(right). The middle images show the amplitude and phase components
of S{x, A) for 12 = X\ = 48 (in pixels). The vertical and horizontal axes
represent scale and spatial position. The bottom two figures show level
contours of constant p(x, A) and ¢(x, A). Scales for A = 38 and A = 41
are marked by ticks on the upper right side of (bottom-left) for reference
in Fig. 2.

nificantly below the corresponding peak frequencies k()
(see Fig. 2, top panel). Within these neighborhoods there
exist retrograde regions within which ¢,(x, A) < 0. Along
the boundaries of retrograde regions (which begin and
terminate at singular points) the local frequency is zero;
i.e., ¢.(x, \) = 0. This is significant because where ¢,(x,
A) = 0 the level phase contours are horizontal, and not
vertical as desired. Near these boundaries, both inside
and outside the retrograde regions, the level contours are
still nearly horizontal, which means that phase matching
will be very sensitive to small changes in scale.

Below singular points (i.e., for A < Aq) the neighbor-
hoods are characterized by local frequencies that are sig-
nificantly higher than corresponding peak tuning frequen-

FLEET, JEPSON, AND JENKIN

Local
|5 Frequency

Vv r':?s

—7

Phase
(mod 2r)

-1

0 25 50 75 100 125 150 175 200

Pixel Location

Phase ~" ]
(mod 27)

Local
L5 Frequency

T T I T T T I ] f
0 25 50 75 100 125 150 175 200

Pixel Location

FIG. 2. Phase and Local Frequency Behavior Near Singularities.
Phase and local frequency are shown as functions of spatial position for
two nearby scales from the scale-space in Fig. 1 (marked on Fig. 1
(bottom-left)). The first scale (A = 41) lies just above three zeros of p(x,
A). The second (A = 38) lies just below the same zeros. Here, the
vertical dotted lines denote phase wrapping between —7 and wr(not
discontinuities). The horizontal dotted lines mark the peak tuning fre-
quencies of the two scales.

cies. In addition, the local frequency of response changes
rapidly as a function of spatial location, with local max-
ima that roughly coincide with the singular locations.
(This is evident in the bottom panel of Fig. 2.) Although
this rapid variation in phase behavior is not a source of
instability with respect to scale, it will cause problems for
disparity computation that is based on a constant-fre-
quency model of the local filter output as in (8). The
numerical approximation of ¢'(x) for use in (8) will be
poor, the local domains of convergence will be extremely
small, and the convergence will be slow.

Fig. 3 shows a detailed example of level phase con-
tours near a phase singularity. The singular point lies

FIG. 3. Level Phase Contours in Singularity Neighborhoods. Level
phase contours are shown near a singularity. (left) The small ellipsoidal
contour marks locations at which ¢,(x, A) = 0. The singularity lies at the
bottom of this contour. (right) The added contours in the right panel
show the regions delineated by the constraints used to detect the singu-
larity neighborhoods (cf. Section 3.3).
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FIG. 4. Detection of Singularity Neighborhoods. (top-left) Level
contours of the local frequency constraint (17) for 7, = 1.0, 1.5, and 2.0.
(top-right) Level contours of the amplitude constraint (18) for 7, = 0.75,
1.0, and 1.5. (middle-left) Combined regions removed by both con-
straints with 7, = 1.0 and 7, = 1.2. (cf. Fig. 3.) Here, for convenience,
the region removed by (18) is shown in black, while the contours deline-
ate the remaining regions detected by (17). (middle-right) Level phase
contours corresponding to Fig. 1. (bottom-left) Phase contours that
survive the constraints. (bottom-right) Phase contours in regions re-
moved by the constraints. Note that the constraints capture the unsta-
ble regions.

near the center at the point where the phase contours
intersect, which is at the bottom of the small ellipsoidal
contour that marks the retrograde boundary (i.e., the
contour ¢.(x, A) = 0). The higher density of phase con-
tours below the singularity reflects the higher local fre-
quencies. The existence of nearly horizontal level con-
tours above the singularity reflects the instability.
Finally, the neighborhoods to the left and right (i.e.,
spatially adjacent) of singular points can be characterized
in terms of amplitude variation. As we approach a singu-
lar point, p(x, Ag) goes to zero. Based on a simple linear
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model of amplitude, at a specific location x; near the
singularity, the distance to the singular point is approxi-
mately [Ax| = p(x1, Ao)/|px(x1, Ao)|. Equivalently, as we
approach the singularity |p.(x1, Mo)|/p(x1, o) increases.
As a consequence, the neighborhoods to the left and right
of phase singularities can be characterized by large val-
ues of |p.(x, N|/p(x, \).

3.3.

As explained above, it is necessary that singularity
neighborhoods be detected so that incorrect disparity es-
timates can be avoided. Here we describe constraints
that may be used to identify singularity neighborhoods
without requiring the explicit localization of the singular
points.

To detect the neighborhoods above and below the sin-
gular points we suggest a constraint on the local fre-
quency in relation to the peak tuning frequency. In par-
ticular, we constrain the distance between local
frequency of response ¢é,(x, \) and the peak frequency
k(\), which can be expressed as a function of the stan-
dard deviation of the amplitude spectrum o(d). This
amounts to a condition that

Detection of Singularity Neighborhoods

28 -1

9 ) K] ) = ko (). ()

(M)

Level contours of (17) for different values of 7, are shown
in Fig. 4 (top-left) for the same scale-space as that shown
in Fig. 1. They form 8-shaped regions with the singular
points at their centers.

The neighborhoods to the left and right of singular
points can be detected with a constraint on local ampli-
tude variation,

|px(xy }\)l
a(\) ——p(x, N < 7,

(18)
where o(\) defines the radius of the filter support (15). If
p(xi, No)/|px(x1, No)| is taken to be an approximation to
the distance from a singularity, then (18) detects points
that lie within a distance of o (\)/7, from a singularity.
Levels contours of (18) for different values of 7, are
shown in Fig. 4 (top-right). They form =-shaped regions
with the singularities at their centres.

As the thresholds 7, and 7, decrease, the constraints
become tighter and larger neighborhoods are detected.
Figure 4 (middle-left) shows the combined behavior of
the two thresholds: (1) with 7, = 1.2, so that local fre-
quencies are accepted up to 20% outside the nominal
tuning range of the filters; and (2) with 7, = 1.0, so that
points within o-(\) of a singularity are discarded (in the
experiments below, the filter outputs are subsampled
with one (complex) sample every o(\), so that 7, = 1.0
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marks all points within one pixel of a singularity). Fi-
nally, the last three panels of Fig. 4 show the level phase
contours before the removal of singularity neighborhoods
(middle-right), the contours that survive the constraints
(bottom-left), and the contours in those regions detected
by the constraints (bottom-right). In total, these two con-
straints typically remove between 15% and 20% of the
scale-space area.

Finally, it is important to note that a constraint on
absolute amplitude is also desirable. If the input has no
significant power at frequencies to which a filter is tuned,
then noise may dominate the response, and there may be
no variation in amplitude or local frequency. The con-
straints outlined above are designed to detect the patho-
logical behavior of phase signals where there is signifi-
cant local energy. They do not detect a fundamental lack
of signal. Therefore, whenever the local amplitude is suf-
ficiently small, the filter output should be ignored. (In the
experiments reported below, we discard all responses
whose amplitude was less than 5% the maximum re-
sponse of the filter over that image.)

4. EXPERIMENTAL RESULTS

To demonstrate the improved disparity estimates that
result from the removal of singularity neighborhoods and
the predictor d,(x) in (8), we have done experiments with
affine deformations between the left and right views. The
data for one set of experiments was collected from
scanlines from real images (results from white noise input
were similar in most respects). We also apply the new
technique to a real pair of images in comparison to the
technique of Jepson and Jenkin (1989).

4.1. Experiments with Affine Deformation

In what follows, Gabor filters were used with band-
widths of 0.8 octaves and principal wavelengths between
4 and 100 pixels. For illustrative purposes some outputs
were over-sampled (as in Figs. 1, 3, and 6), but all com-
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putations used an effective subsampling rate of one (com-
plex) sample every o (\), where o(\) denotes the stan-
dard deviation of the Gaussian window. The computation
of local frequency as well as the amplitude derivative is
described in detail in the Appendix.

Figure 6 shows the errors that result near singularity
neighborhoods. The left and right phase signals were
shifted versions of a slice of the scale-space (with A = 20)
shown in Fig. 1. Figure 5 (left) shows this slice marked on
the scale-space phase contours, and Fig. 5 (right) shows
the corresponding phase and local frequency as a func-
tion of spatial position. Note from Fig. 5 that this slice
crosses three singularity neighborhoods, two just above
singularity points and one just below. For the experi-
ment, the error in the initial guess was uniformly 25% of
the tuning wavelength (i.e., 8 = 5 pixels). Figure 6 (top)
shows the results of dy(x) without the removal of singu-
larity neighborhoods. The middle result shows dy(x) with
disparity measurements removed whenever either of the
left or the right filter responses did not satisfy the two
constraints (17) and (18) with 7, = 1.0 and 7, 1.2.
The removal of large errors caused by the poor local
model is evident. Finally, Figure 6 (bottom) shows the
more accurate results of d,(x), with the same singularity
neighborhoods removed.

Sanger [9] avoids some of the errors that occur in sin-
gularity neighborhoods with the use of smoothing applied
to the raw disparity estimates and a constraint on the
difference in amplitude between the left and right signals.
The amplitude difference will catch some of the incorrect
estimates. In particular, when the amplitude derivative is
large, there will often (but not always) be a large differ-
ence in amplitude between the left and right views. The
smoothing reduces many of the remaining errors, but in
doing so it sacrifices resolution and the accuracy of other
estimates. Also note that Sanger did not iterate the ap-
proach (as in (10)), and therefore the use of the peak
tuning frequency in (5) limits the magnitude of the errors
produced. Iteration would push these errors further from
the true disparity (this is shown below in Fig. 11). Jepson

T —
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Local 8-
Frequency.4 —.
0

f

W
m
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FIG. 5.
frequency as a function of spatial position for this slice.
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FIG. 6. Disparity Measurement. The top two plots show the dispar-
ity estimates of dy(x) without, and then with, the singularity neighbor-
hoods removed. The bottom plot shows the results of the improved
predictor d:(x), with the singularity neighborhoods removed. The tuned
wavelength A was 20 pixels and the disparity (error in the initial guess)
was 5 pixels.

and Jenkin [26] employed a constraint on disparity gradi-
ents in terms of spatial phase differences in the individual
views. This constraint is similar to that in (17) and re-
moves some of the errors caused by phase behavior in
singularity neighborhoods. But it was found to be unre-
liable.

Figure 7 shows mean disparity error and standard devi-
ation bars for the old and new predictors (dy and d)) as a
function of filter scale (for 4 = A < 64). There was no
scale change between the left and right views, and the
error in the initial guess was again 25% of the tuned
wavelengths (i.e., 8(\) = 0.25)\). Relative prediction er-
ror was computed as e(x) = 100.0(8(\) — d(x))/8(\). Sin-

gularity neighborhoods were detected using (17) and (18)

as in Fig. 6 vs{ith 7, = 1.0 and 7, = 1.2. The improved
accuracy of d;(x) is evident. Also note the significant
positive bias in dy(x). Because real images tend to have

Old
Predictor
Error

(% 5) New

Predictor
Error
Co %9

L s

Filter Wavelength (logarithmic scale)

FIG. 7. Disparity Error for Old and New Predictors. Mean predic-
tion error and standard deviation bars for dy(x) and d;(x) are shown as a
function of filter wavelength. The initial guess was in error by § =
0.25A\. Disparity error was computed as e(x) = 100.0(5 — d(x))/8. Singu-
larity neighbourhoods were removed as in Figs. 4 and 6.

more power at lower frequencies, the local frequency
¢'(x) will often be less than the peak tuning frequency.
Therefore the order-8 term in (7) has a positive average
value, which causes the observed bias. This bias is absent
from the results of d;(x) since the local frequency is com-
puted.

Figure 8 shows the dependence of d;(x) on the error in
the initial guess 8(A) with no scale change between the
two views. Disparities were between 2% and 44% of the
wavelengths to which the filters were tuned (i.e., 8(A) =
al, for « = 0.02, . . ., 0.44). The wavelengths used
were between 25 and 100 pixels. Prediction error was
computed as e(x) = 100.0(8(\) — d;(x))/\. Although the
results are extremely good, the errors increase dramati-
cally for 6(\) > 0.38\. To explain this, notice that with 8
= (.8 octaves and 7, = 1.2, (17) removes all points with
¢'(x) > 1.32k(\). This means that local wavelengths may
be as small as 0.76\, in which case the domain of conver-
gence may be as small as 0.38A. As the initial disparities
8(\) increased beyond 0.38A, a larger proportion of initial
guesses fell within the wrong domain of convergence.
When the boundary between the domains of convergence
is crossed, the disparity estimates are wrong by about
one wavelength (because the phase difference wraps
around modulo 27). For Fig. 8 only positive disparities
were used. Therefore, a histogram of disparity estimates
should reveal two peaks, one at §(\), and the other near
8(\) — A\. This explains the positive error bias for 5(A) >
0.38\ and the rapid increase in the standard deviation.
For negative disparities a corresponding negative bias
appears. )

Figure 9 shows the dependence of d;(x) on scale differ-
ences (up to 35%) between the left and right views. The
filter wavelengths used were between 12 and 48 pixels.
Scale differences between the two views can be simu-
lated by applying filters with different peak frequencies to
a single input signal. The top panel shows prediction er-
ror as a function of scale variation between the left and
right views when the initial guess was exact; i.e., there
was scale change between the left and right views locally,
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FIG. 8. Disparity Error versus True Disparity. Mean disparity error
and standard deviation bars are shown as a function of the initial guess
error 8(\) = axfor @ = 0.02, . . . , 0.44. Disparity error was computed
as e(x) = 100.0(6(\) — d\(x))/\.
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but no spatial shift. In terms of scale-space expansions
(e.g., Fig. 1), the prediction error here is caused solely by
the horizontal drift of level phase contours as scale
changes. It is encouraging to note that the prediction er-
rors remain tolerable even for scale changes of 20% or
more. The next three plots, from top to bottom, show the
prediction error as we introduce spatial shifts (errors in
the initial guess) of 10%, 20%, and 30% of the tuned
wavelength. Again, it is encouraging that the prediction
errors increase only slightly. In all cases, note that up to
20% scale variation may occur between the left and right
views while the disparity errors remain mainly below
10% of the filter wavelength.

Finally, it is important to note that all disparity esti-
mates obtained in singularity neighborhoods (as defined
by (17) and (18) with 7, = 1.0 and 7, = 1.2) were not
included in the statistics reported in Figs. 7-9. Whereas
the inaccuracies shown here are generally limited to a
small fraction of a wavelength, the errors that occur in
singularity neighborhoods are often as large as plus or
minus one wavelength. As a consequence, when they are
included the error variances grow dramatically and the
error behaviour shown and discussed above, especially
with respect to Figs. 7 and 8, is not readily discernable.

4.2. Application to Real Images

The previous examples have shown the effect of this
new technique in 1-d. In order to demonstrate the results
further, an existing algorithm [26] has been modified to
incorporate the improved disparity predictor and the re-
moval of singularity neighborhoods. A coarse-to-fine
control strategy based on that of Nishihara [7] is used.
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FIG. 9. Disparity Error versus Scale Variation. Mean disparity er-
ror and standard deviation bars are shown as a function of scale differ-
ences between left and right views. Disparity error was computed as
e(x) = 100.0(3(\) — d;(x))/\. From top to bottom, the four plots corre-
spond to errors in the initial guess of 3(A) = 0.0, 0.1, 0.2, and 0.3A.
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FIG. 10. Car Part Stereogram. Left image of Renault car part stereo
pair.

The Gabor filters had bandwidths of one octave, and the
different wavelengths to which the filters were tuned
were 4, 8, 16, and 32 pixels. The coarsest scale begins
computation with initial guesses of d; = 0. Computed
disparities at one level are then passed down as initial
guesses for the next finer level. The results reported be-
low, for both the new and the old methods, show only
those disparity estimates computed from the finest chan-
nel. The technique is demonstrated on a stereogram of a
car part,? the left view of which is shown in Fig. 10.
Although not known accurately, the actual disparities
range between —1 and 20 pixels.

As mentioned in Section 4.1 the techniques described
in Sanger [9] and Jepson and Jenkin [26] used several
conditions and smoothing to remove some of these esti-
mates. The goal of this experiment, and Figs. 11 and 12,
is illustrate how important and common the measurement
errors due to phase singularities can be. Towards this
end, Fig. 11 shows the output of the old predictor with 1
and then 10 iterations, without the removal of singularity
neighbourhoods or any of the ad hoc methods of remov-
ing incorrect estimates. The occurrences of incorrect
measurements are clear. In both plots, disparity is en-
coded as height. The incorrect estimates are more obvi-
ous in the second case as the disparity estimates are al-
lowed to converge. With only one iteration, the disparity

2 The Renault Car part stereogram is a widely available stereo pair
that is often used in the literature. The images are 256 X 256 8-bit
images. The car part is roughly ‘T’ shaped, with the ‘T’ being slightly
inclined in depth.
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FIG.11. Old Predictor Results. Results of dy(x) on the car part stereogram without removal of singularity neighbourhoods, after 1 iteration (top)
and after 10 iterations (bottom). The results show the disparity estimates obtained at the finest scale of the coarse-to-fine algorithm.
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FIG. 12. New Predictor Results. Results of dy(x) at the finest level of the coarse-to-fine algorithm on car part stereogram with singularity
neighbourhoods removed after 1 iteration (top-left). The results are also shown after simple blurring of the disparity estimates over 4 x 4
neighborhoods (top-right). The blurred results are also shown as a perspective height plot for comparison with Fig. 11.

estimates, dp, are bounded by the model of constant fre-
quency (taken to be the peak tuning frequency). With
further iterations the sizes of estimated disparity are not
so constrained. Thus, with more iterations the adverse
effects of singularity neighborhoods become clearer.
Figure 12 shows the response of the same algorithm
taking advantage of the improved phase-based disparity
predictor d(x), with only one iteration and the removal

of singularity neighborhoods. Singularity neighborhoods
were detected using constraints on local frequency and
amplitude. The results do not change significantly with
this method if more iterations are allowed. Figure 12 (top-
left) shows the estimated disparity encoded as intensity.
In this image it is clear, at least, that the results are well
isolated to the car part (areas of black indicate discarded
measurements). For illustrative purposes, these esti-
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mates were crudely blurred (square-wave averaging over
active neighbors with radius of 2 pixels). The result,
shown in Fig. 12 (top-right), better illustrates the depth
variation. The same result is also displayed below as a
perspective height plot so that comparisons can be made
with Fig. 11. The structure found throughout the car part
is somewhat difficult to compare to the old method at first
glance. However, the noise throughout the background
region around the part has been clearly removed. More-
over, upon closer inspection, the accuracy and robust-
ness of the new technique can be seen. It is especially
clear at the boundaries of the part.

5. SUMMARY

Phase information in the output of bandpass linear fil-
ters is useful for the measurement of binocular disparity.
Although often motivated with the Fourier shift theorem,
we argue that one of the major advantages of phase infor-
mation is its stability with respect to affine deformations
and contrast differences between the left and right views.
In particular, phase is considerably more stable than am-
plitude. This is important if the image-point disparity is to
be used as an approximation to scene-point disparity.

It was shown that, despite the general stability of phase
information, there exist regions of pathological behavior
near phase singularities where disparity estimates should
not be trusted. It was shown further that simple con-
straints can be used to detect these regions and discard
incorrect measurements. Finally, the local frequency of
the filter response was shown to play a key role in both
the detection of singularity neighborhoods and in the con-
struction of a more accurate disparity predictor. Experi-
ments in the final sections of the paper showed that affine
deformations between the left and right views are han-
dled well provided that singularity neighborhoods are re-
moved. In fact, scale changes of up to 20% were handled
very well. These results help improve the existing tech-
niques of Jenkin and Jepson [8] and Sanger [9] with re-
spect to measurement accuracy, robustness, and our the-
oretical understanding.

APPENDIX: COMPUTATION OF LOCAL FREQUENCY
AND AMPLITUDE DERIVATIVE

Here we describe a straightforward method that may
be used to compute the phase derivative (local fre-
quency).¢'(x), and the relative amplitude derivative p’(x)/
p(x). The computation is based on the following identities

Im[R*(x)R'(x)]

¢'(x) = |R(x)|2 s (19a)
p'(x) _ Re[R*(x)R'(x)]
o0 - RWE (196)

209
where R*(x) denotes complex conjugate of R(x), and
Im[z] denotes the imaginary part of z. In terms of the real

and imaginary parts of R(x) and R’'(x), (19) reduces to

Im[R’(x)] Re[R(x)] + Re[R'(x)] Im[R(x)]

¢'x) = Re[RX)]2 + Im[R()]2 ’

(20a)
p'®) _ Re[R'(x)] Re[R(x)] + Im{R'(x)] Im[R(x)]
p(x) Re[R(x)]? + Im[R(x)]? )

(20b)

Thus from (20), it is clear that we may concentrate on the
differentiation of R(x), and hence avoid the issues of
phase unwrapping and phase singularities that would ex-
ist if we were to compute ¢'(x) directly from a subsam-
pled representation of ¢(x).

Because R(x) is a bandpass filtered signal, we expect
its power to be concentrated about the peak frequency kg.
For efficiency, we should also expect the response to be
subsampled at a rate determined by the bandwidth (the
extent of the amplitude spectrum). To see that R(x) may
be subsampled and reconstructed from the subsampled
representation, note that M(x) = R(x)e %* amounts to
shifting the power of R(x) to the origin so that M(x) is
lowpass (cf. Section 2). Therefore, a subsampled repre-
sentation of M(x) can be interpolated and differentiated
using standard methods.

Alternatively, it is easy to show that we may subsam-
ple R(x) directly, and then interpolate (or differentiate)
with only a slightly more complicated kernel. To see this,
let

R(x) = M(x)c(x), where c(x) = e o, 2D

The derivative of R(x) has the form

R'(x) = M'(x)c(x) + M(x)c'(x)

c(®) D Mmh(x — n) + iR, (22)

where M(n) denotes a discrete, subsample version of
M(x), h(x) is a standard kernel for numerical differentia-
tion (expressed as convolution), and ¢'(x) = ikoc(x). If we
replace M(n) by R(n)c(—n), then (22) becomes

li

cx) D, R(mc(—-mh(x — n) + ikhRX)
c(x)e(—x) 2 R eclx — mh(x — n)) + ikR(x)
> (R(MH(x — n)) + ikoR(x), (23)

R'(x)

i

where H(x) = h(x)c(x) is the new kernel for differentiat-
ing R(x) according to (23). In other words, the new kernel
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is a modulated form of whatever kernel was chosen for
numerical differentiation of the lowpass signal.

For example, for numerical differentiation of a lowpass
signal M(n) at the nodes of the sampling lattice, with a
subsampling distance of s, we may convolve M(n) with a
discrete kernel A(n) = (1/125)(—1, 8,0, —8, 1) based on a
four-point central-difference formula. To apply a corre-
sponding difference scheme to R(x) we use a discrete
kernel H(n) = (1/12s)(—e ™%k, 8e~isk (), 8eith @ik,
Discrete convolution between R(n) and H(n) vields the
first term in (23). In summary, the computation of the
amplitude derivative and the local frequency in (18)
amounts to three steps:

1. convolution of the subsampled version of R(x)
with the complex kernel H(x);

2. addition of the result to ikgR(x) as in (23);

3. projection of R'(x) onto R*(x) as in (20).
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