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Abstract We introduce a physics-based model for 3D per-
son tracking. Based on a biomechanical characterization of
lower-body dynamics, the model captures important phys-
ical properties of bipedal locomotion such as balance and
ground contact. The model generalizes naturally to varia-
tions in style due to changes in speed, step-length, and mass,
and avoids common problems (such as footskate) that arise
with existing trackers. The dynamics comprise a two degree-
of-freedom representation of human locomotion with inelas-
tic ground contact. A stochastic controller generates impul-
sive forces during the toe-off stage of walking, and spring-
like forces between the legs. A higher-dimensional kine-
matic body model is conditioned on the underlying dynam-
ics. The combined model is used to track walking people in
video, including examples with turning, occlusion, and vary-
ing gait. We also report quantitative monocular and binocu-
lar tracking results with the HumanEva dataset.
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1 Introduction

Most current methods for recovering human motion from
monocular video rely on kinematic models learned from mo-
tion capture (mocap) data. Generative approaches rely on
density estimation to learn a prior distribution over plausi-
ble human poses and motions, whereas discriminative mod-
els typically learn a mapping from image measurements to
3D pose. While the use of learned kinematic models clearly
reduces ambiguities in pose estimation and tracking, the 3D
motions estimated by these methods are often physically
implausible. The most common artifacts include jerky mo-
tions, feet that slide when in contact with the ground (or float
above it), and out-of-plane rotations that violate balance.

The problem is, in part, due to the relatively small amount
of available training data, and, in part, due to the limited
ability of such models to generalize well beyond the train-
ing data. For example, a model trained on walking with a
short stride may have difficulty tracking and reconstructing
the motion of someone walking with a long stride or at a
very different speed. Indeed, human motion depends signif-
icantly on a wide variety of factors including speed, step
length, ground slope, terrain variability, ground friction, and
variations in body mass distributions. The task of gathering
enough motion capture data to span all these conditions, and
generalize sufficiently well, is prohibitive.

As an alternative to learned kinematic models, this pa-
per advocates the use of physics-based models. We hypoth-
esize that physics-based dynamics will lead to natural para-
meterizations of human motion. Dynamics also allows one
to model interactions with the environment (such as ground
contact and balance during locomotion), and it generalizes
naturally to different speeds of locomotion, changes in mass
distribution and other sources of variation. Modeling the un-
derlying dynamics of motion should result in more accurate
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tracking and produce more realistic motions which naturally
obey essential physical properties of human motion.

In this paper, we consider the important special case of
walking. Rather than attempting to model full-body dynam-
ics, our approach is inspired by simplified biomechanical
models of human locomotion (Collins and Ruina 2005;
Collins et al. 2001; Kuo 2001; McGeer 1992). Such mod-
els are low-dimensional and exhibit stable human-like gaits
with realistic ground contact. We design a generative model
for people tracking that comprises one such model, called
the Anthropomorphic Walker (Kuo 2001, 2002), with a sto-
chastic controller to generate muscle forces, and a higher-
dimensional kinematic model conditioned on the low-
dimensional dynamics.

Tracking is performed by simulating the model in a par-
ticle filter, producing physically plausible estimates of hu-
man motion for the torso and lower body. In particular,
we demonstrate stable monocular tracking over long walk-
ing sequences. The tracker handles occlusion, varying gait
styles, and turning, producing realistic 3D reconstructions.
With lower-body occlusions, it still produces realistic re-
constructions and infers the time and location of ground
contacts. We also applied the tracker to the benchmark Hu-
manEva dataset and report quantitative results.

2 Related Work

The 3D estimation of human pose from monocular video
is often poorly constrained, and, hence, prior models play
a central role in mitigating problems caused by ambigui-
ties, occlusion and measurement noise. Most human pose
trackers rely on articulated kinematic models. Early genera-
tive models were specified manually (e.g., with joint limits
and smoothness constraints), while many recent generative
models have been learned from motion capture data of peo-
ple performing specific actions (e.g., Choo and Fleet 2001;
Herda et al. 2005; Pavlović et al. 1999; Sidenbladh et al.
2000; Sminchisescu and Jepson 2004; Urtasun et al. 2006;
Wachter and Nagel 1999). Discriminative models also de-
pend strongly on human motion capture data, based on
which direct mappings from image measurements to human
pose and motion are learned (Agarwal and Triggs 2006; El-
gammal and Lee 2004; Rosales et al. 2001; Shakhnarovich
et al. 2003; Sminchisescu et al. 2007).

In constrained cases, kinematic model-based trackers can
produce good results. However, such models generally suf-
fer from two major problems. First, they often make unre-
alistic assumptions; e.g., motions are assumed to be smooth
(which is violated at ground contact), and independent of
global position and orientation. As a result, tracking algo-
rithms exhibit a number of characteristic errors, including
rotations of the body that violate balance, and footskate, in

which a foot in contact with the ground appears to slide or
float in space. Second, algorithms that learn kinematic mod-
els have difficulty generalizing beyond the training data. In
essence, such models describe the probability of a motion
by comparison to training poses; i.e., motions “similar” to
the training data are considered likely. This means that, for
every motion to be tracked, there must be a similar motion
in the training database. In order to build a general tracker
using current methods, an enormous database of human mo-
tion capture will be necessary.

To cope with the high dimensionality of kinematic mod-
els and the relative sparsity of available training data, a
major theme of recent research on people tracking has
been dimensionality reduction (Elgammal and Lee 2004;
Rahimi et al. 2005; Sminchisescu and Jepson 2004; Urta-
sun et al. 2005, 2006). It is thought that low-dimensional
models are less likely to over-fit the training data and will
therefore generalize better. They also reduce the dimen-
sion of the state estimation problem during tracking. In-
spired by similar ideas, our physics-based model is a low-
dimensional abstraction based on biomechanical models.
Such models are known to accurately represent properties of
human locomotion (such as gait variation and ground con-
tact) that have not been demonstrated with learned mod-
els (Blickhan and Full 1993; Full and Koditschek 1999;
Kuo 2001). We thus aim to gain the advantages of a physics-
based model without the complexity of full-body dynamics,
and without the need for inference in a high-dimensional
state space.

A small number of authors have employed physics-
based models of motion for tracking. Pentland and Horowitz
(1991) and Metaxas and Terzopoulos (1993) describe elas-
tic solid models for tracking in conjunction with Kalman
filtering, and give simple examples of articulated tracking
by enforcing constraints. Wren and Pentland (1998) use a
physics-based formulation of upper body dynamics to track
simple motions using binocular inputs. For these tracking
problems, the dynamics are relatively smooth but high-
dimensional. In contrast, we employ a model that captures
the specific features of walking, including the nonlineari-
ties of ground contact, without the complexity of modeling
elastic motion. Working with 3D motion capture data and
motivated by abstract passive-dynamic models of bipedal
motion, Bissacco (2005) uses a switching, linear dynami-
cal system to model motion and ground contact. We note
that, despite these attempts, the on-line tracking literature
has largely shied away from physics-based prior models.
We suspect that this is partly due to the perceived diffi-
culty in building appropriate models. We show that, with
judicious choice of representation, building such models is
indeed possible.

It is also notable that the term “physics-based models”
is used in different ways in computer vision. Among these,
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physics is often used as a metaphor for minimization, by
applying virtual “forces” (e.g., Chan et al. 1994; Dela-
marre and Faugeras 2001; Kakadiaris and Metaxas 2000;
Kass et al. 1987; Terzopoulos and Metaxas 1990); unlike
in our work, these forces are not meant to represent forces
in the world.

Physics-based models of human motion are also com-
mon in computer animation where two main approaches
have been employed. The Spacetime Constraints approach
(Witkin and Kass 1988) solves for a minimal-energy mo-
tion that satisfies animator-specified constraints, and has re-
cently shown some success at synthesizing full-body hu-
man motion (Liu et al. 2005; Safonova et al. 2004). How-
ever, such batch optimization is unsuitable for online track-
ing. Controller-based methods (e.g., Hodgins et al. 1995;
Yin et al. 2007) employ on-line control schemes for interac-
tion with physical environments. Our control mechanism is
similar, but we use a minimal motion model with stochastic
control for probabilistic 3D tracking. Finally, the model we
develop is perhaps most similar to motion editing methods
where low-dimensional physical constraints (Kovar et al.
2002; Popović and Witkin 1999; Shin et al. 2003) are ap-
plied to a high-dimensional kinematic model. Here we do
not require example data to be transformed, and it is impor-
tant to note that for tracking we do not need a fully-realistic
dynamical model.

3 Motivation and Overview

Our primary goal is to track human locomotion from monoc-
ular video sequences. We employ a probabilistic formulation
which requires a prior density model over human motion
and an image likelihood model. The key idea, as discussed
above, is to exploit basic physical principles in the design of
a prior probabilistic model.

One natural approach is to model full-body dynamics
as is sometimes done in humanoid robotics and computer
animation. Unfortunately, managing the dynamics of full-
body human motion, like the control of complex dynami-
cal systems in general, is extremely challenging. Nonethe-
less, work in biomechanics and robotics suggests that the
dynamics of bipedal walking may be well described by rel-
atively simple passive-dynamic walking models. Such mod-
els exhibit stable, bipedal walking as a natural limit cycle
of their dynamics. Early models, such as those introduced
by McGeer (1990a), were entirely passive and could walk
downhill solely under the force of gravity. Related models
have since been developed, including one with a passive
knee (McGeer 1990b), another with an upper body (Wisse
et al. 2007), and one capable of running (McGeer 1992).

More recently, powered walkers based on passive-dyn-
amic principles have been demonstrated to walk stably on

Fig. 1 A cartoon outline of the graphical model used for visual track-
ing. Conditioned on the control parameters one can simulate the equa-
tions of motion for the planar model to produce a sequence of 2D poses.
The 3D kinematic model is conditioned on the 2D dynamics simula-
tion. The image likelihood function then specifies the dependence of
the image measurements on the kinematic pose

level-ground (Collins et al. 2005; Kuo 2001, 2002). These
models exhibit human-like gaits and energy-efficiency. The
energetics of such models have also been shown to accu-
rately predict the preferred relationship between speed and
step-length in human walking (Kuo 2001). In contrast, tra-
ditional approaches in robotics (e.g., as used by Honda’s
humanoid robot Asimo), employ highly-conservative con-
trol strategies that are significantly less energy-efficient
and less human-like in appearance, making them a poor
basis for modeling human walking (Collins et al. 2005;
Pratt 2000).

These issues motivate the form of the model sketched in
Fig. 1, the components of which are outlined below.

Dynamical Model Our walking model is based on the An-
thropomorphic Walker (Kuo 2001, 2002), a planar model of
human locomotion (Sect. 4.1). The model depends on ac-
tive forces applied to determine gait speed and step length.
A prior distribution over these control parameters, together
with the physical model, defines a distribution over planar
walking motions (Sect. 4.2).

Kinematic Model The dynamics represent the motion of
the lower body in the sagittal plane. As such it does not spec-
ify all the parts of the human body that we wish to track.
We therefore define a 3D kinematic model for tracking (see
Fig. 1). As described in Sect. 4.3, the kinematic model is
constrained to be consistent with the planar dynamics, and to
move smoothly in its remaining degrees of freedom (DOF).

Image Likelihood Conditioned on 3D kinematic state, the
likelihood model specifies an observation density over im-
age measurements. For tracking we currently exploit fore-
ground and background appearance models as well as op-
tical flow measurements (explained in Sect. 5.1). With the
prior generative model and the likelihood, tracking is ac-
complished with a form of sequential Monte Carlo infer-
ence.
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Fig. 2 The planar Anthropomorphic Walker and inertial parameters.
The model parameters in the table are taken from Kuo (2002). Units of
mass are given as a proportion of the total mass of the walker

4 Dynamic Model of Human Walking

Our stochastic walking model is inspired by the minimally-
powered Anthropomorphic Walker of Kuo (2001, 2002).
Shown in Fig. 2, the Anthropomorphic Walker is a planar
abstraction with two straight legs of length L and a rigid
torso attached at the hip with mass mt and moment of in-
ertia It . The “feet” are circles of radius R, which roll along
the ground as the model moves. Each leg has mass m� and
moment of inertia I�, centered at distance C from the foot.
The origin of the global frame of reference is defined to be
the ground contact point of the stance foot when the stance
leg is vertical.

The legs are connected by a torsional spring to simulate
muscle torques at the hips. The spring stiffness is denoted κ .
During normal walking, the stance leg is in contact with the
ground, and the swing leg swings freely. The walker also
includes an impulsive “toe-off” force, with magnitude ι, that
allows the back leg to push off as support changes from the
stance foot to the swing foot.

4.1 Dynamics

As in a Lagrangian formulation, we define generalized co-
ordinates representing the configuration of the walker at a
given instant: q = (φ1, φ2)

T, where φ1 and φ2 are the global
orientations of the stance and swing legs, respectively. The
state of the walker is given by (q, q̇), where the generalized
velocities are q̇ ≡ dq

dt
. The equations of motion during nor-

mal walking are then written as a function of the current
state:

M(q)q̈ = F (q, q̇, κ) (1)

where M(q) is known as the generalized mass matrix,
F (q, q̇, κ) is a generalized force vector which includes grav-
ity and the spring force between the legs, and κ denotes the

spring stiffness. This equation is a generalization of New-
ton’s Second Law of Motion. Solving (1) at any instant gives
the generalized acceleration q̈. The details of (1) are given
in Appendix A.

An important feature of walking is the collision of the
swing leg with the ground. The Anthropomorphic Walker
treats collisions of the swing leg with the ground plane as
impulsive and perfectly inelastic. As a consequence, at each
collision, all momentum of the body in the direction of the
ground plane is lost, resulting in an instantaneous change
in velocity. Our collision model also allows for the charac-
teristic “toe-off” of human walking, in which the stance leg
gives a small push before swinging. By changing the instan-
taneous velocity of the body, toe-off helps to reduce the loss
of momentum upon ground contact.

The dynamics at ground collisions, as explained in Ap-
pendix B, are based on a generalized conservation of mo-
mentum equation which relates pre- and post-collision ve-
locities of the body, denoted q̇− and q̇+, and the magnitude
of the impulsive toe-off, ι; i.e.,

M+(q)q̇+ = M−(q)q̇− + I(q, ι) (2)

where q is the pose at the time of collision, M−(q) and
M+(q) are the pre- and post-collision generalized mass ma-
trices, and I(q, ι) is the change in generalized momentum
due to the toe-off force. The impulsive toe-off force depends
on the angle at which the swing foot strikes the ground and
on magnitude of the impulse, ι.

Given κ and ι, the dynamics equations of motion (1) can
be simulated using a standard ODE solver. We use a fourth-
order Runge-Kutta method with a step-size of 1

30 s. When a
collision of the swing foot with the ground is detected, we
switch the roles of the stance and swing legs (e.g., we swap
φ1 and φ2), and then use (2) to solve for the post-collision
velocities. The simulation is then restarted from this post-
collision state.

4.2 Control

The walking model has two control parameters θ = (κ, ι),
where κ is the spring stiffness and ι is the magnitude of the
impulsive toe-off. Because these parameters are unknown
prior to tracking, they are treated as hidden random vari-
ables. For effective tracking, we desire a prior distribution
over θ which, together with the dynamical model, defines a
distribution over motions. A gait may then be generated by
sampling θ and simulating the dynamics.

One might learn a prior over θ by fitting the Anthropo-
morphic Walker to human mocap data of people walking
with different styles, speeds, step-lengths, etc. This is chal-
lenging, however, as it requires a significant amount of mo-
cap data, and the mapping from 3D kinematic description
used for the mocap to the abstract 2D planar model is not
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Fig. 3 Optimal stiffness κ (left) and impulse magnitude ι (right) as
functions of speed and step length are shown. These plots illustrate the
flexibility and expressiveness of the model’s control parameters. Para-
meters were found by searching for cyclic motions with the desired
speed and step length

obvious. Rather, we take a simpler approach motivated by
the principle that walking motions are characterized by sta-
ble, cyclic gaits. Our prior over θ then assumes that likely
control parameters lie in the vicinity of those that produce
cyclic gaits.

Determining Cyclic Gaits The first step in the design of
the prior is to determine the space of control parameters that
generate cyclic gaits spanning the natural range of human
walking speeds and step-lengths. This is readily formulated
as an optimization problem. For a given speed and step-
length, we seek initial conditions (q0, q̇0) and parameters
θ such that the simulated motion ends in the starting state.
The initial pose q0 can be directly specified since both feet
must be on the ground at the desired step-length. The sim-
ulation duration T can determined by the desired speed and
step-length. We then use Newton’s method to solve

D(q0, q̇0, θ, T ) − (q0, q̇0) = 0, (3)

for q̇0 and θ where D is a function that simulates the dynam-
ics for duration T given an initial state (q0, q̇0) and parame-
ters θ . The necessary derivatives are computed using finite
differences. In practice, the solver was able to obtain control
parameters satisfying (3) up to numerical precision for the
tested range of speeds and step-lengths.

Solving (3) for a discrete set of speeds and step-lengths
produces the control parameters shown in Fig. 3. These plots
show optimal control parameters for the full range of human
walking speeds, ranging from 2 to 7 km/h, and for a wide
range of step-lengths, roughly 0.5–1.2 m. In particular, note
that the optimal stiffness and impulse magnitudes depend
smoothly on the speed and step-length of the motion. This is
important as it indicates that the Anthropomorphic Walker is
reasonably stable. To facilitate the duplication of our results,
we have published Matlab code which simulates the model,
along with solutions to (3), at http://www.cs.toronto.edu/
~mbrubake/permanent/awalker.

Fig. 4 Impulse magnitude ι of the optimal cyclic gaits plotted versus
pre-collision velocities q̇− = (φ̇−

1 , φ̇−
2 ). During tracking, a bilinear fit

to the data shown here is used to determine the conditional mean for a
Gamma density over ι at the beginning of each stride

Stochastic Control To design a prior distribution over
walking motions for the Anthropomorphic Walker, we as-
sume noisy control parameters that are expected to lie in the
vicinity of those that produce cyclic gaits. We further as-
sume that speed and step-length change slowly from stride
to stride. Walking motions are obtained by sampling from
the prior over the control parameters and then performing
deterministic simulation using the equations of motion.

We assume that the magnitude of the impulsive toe-off
force, ι > 0, follows a Gamma distribution. For the optimal
cyclic gaits, the impulse magnitude was very well fit by a
bilinear function μι(q̇−) of the two pre-collision velocities
q̇− (see Fig. 4). This fit was performed using least-squares
regression with the solutions to (3). The parameters of the
Gamma distribution are set such that the mean is μι(q̇−)

and the variance is 0.052.
The unknown spring stiffness at time t , κt , is assumed

to be nearly constant throughout each stride, and to change
slowly from one stride to the next. Accordingly, within a
stride we define κt to be Gaussian with constant mean κ̄ and
variance σ 2

κ :

κt ∼ N (κ̄, σ 2
κ ) (4)

where N (μ,σ 2) is a Gaussian distribution with mean μ and
variance σ 2. Given the mean stiffness for the ith stride, the
mean stiffness for the next stride κ̄(i+1) is given by

κ̄(i+1) ∼ N (βμκ + (1 − β)κ̄(i), σ 2
κ̄ ) (5)

where μκ is a global mean spring stiffness and β determines
how close κ̄(i) remains to μκ over time. We use β = 0.85,
σ 2

κ = 1.0, μκ = 0.7 and σ 2
κ̄ = 0.5.

During tracking, κ̄ does not need to be explicitly sam-
pled. Instead, using a form of Rao-Blackwellization (Doucet
et al. 2000; Khan et al. 2004), κ̄ can be analytically mar-
ginalized out. Then, only the sufficient statistics of the re-
sulting Gaussian distribution over κ̄ needs to be maintained
for each particle.

http://www.cs.toronto.edu/~mbrubake/permanent/awalker
http://www.cs.toronto.edu/~mbrubake/permanent/awalker
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Fig. 5 The 3D kinematic model
is conditioned on the 2D planar
dynamics of the
Anthropomorphic Walker

Because the walking model is very stable, the model is
relatively robust to the choice of stochastic control. Other
controllers may work just as well or better.

4.3 Conditional Kinematics

The model above is low-dimensional, easy to control, and
produces human-like gaits. Nevertheless, it is a planar
model, and hence it does not specify pose parameters in
3D. Nor does it specify all parameters of interest, such as the
torso, knees and feet. We therefore add a higher-dimensional
3D kinematic model, conditioned on the underlying dynam-
ics. The coupling of a simple physics-based model with a
detailed kinematic model is similar to Popović and Witkin’s
(1999) physics-based motion editing system.

The kinematic model, depicted in Fig. 5, has legs, knees,
feet and a torso. It has ball-and-socket joints at the hips, a
hinge joint for the knees and 2 DoF joints for the ankles.
Although the upper body is not used in the physics model, it
provides useful features for tracking. The upper body in the
kinematic model comprises a single rigid body attached to
the legs.

The kinematic model is constrained to match the dynam-
ics at every instant. In effect, the conditional distribution of
these kinematic parameters, given the state of the dynamics,
is a delta function. Specifically, the upper-leg orientations of
the kinematic model in the sagittal plane are constrained to
be equal to the leg orientations in the dynamics. The ground
contact of stance foot in the kinematics and rounded “foot”
of the dynamics are also forced to be consistent. In particu-
lar, the foot of the stance leg is constrained to be in contact
with the ground. The location of this contact point on the
foot rolls along the foot proportional to the arc-length with
which the dynamics foot rolls forward during the stride.

When the simulation of the Anthropomorphic Walker
predicts a collision, the stance leg, and thus the contact con-
straint, switches to the other foot. If the corresponding foot
of the kinematic model is far from the ground, applying this
constraint could cause a “jump” in the pose of the kinematic
model. However, such jumps are generally inconsistent with
image data and are thus not a significant concern. In general,

Table 1 The parameters of the conditional kinematic model used in
tracking. The degrees of freedom not listed (Hip X) are constrained to
be equal to that of the Anthropomorphic Walker

Joint Axis αa k ψ̄ σ (ψmin,ψmax)

Torso Side 0.9 5 0 25 (−∞,∞)

Front 0.9 5 0 25 (−∞,∞)

up 0.75 0 0 300 (−∞,∞)

Hip Front 0.5 5 0 50
(−π

8
,
π

8

)

up 0.5 5 0 50
(−π

8
,
π

8

)

Stance knee Side 0.75 20 0 50 (0,π)

Swing knee Side 0.9 15 b 300 (0,π)

Ankle Side 0.9 50 0 50
(−π

8
,
π

8

)

Front 0.9 50 0 50
(−π

8
,
π

8

)

aValues of α shown here are for Δt = 1
30 s. For Δt = 1

60 s, the square
roots of these values are used
bψ̄swing knee is handled specially, see text for more details

this discontinuity would be largest when the knee is very
bent, which does not happen in most normal walking. Be-
cause the Anthropomorphic Walker lacks knees, it is unable
to handle motions which rely on significant knee bend dur-
ing contact, such as running and walking on steep slopes. We
anticipate that using a physical model with more degrees-of-
freedom should address this issue.

Each remaining kinematic DOF ψj,t is modeled as a
smooth, 2nd-order Markov process:

ψj,t = ψj,t−1 + Δtαj ψ̇j,t−1

+ Δt2(kj (ψ̄j − ψj,t−1)) + ηj ) (6)

where Δt is the size of the timestep, ψ̇j,t−1 = (ψj,t−1 −
ψj,t−2)/Δt is the joint angle velocity, and ηj is IID
Gaussian noise with mean zero and variance σ 2

j . This model
is analogous to a damped spring model with noisy accelera-
tions where kj is the spring constant, ψ̄j is the rest position,
αj is related to the damping constant and ηj is noisy accel-
eration. Joint limits which require that ψmin

j ≤ ψj ≤ ψmax
j

are imposed where appropriate and ηj is truncated (Robert
1995) to satisfy the joint limits.

The joint evolution parameters α, k, ψ̄ and σ 2 are fixed to
the values shown in Table 1, with the exception of the knee
rest position of the swing leg. Due to the sharp bend in the
knee immediately after toe-off, a simple smoothness prior
has difficulty modelling this joint. To account for this, we
define ψ̄swing knee = 5ψhip where ψhip is the sagittal angle
between the two legs. This encourages a bent knee at the
beginning of a stride and a straight knee towards the end of
a stride.
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It is interesting to note that, while most existing methods
for people tracking rely heavily on learned models from mo-
tion capture data, our model does not use any motion cap-
ture data. However, it is clear that the kinematic model in
general, and of the knee in particular, is crude, and could be
improved greatly with learning, as could other aspects of the
model.

5 Sequential Monte Carlo Tracking

Pose tracking is formulated with a state-space representa-
tion. The state st at time t comprises dynamics parame-
ters, dt , and the kinematic DOFs, kt ; i.e., st = (dt ,kt ). The
dynamics parameters comprises 2 continuous joint angles
and their angular velocities, a binary variable to specify the
stance foot, and two variables for the sufficient statistics for
the mean spring stiffness as described at the end of Sect. 4.2.
The kinematic state comprises 3 DOFs for the global torso
position, 3 DOFs for global torso orientation, and 12 DOFs
for remaining joint angles. Note that, while the dynamics
contain the joint angles and angular velocities of the Anthro-
pomorphic Walker, they are deterministic given the previous
state and current control parameters. In essence, inference is
done over the control parameters in lieu of the pose parame-
ters.

With the Markov properties of the generative model
given in Sect. 4, and conditional independence of the mea-
surements, one can write the posterior density over motions
recursively;

p(s1:t |z1:t ) ∝ p(zt |st )p(st |st−1)p(s1:t−1|z1:t−1) (7)

where s1:t ≡ [s1, . . . , st ] denotes a state sequence, z1:t ≡
[z1, . . . , zt ] denotes the observation history, p(zt |st ) is the
observation likelihood, and p(st |st−1) is derived from the
generative model in Sect. 4.

By the definition of the generative model, the temporal
state evolution can be factored further; i.e.,

p(st |st−1) = p(kt |dt ,kt−1)p(dt |dt−1). (8)

Here p(dt |dt−1) is the stochastic dynamics of the An-
thropomorphic Walker described in Sects. 4.1 and 4.2 and
p(kt |dt ,kt−1) is the conditional kinematic model explained
in Sect. 4.3. Thus, to sample from p(st |st−1), the dynam-
ics state dt is sampled according to p(dt |dt−1) and, condi-
tioning on dt , the kinematic state kt is then sampled from
p(kt |dt ,kt−1). The likelihood function and the inference
procedure are described below.

5.1 Likelihood

The 3D articulated body model comprises a torso and lower
limbs, each of which is modeled as a tapered ellipsoidal

Fig. 6 (Color online) A cropped image (left) is shown with a exam-
ple of the background negative log likelihood (middle), and a grid of
motion trajectories (blue/yellow depict large/small speeds)

cylinder. The size of each part is set by hand, as is the pose of
the model in the first frame of each sequence. To evaluate the
likelihood p(zt |st ), the 3D model is projected into the image
plane. This allows self-occlusion to be handled naturally as
the visibility of each part can be determined for each pixel.
The likelihood is then based on appearance models for the
foreground body and the background, and on optical flow
measurements (Fleet and Weiss 2005).

A background model, learned from a small subset of im-
ages, comprises mean color (RGB) and intensity gradients
at each pixel and a single 5 × 5 covariance matrix (e.g., see
Fig. 6 (middle)). The foreground model assumes that pixels
are IID in each part (i.e., foot, legs, torso, head), with densi-
ties given by Gaussian mixtures over the same 5D measure-
ments as the background model. Each mixture has 3 com-
ponents and its parameters are learned from hand labeled
regions in a small number of frames.

Optical flow is estimated at grid locations in each
frame (e.g., see Fig. 6 (right)), using a robust M-estimator
with non-overlapping regions of support. The eigenval-
ues/vectors of the local gradient tensor in each region of
support provide a crude approximation to the estimator co-
variance Σ . For the likelihood of a flow estimate, v, given
the 2D motion specified by the state, u, we use a heavy-
tailed Student’s t distribution (chosen for robustness). The
log-likelihood is given by

logp(v|u) = − log |Σ |
2

− n+2

2
log(1+e2) + c (9)

where e2 = 1
2 (v−u)TΣ−1(v−u) and n = 2 is the degrees of

freedom, and c is a constant. Because the camera is not mov-
ing in our image sequences, we define the log-likelihood of
a flow measurement on the background as given by (9) with
u = 0.

The visibility of each part defines a partition of the obser-
vations, such that zt (i) are the measurements which belong
to part i. The background is simply treated as another part.
Then the log-likelihood contribution of part i is

logp(zt (i)|st ) =
∑

m∈zt(i)

logp(m|st) (10)
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where the sum is over the measurements belonging to part i.
To cope with large correlations between measurement er-
rors, we define the appearance and flow log-likelihood to be
the weighted sum of log-likelihoods over all visible mea-
surements for each part

logp(zt |st ) =
∑

i

wi logp(zt (i)|st ) (11)

where the weights are set inversely proportional to the ex-
pected size of each part in the image.1 If multiple cameras
are available, they are assumed to be conditionally indepen-
dent given the state st . This yields a combined log-likelihood
of

logp(z1
t , z2

t , . . . |st ) =
∑

i

logp(zi
t |st ) (12)

where zi
t is the observation from camera i.

5.2 Inference

Using a particle filter, we approximate the posterior (7) by
a weighted set of N samples St ={s(j)

1:t ,w
(j)
t }Nj=1. Given the

recursive form of (7), the posterior St , given St−1, can be
computed in two steps; i.e.:

1. Draw samples s(j)
t ∼ p(st |s(j)

t−1) using (8) to form the new

state sequences s(j)

1:t = [s(j)

1:t−1, s(j)
t ]; and

2. Update the weights w
(j)
t = cw

(j)

t−1p(zt |s(j)
t ), where c is

used to normalize the weights so they sum to 1.

This approach, without re-sampling, often works well un-
til particle depletion becomes a problem, i.e., where only
a small number of weights are significantly non-zero. One
common solution to this is to re-sample the states in St ac-
cording to their weights. This is well-known to be subopti-
mal since it does not exploit the current observation in deter-
mining which states should be re-sampled (i.e., survive). In-
stead, inspired by the auxiliary particle filter (Pitt and Shep-
ard 1999), we use future data to predict how well current
samples are likely to fare in the future. This is of particular
importance with a physics-based model, where the quality
of a sample is not always immediately evident based on cur-
rent and past likelihoods. For instance, the consequences of
forces applied at the current time may not manifest until sev-
eral frames into the future.

In more detail, we maintain an approximation St :t+τ =
{s(j)

t :t+τ ,w
(j)
t :t+τ }Nj=1 to the marginal posterior distribution

over state sequences in a small temporal window of τ + 1

1To avoid computing the log-likelihood over the entire image, we
equivalently compute log-likelihood ratios of foreground versus back-
ground over regions of the image to which the 3D body geometry
projects.

frames, p(st :t+τ |z1:t+τ ). The sample set is obtained by sim-
ulating the model for τ +1 time steps, given St−1, evaluating
the likelihood of each trajectory and setting

w
(j)
t :t+τ = cw

(j)

t−1

t+τ∏

�=t

p(z�|s(j)
� ) (13)

where c is set such that the weights sum to one.
Following Doucet et al. (2000) and Kong et al. (1994),

when the effective number of samples,

Neff =
(∑

j

(w
(j)
t :t+τ )

2
)−1

, (14)

becomes too small we re-sample St−1 using importance sam-
pling; i.e.:

1. Draw samples s(k)
t−1 from the weights {ŵ(j)

t−1}Nj=1 where

ŵ
(j)

t−1 = (1−γ )w
(j)

t−1 +γw
(j)
t :t+τ and γ represents our trust

in our approximation St :t+τ ;
2. Set the new weights to be w

(k)
t−1/ŵ

(k)
t−1, and then normal-

ize the weights so they sum to 1.

The importance re-weighting (step 2) is needed to maintain
a properly weighted approximation to the posterior (7). Be-
low we use τ =3 and γ =0.9. With this form of importance
sampling, resampling occurs once every 4 or 5 frames on
average for the experiments below.

6 Results

Here we present the results of four experiments with our
model. The first three experiments use the same set of para-
meters for the kinematic evolution and the same prior over
the control parameters for the dynamics. The parameters for
the fourth experiment were set to similar values, but adjusted
to account for a difference in frame rate (30 frames per sec-
ond for experiments one through three and 60 frames per
second for experiment four). These parameters were empir-
ically determined. Finally, for each image sequence, we de-
termine the camera intrinsics and extrinsics with respect to a
world coordinate frame on the ground plane based on 10–12
correspondences between image locations and ground truth
3D locations in each scene. The direction of gravity is as-
sumed to be normal to the ground plane.

All experiments used 5000 particles, with resampling
when Neff < 500. Experimentally we have found that, while
as few as 1000 particles can result in successful track-
ing of some sequences (e.g., Experiment 1), 5000 particles
was necessary to consistently track well across all experi-
ments. Excluding likelihood computations, the tracker runs
at around 30 frames per second. The body geometry was
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Fig. 7 (Color online) Composite images show the subject at several
frames, depicting the motion over the 130 frame sequence: (left) the
original images; (middle) the inferred poses of the MAP kinematics

overlayed on the images, with the corresponding state of the Anthro-
pomorphic Walker depicted along the bottom (the stance leg in red);
(right) a 3D rendering of MAP poses from a different viewpoint

set by hand and the mean initial state was coarsely hand-
determined. Initial particles were sampled with a large vari-
ance about that mean state. The inference procedure results
in a set of particles that approximate the posterior distrib-
ution p(s1:t |z1:t ) for a given time t . Our demonstration of
the results will focus mainly on the maximum a-posteriori
(MAP) trajectory of states over all T frames,

sMAP
1:T = arg max

s1:T
p(s1:T |z1:T ). (15)

This is crudely approximated by choosing the state sequence
associated with the particle at time T with the largest weight.
We present the MAP trajectory because it ensures that the
sequence of poses is consistent with the underlying motion
model.

Experiment 1: Changes in Speed Figure 7 (left) shows a
composite image of a walking sequence in which the sub-
ject’s speed decreases from almost 7 to 3 km/h. Figure 8
shows the recovered velocity of the subject over time in the
solid blue curve. Also shown with the dashed green curve is
the posterior probability of which leg is the stance leg. Such
speed changes are handled naturally by the physics-based
model. Figure 7 (middle) shows the recovered MAP trajec-
tory from the original camera position while Fig. 7 (right)
shows that the recovered motion looks good in 3D from
other views.

Figure 9 shows cropped versions of tracking results for
a short subsequence, demonstrating the consistency of the
tracker. Weakness in the conditional kinematic model at
high speeds leads to subtle anomalies, especially around the
knees, which can be seen in the early frames of this subse-
quence.

Experiment 2: Occlusion We simulate occlusion by black-
ing out an image region as shown in Fig. 10. The silhouette
of the lower body is therefore lost, and we discard all flow
measurements that encroach upon the occluder. Neverthe-
less, the subtle motion of the torso is enough to track the
person, infer foot positions, and recover 3D pose.

Fig. 8 (Color online) Inferred speed as a function of time for the
MAP trajectory in Experiment 1 (blue). The dashed green line is
p(stance leg = left|z1:t ), the probability of the left leg being the stance
leg given the data up to that frame

It is particularly interesting to examine the posterior dis-
tribution p(st |z1:t ) which can be seen in the bottom row
of Fig. 11. These images show colour coded points for the
head, hip, knees and feet for each particle in the posterior.
The brightness of each point is proportional to its log weight.
While there is increased posterior uncertainty during the oc-
clusion, it does not diffuse monotonically. Rather, motion
of the upper body allows the tracker to infer the stance leg
and contact location. Notice that, soon after ground contacts,
the marginal posterior over the stance foot position tends to
shrink.

Finally, during occlusion, leg-switching can occur but is
unlikely. This is visible in the posterior distribution as an
overlap between yellow (right foot) and white (left foot)
points. However, the ambiguity is quickly resolved after the
occlusion.

Experiment 3: Turning While the Anthropomorphic Wal-
ker is a planar model we are still able to successfully track
3D walking motions because of the conditional kinematics.
As can been seen in Fig. 14, the model successfully tracks
the person through a sharp turn in a sequence of more than
400 frames. Despite the limitations of the physical model, it
is able to accurately represent the dynamics of the motion
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Fig. 9 (Color online) Two rows of cropped images showing every sec-
ond frame of the MAP trajectory in Experiment 1 for two strides during
change of speed: (top) the kinematic skeleton is overlayed on the sub-

ject; (middle) the corresponding state of the Anthropomorphic Walker
is shown with the stance printed in red; (bottom) a 3D rendering of the
kinematic state

Fig. 10 Composite images show the input data (left), background model (middle) and MAP trajectory (right) at several frames for Experiment 2.
Only the outline of the occluder is shown for illustration

in 2D while the conditional kinematic model represents the
turning motion.

Figure 13 shows the speed of the subject and the posterior
probability of which leg is the stance leg. Between frames
250 and 300 there is significant uncertainty in which leg is
in contact with the ground. This is partly because, in these

frames which correspond to the middle row in Fig. 14, there
are few visual cues to disambiguate when a foot has hit the
ground.

Experiment 4: HumanEva To quantitatively assess the
quality of tracking, we also report results on the HumanEva



150 Int J Comput Vis (2010) 87: 140–155

Fig. 11 (Color online) Cropped images showing every 4th frame of
the MAP trajectory (top), the corresponding state of the Anthropo-
morphic walker (middle) and the posterior distribution (bottom) in
Experiment 2. In the posterior points on the head (blue), left and right

feet (white and yellow), left and right knees (green and red) and hip
(blue) are plotted for each particle with intensity proportional to their
log weight

Fig. 12 3D rendering of the MAP trajectory in Experiment 2

Fig. 13 (Color online) MAP trajectory velocity (blue) and stance leg
posterior p(stanceleg = left|z1:t ) (dashed green) for the times shown
in Fig. 14. The highlighted region, corresponding to the middle row of
Fig. 14, exhibits significant uncertainty about which leg is the stance
leg

benchmark dataset (Sigal and Black 2006). This dataset con-
tains multicamera video, synchronized with motion capture

data that can be used as ground truth. Error is measured as
the average Euclidean distance over a set of defined marker
positions. Because our method does not actively track the
head and arms, we report results using only the markers on
the torso and legs.

As above, tracking was hand initialized and segment
lengths were set based on the static motion capture available
for each subject. The camera calibration provided with the
dataset was used and it was assumed that the ground plane
was located at Z = 0. We report monocular and binocular
results on subjects 2 and 4 from HumanEva II. Error is mea-
sured from the poses in the MAP trajectory of states over all
T frames. The results are summarized in Table 2 and errors
over time are plotted in Figs. 15 and 16.

It is important to note that the same model (dynamics and
kinematics) is used to track the two HumanEva subjects as
well as the subject in the preceding experiments. Only the
body size parameters were different. This helps to demon-
strate that the model can generalize to different subjects.

In this paper, both relative and absolute 3D error mea-
sures are reported. Absolute error is computed as the average
3D Euclidean distance between predicted and ground truth
marker positions (Sigal and Black 2006). Following Hu-
manEva, relative error is computed by translating the pelvis
of the resulting pose to the correct 3D position before mea-
suring the 3D Euclidean distance. This removes gross errors
in depth.

The type of error reported is significant, as different mea-
sures make meaningful comparisons difficult. Both error
types are reported here to allow a more direct comparison
with other methods. For example, relative error is often used
by discriminative methods which do not recover absolute 3D
depth.
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Fig. 14 (Color online) Cropped images showing every 5th frame of the MAP trajectory through an acceleration and sharp turn, starting at
frame 200. The skeleton of the kinematic model is overlayed in green. The middle row corresponds to the shaded portion of Fig. 13

Fig. 15 (Color online) Average absolute marker error over time for
subject 2, Combo 1 (left) and subject 4, Combo 4 (right). Plots are
shown for monocular tracking with camera 2 (solid blue) and camera 3

(dashed green) as well as binocular tracking with cameras 2 and 3
(dot-dashed red)

Fig. 16 (Color online) Average relative marker error over time for
subject 2, Combo 1 (left) and subject 4, Combo 4 (right). Plots are
shown for monocular tracking with camera 2 (solid blue) and camera 3

(dashed green) as well as binocular tracking with cameras 2 and 3
(dot-dashed red)
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Table 2 Quantitative results on sequences from HumanEva II

Sequence Error type Monocular (camera 2) Monocular (camera 3) Binocular (cameras 2 and 3)

Median Mean Median Mean Median Mean

Subject 2, Combo 1, Frames 25–350 absolute 82 mm 88 mm ± 38 67 mm 82 mm ± 34 52 mm 53 mm ± 9

relative 67 mm 70 mm ± 13 67 mm 67 mm ± 11 64 mm 66 mm ± 9

Subject 4, Combo 4, Frames 15–350a absolute 98 mm 127 mm ± 70 77 mm 96 mm ± 42 52 mm 54 mm ± 10

relative 74 mm 76 mm ± 17 71 mm 70 mm ± 10 65 mm 66 mm ± 10

aAs noted on the HumanEva II website, frames 298–335 are excluded from the calculation due to errors in the ground truth motion capture data

(a) Subject 2, Combo 1, Camera 3. The pose at frame 225 of
the MAP trajectory is shown from camera 3 on the left. On the
right are the views from cameras 2 and 4 respectively

(b) Subject 4, Combo 4, Camera 2. The pose at frame 125 of
the MAP trajectory is shown from camera 2 on the left. On the
right are the views from cameras 3 and 4 respectively

Fig. 17 Monocular tracking errors due to depth ambiguities. In both examples, the model appears to fit well in the view from which tracking is
done. However, when viewed from other cameras the errors in depth become evident

The difference between the relative and absolute errors is
also indicative of the nature of errors made by the tracker.
Table 2 shows that, unsurprisingly, absolute errors are lower
when using two cameras. In contrast, the plots in Fig. 16
suggest a negligible gain in relative error when using two
cameras. Taken together, these results suggest that depth un-
certainty remains the primary source of monocular tracking
error. With these depth errors removed, the errors in binoc-
ular and monocular tracking are comparable.

This is further illustrated in Figs. 17(a) and 17(b) which
show frames from the monocular trackers. The pose of the
subject fits well in 2D and is likely to have a high likelihood
at that frame. However, when viewed from other cameras,
the errors in depth are evident.

Table 2 also reveals that relative error can be higher than
absolute error, particularly for binocular tracking. This pe-
culiar result can be explained with two observations. First,
while relative error removes error from the pelvic marker, it
may introduce error in other markers. Further, direct corre-
spondences between positions on any articulated model and
the virtual markers of the motion capture may not be pos-
sible as the motion capture models have significantly more
degrees of freedom. These correspondence errors can then

be magnified by the translation of the pelvic marker, partic-
ularly if there are errors in the pelvic marker itself.

Interestingly, the monocular tracking errors shown in
Fig. 15 (the green and blue curves) tend to have significant
peaks which fall off slowly with time. While evident in all
experiments, this can be most clearly seen when tracking
subject 4 from camera 2. These peaks are the combined re-
sult of depth uncertainty and a physically plausible motion
model. According to the motion model, the only way the
subject can move in depth is by walking there. If a foot is
misplaced it cannot gradually slide to the correct position,
rather the subject must take a step. This results in errors per-
sisting over at least one stride. However, this is also the same
behaviour which prevents footskate and ensures more real-
istic motions.

7 Discussion and Future Work

In this paper we showed that physics-based models offer sig-
nificant benefits in terms of accuracy, stability, and general-
ity for person tracking. Results on three different subjects in
a variety of conditions, including in the presence of severe
occlusion, are presented which demonstrate the ability of the
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tracker to generalize. Quantitative results for monocular and
binocular 3D tracking on the HumanEva dataset (Sigal and
Black 2006) allows for direct comparison with other meth-
ods.

Here we used a simple powered walking model, but we
are currently exploring more sophisticated physical models
(Brubaker and Fleet 2008) which may yield even more gen-
eral trackers for other types of motion. There will, generally,
be a trade-off between model generality and the difficulty of
designing a controller (Vondrak et al. 2008). We note that,
while control of humanoid dynamical models is a challeng-
ing problem, there is a substantial literature in robotics and
animation from which to draw inspiration.

Although our approach employs online Bayesian infer-
ence, it should also be possible to incorporate physical
laws within other tracking frameworks such as discrimina-
tive methods. Models similar to this may also be used for
modelling and tracking other animals (Full and Koditschek
1999).
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Appendix A: Equations of Motion

Here we describe the equations of motion for the Anthro-
pomorphic Walker, shown in Fig. 2. While general-purpose
physics engines may be used to implement the physical
model and the impulsive collisions with the ground, most do
not support exact ground constraints, but instead effectively
require the use of springs to model static contact. In our ex-
perience it is not possible to make the springs stiff enough
to accurately model the data without resulting in slow or
unstable simulations. Hence, we derive equations of mo-
tion which exactly enforce static contact constraints. These
equations produces stable simulations which allow (3) to be
solved efficiently.

In order to derive the equations of motion for the walk-
ing model, we employ the TMT method (van der Linde and
Schwab 2002), a convenient recipe for constrained dynam-
ics. The TMT formulation is equivalent to Lagrange’s equa-
tions of motion and can be derived in a similar way, us-
ing d’Alembert’s Principle of virtual work (Goldstein et al.
2001). However, we find the derivation of equations of mo-
tion using the TMT method simpler and more intuitive for
articulated bodies.

We begin by defining the kinematic transformation,
which maps from the generalized coordinates q = (φ1, φ2)

to a 6 × 1 vector that contains the linear and angular co-
ordinates of each rigid body which specify state for the
Newton-Euler equations of motion. The torso is treated as
being rigidly connected to the stance leg and hence we have

only two rigid parts in the Anthropomorphic Walker. The
kinematic transformation can then be written as

k(q) =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

−Rφ1 − (C1 − R) sinφ1

R + (C1 − R) cosφ1

φ1

−Rφ1 − (L − R) sinφ1 + (L − C) sinφ2

R + (L − R) cosφ1 − (L − C) cosφ2

φ2

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

(16)

where C1 = (Cm�+Lmt )
m�+mt

is the location along the stance leg
of the combined center rigid body. Dependence of angles on
time is omitted for brevity. The origin, O , of the coordinate
system is on the ground as shown in Fig. 2. The origin is po-
sitioned such that, when the stance leg is vertical, the bottom
of the stance leg and the origin are coincident. Assuming in-
finite friction, the contact point between the rounded foot
and the ground moves as the stance leg rotates.

The equations of motion are summarized as

TTMTq̈ = f + TTM(a − g) (17)

where the matrix T is the 6×2 Jacobian of k, i.e., T=∂k/∂q.
The reduced mass matrix is

M = diag(m1,m1, I1,m�,m�, I�) (18)

where m1 = m� +mt is the combined mass of the stance leg.
The combined moment of inertia of the stance leg is given
by

I1 = I� + It + (C1 − C)2m� + (L − C1)
2mt (19)

The convective acceleration is

g = ∂

∂q

(
∂k
∂q

q̇
)

q̇ (20)

and a = g[0,−1,0,0,−1,0]T is the generalized accelera-
tion vector due to gravity (g = 9.8m/s2). The generalized
spring force is f = κ[φ2 − φ1, φ1 − φ2]T. By substitution of
variables, it can be seen that (17) is equivalent to (1), with
M(q) = TTMT and F (q, q̇, κ) = f + TTM (a − g).

Appendix B: Collision and Support Transfer

Since the end of the swing leg is even with the ground when
φ1 = −φ2, collisions are found by detecting zero-crossings
of C(φ1, φ2) = φ1 + φ2. However, our model also allows
the swing foot to move below the ground,2 and thus a zero-
crossing can occur when the foot passes above the ground.

2Because the Anthropomorphic Walker does not have knees, it can
walk only by passing a foot through the ground.
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Hence, we detect collisions by detecting zero-crossings of C
when φ1 < 0 and Ċ < 0.

The dynamical consequence of collision is determined
by a system of equations relating the instantaneous veloc-
ities immediately before and after the collision. By assum-
ing ground collisions to be impulsive and inelastic the result
can be determined by solving a set of equations for the post-
collision velocity. To model toe-off before such a collision,
an impulse along the stance leg is added. In particular, the
post-collision velocities q̇+ can be solved for using

T+TMT+q̇+ = T+T(v + MTq̇−) (21)

where q̇− are the pre-collision velocities, T is the pre-
collision kinematic transfer matrix specified above,

k+(q−) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−Rφ2 −(L−R) sinφ2 + (L−C) sinφ1

R + (L−R) cosφ2 − (L−C) cosφ1

φ1

−Rφ2 − (C1−R) sinφ2

R + (C1−R) cosφ2

φ2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(22)

is the post-collision kinematic transformation function,
T+ =∂k+/∂q, is the post-collision kinematic transfer ma-
trix, M is the mass matrix as above and

v = ι[− sinφ1, cosφ1,0,0,0,0]T (23)

is the impulse vector with magnitude ι. Defining

M+(q) = T+TMT+T, (24)

M−(q) = T+TMT, (25)

I(q, ι) = T+Tv (26)

and substituting into (21) gives (2).
At collision, the origin of the coordinate system shifts

forward by 2(Rφ2 + (L − R) sinφ2). The swing and stance
leg switch roles; i.e., φ1 and φ2 and their velocities are
swapped. Simulation then continues as before.
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