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Abstract

Cryo-EM is widely used to study biological macromolecules that comprise regions with disorder, flexibil-

ity, or partial occupancy. For example, membrane proteins are often kept in solution with detergent micelles

and lipid nanodiscs that are locally disordered. Such spatial variability negatively impacts computational 3D

reconstruction with existing iterative refinement algorithms that assume rigidity. We introduce non-uniform re-

finement, an algorithm based on cross-validation optimization, which automatically regularizes 3D density maps

during refinement to account for spatial variability. Unlike common shift-invariant regularizers, non-uniform

refinement systematically removes noise from disordered regions while retaining signal useful for aligning par-

ticle images, yielding dramatically improved resolution and 3D map quality in many cases. We obtain high

resolution reconstructions for multiple membrane proteins as small as 100 kDa, demonstrating increased ef-

fectiveness of cryo-EM for this class of targets critical in structural biology and drug discovery. Non-uniform

refinement is implemented in the cryoSPARC software package.

1 Introduction

Single particle cryo-EM has transformed rapidly into a mainstream technique in biological research [1]. Cryo-
EM images individual protein particles, rather than crystals, and has therefore been particularly useful for struc-
tural studies of integral membrane proteins, which are difficult to crystallize [2]. These molecules are critical for
drug discovery, targeted by more than half of drugs today [3]. Membrane proteins pose challenges in cryo-EM
sample preparation, imaging, and computational 3D reconstruction, as they are often of small size, appear in mul-
tiple conformations, have flexible subunits, and are embedded in a detergent micelle or lipid nanodisc [2]. These
characteristics cause strong spatial variation in structural properties, like rigidity and disorder, across the target
molecule’s 3D density. Traditional cryo-EM reconstruction algorithms, however, are based on the simplifying
assumption of a uniform, rigid particle.
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We develop an algorithm that incorporates such domain knowledge in a principled way, improving 3D re-
construction quality and allowing single particle cryo-EM to achieve higher-resolution structures of membrane
proteins. This expands the range of proteins that can be effectively studied, and is especially important for
structure-based drug design [4, 5]. We begin by formulating a cross-validation regularization framework for
single particle cryo-EM refinement, and use it to account for the spatial variability in resolution and disorder
found in a typical molecular complex. The framework incorporates general domain knowledge about protein
molecules, without specific knowledge of any particular molecule, and critically, without need for manual user
input. Through this framework we derive a new algorithm called Non-Uniform Refinement which automatically
accounts for structural variability, while ensuring that key statistical properties for validation are maintained to
mitigate the risk of over-fitting during 3D reconstruction.

With a GPU accelerated implementation of non-uniform refinement in the cryoSPARC software package [6],
we demonstrate improvements in resolution and map quality for a range of membrane proteins. We show results
on a 48 kDa membrane protein in lipid nanodisc with a Fab bound, a 180 kDa membrane protein complex with a
large detergent micelle, and a 245 kDa sodium channel complex with flexible domains. Non-uniform refinement
is reliable and automatic, requiring no change in parameters between datasets, without reliance on hand-made
spatial masks or manual labels.

Iterative Refinement and Regularization

In standard cryo-EM 3D structure determination [7, 6, 8], a generative model describes the formation of 2D
electron microscope images from a target 3D protein density (Coulomb potential). According to the model, the
target density is rotated, translated, and projected along the direction of the electron beam. The 2D projection
is modulated by a microscope contrast transfer function (CTF), and corrupted by additive noise. The goal of
reconstruction is to infer the 3D density map from particle images, without knowledge of latent 3D pose variables,
i.e., the orientation and position of the particle in each image. Iterative refinement methods formulate inference as
a form of maximum likelihood or maximum a posteriori optimization (e.g., [9, 10, 6, 11]). Such algorithms can
be viewed as a form of block-coordinate descent or Expectation-Maximization [12], each iteration comprising an
E-step, estimating the pose of each particle image, given the 3D structure, and an M-step, regularized 3D density
estimation given the latent poses.

Like many inverse problems with noisy, partial observations, the quality of cryo-EM map reconstruction
depends heavily on regularization. Regularization methods, widely used in computer science and statistics,
leverage prior domain knowledge to penalize unnecessary model complexity and avoid over-fitting. In cryo-EM
refinement, regularization is needed to mitigate the effects of imaging and sample noise so that protein signal
alone is present in the inferred 3D density, and so accumulated noise does not contaminate latent pose estimates.

Existing refinement algorithms use an explicit regularizer in the form of a shift-invariant linear filter, typically
obtained from Fourier Shell Correlation (FSC) (e.g., [15, 10, 16, 6, 17, 18, 19]). Such filters smooth the 3D
structure using the same kernel, and hence the same degree of smoothing, at all locations. Since FSC captures
the average resolution of the map, such filters presumably under- and over-regularize different regions, allowing
noise accumulation in some regions, and a loss of resolvable detail in others. This effect should be pronounced
with membrane proteins that have highly non-uniform rigidity and disorder across the molecule. As a motivating
example, Fig. 1 shows a reconstruction of the TRPA1 membrane protein [13] with a relatively low density
threshold to help visualize regions of significant noise which indicate over-fitting (e.g., the disordered micelle
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Figure 1: A 3D map from uniform refinement (in cryoSPARC) reveals spatial variations in resolution in a prototypical

membrane protein (TRPA1 ion channel, EMPIAR-10024 [13]). Color depicts local resolution [14] as a proxy for local

structure properties. Following the default FSC-based regularization and B-factor sharpening in cryoSPARC, the density map

has been thresholded at a relatively low value to clearly visualize regions of significant noise. The core inner region (red) is

more rigid and better resolved. The solvent facing region (yellow) is less well ordered. The detergent micelle (light blue)

is largely disordered. A flexible tail at the bottom (blue) is blurred due to motion. In uniform refinement, a shift-invariant

regularizer smooths all regions with the same kernel. This allows high frequency noise to accumulate in disordered regions

(under-regularization), while discarding resolvable signal in rigid regions (over-regularization). Non-uniform refinement is

designed to mitigate these problems.

and the flexible tail at and bottom of the protein). We hypothesize that under-fitting occurs in the core region
where over-regularization attenuates useful signal. As such, accumulated noise and attenuated signal degrade
pose estimates during refinement, limiting final structure quality. For inference problems of this type, the amount
and form of regularization depends on regularization parameters. Correctly optimizing these parameters is often
critical, but care must be taken to ensure that the optimization itself is not also prone to over-fitting.

2 Results

We next outline the formulation of an adaptive form of regularization, and with it, a new refinement algorithm
called Non-Uniform Refinement. We discuss its properties and demonstrate its application on several membrane
protein datasets.

Adaptive Cross-Validation Regularization

With the aim of incorporating spatial non-uniformity into cryo-EM reconstruction, we formulate a family of
regularizers denoted r�, with parameters �(x) that depend on spatial position x. Given a 3D density map m(x),
the regularization operator, evaluated at x, is defined by

(r� �m)(x) =
X
�

h(�; �(x)) m(� � x) ; (1)

where h(x; ) is symmetric smoothing kernel, the spatial scale of which is determined by parameter  .
This family provides greater flexibility than shift-invariant regularizers, but in exchange, requires making the

correct choice of a new set of parameters, �(x). We formulate the selection of the regularization parameters
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