Understanding Visual Scenes

Antonio Torralba

Computer Science and Artificial Intelligence Laboratory (CSAIL) Department of Electrical Engineering and Computer Science

A computer vision goal

Recognize many different objects under many viewing conditions in unconstrained settings.

Why is this hard?

Plus, we want to do this for ~ 1000 objects

1,000,000 images/day

The face detection age

- The representation and matching of pictorial structures Fischler, Elschlager (1973).
- Face recognition using eigenfaces M. Turk and A. Pentland (1991).
- Human Face Detection in Visual Scenes Rowley, Baluja, Kanade (1995)
- Graded Learning for Object Detection Fleuret, Geman (1999)
- Robust Real-time Object Detection Viola, Jones (2001)

• Feature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images - Heisele, Serre, Mukherjee, Poggio (2001)

•....

"Head in the coffee beans problem"

Can you find the head in this image?

"Head in the coffee beans problem"

Can you find the head in this image?

"Head in the coffee beans problem"

Can you find the head in this image?

Some symptoms of standard approaches

Just objects is not enough

The detector challenge: by looking at the output of a detector on a random set of images, can you guess which object is it trying to detect?

What object is detector trying to detect?

The detector challenge: by looking at the output of a detector on a random set of images, can you guess which object is it trying to detect?

1. chair, 2. table, 3. road, 4. road, 5. table, 6. car, 7. keyboard.

The importance of context

- Cognitive psychology
 - Palmer 1975
 - Biederman 1981

— ...

Computer vision

- Noton and Stark (1971)
- Hanson and Riseman (1978)
- Barrow & Tenenbaum (1978)
- Ohta, kanade, Skai (1978)
- Haralick (1983)
- Strat and Fischler (1991)
- Bobick and Pinhanez (1995)
- Campbell et al (1997)

Class	Context elements	Operator
SKY	ALWAYS	ABOVE-HORIZON
SKY	SKY-IS-CLEAR ∧ TIME-IS-DAY	BRIGHT
SKY	SKY-IS-CLEAR ∧ TIME-IS-DAY	UNTEXTURED
SKY	SKY-IS-CLEAR ∧ TIME-IS-DAY ∧ RGB-IS-AVAILABLE	BLUE
SKY	SKY-IS-OVERCAST \land TIME-IS-DAY	BRIGHT
SKY	SKY-IS-OVERCAST ∧ TIME-IS-DAY	UNTEXTURED
SKY	SKY-IS-OVERCAST \land TIME-IS-DAY \land	WHITE
	RGB-IS-AVAILABLE	
SKY	SPARSE-RANGE-IS-AVAILABLE	SPARSE-RANGE-IS-UNDEFINED
SKY	CAMERA-IS-HORIZONTAL	NEAR-TOP
SKY	CAMERA-IS-HORIZONTAL A	ABOVE-SKYLINE
	CLIQUE-CONTAINS(complete-sky)	
SKY	CLIQUE-CONTAINS(sky)	SIMILAR-INTENSITY
SKY	CLIQUE-CONTAINS(sky)	SIMILAR-TEXTURE
SKY	RGB-IS-AVAILABLE	SIMILAR-COLOR
GROUND	CAMERA-IS-HORIZONTAL	HORIZONTALLY-STRIATED
GROUND	CAMERA-IS-HORIZONTAL	NEAR-BOTTOM
GROUND	SPARSE-RANGE-IS-AVAILABLE	SPARSE-RANGES-FORM-HORIZONT#
GROUND	DENSE-RANGE-IS-AVAILABLE	DENSE-RANGES-FORM-HORIZONTA
GROUND	CAMERA-IS-HORIZONTAL A	BELOW-SKYLINE
	CLIQUE-CONTAINS(complete-ground)	
GROUND	CAMERA-IS-HORIZONTAL A	BELOW-GEOMETRIC-HORIZON
	CLIQUE-CONTAINS(geometric-horizon) </td <td></td>	
	- CLIQUE-CONTAINS(skyline)	
GROUND	TIME-IS-DAY	DARK

Humans make extensive use of contextual visual information

Mezzanotte & Biederman, 1980

Objects and Scenes

Stimuli from Hock, Romanski, Galie, and Williams (1978).

- 1. Support (e.g., a floating fire hydrant). The object does not appear to be resting on a surface.
- Interposition (e.g., the background appearing through the hydrant). The objects undergoing this
 violation appear to be transparent or passing through another object.
- 3. Probability (e.g., the hydrant in a kitchen). The object is unlikely to appear in the scene.
- Position (e.g., the fire hydrant on top of a mailbox in a street scene). The object is likely to occur in that scene, but it is unlikely to be in that particular position.
- 5. Size (e.g., the fire hydrant appearing larger than a building). The object appears to be too large or too small relative to the other objects in the scene.

Collecting datasets

Human vision

Many input modalities

Active

•Supervised, unsupervised, semi supervised learning. It can look for supervision.

Robot vision

Many poor input modalitiesActive, but it does not go far

Internet vision

- Many input modalities
- •It can reach everywhere
- •Tons of data

Collecting datasets (towards 10⁶⁻⁷ examples)

- ESP game (CMU) Luis Von Ahn and Laura Dabbish 2004
- LabelMe (MIT) Russell, Torralba, Freeman, 2005
- StreetScenes (CBCL-MIT) Bileschi, Poggio, 2006
- WhatWhere (Caltech) Perona et al, 2007
- PASCAL challenge 2006, 2007
- Lotus Hill Institute Song-Chun Zhu et al, 2007
- 80 million images Torralba, Fergus, Freeman, 2007

http://labelme.csail.mit.edu

Extreme labeling

The other extreme of extreme labeling

... things do not always look good...

Testing

Most common labels:

test adksdsa woiieiie

. . .

Sophisticated testing

Most common labels:

Star

. . .

Square

Nothing

Creative testing Do not try this at home

Sign in (why?)

There are 158302 labelled objects

Instructions (Get more help)

Use your mouse to click around the boundary of some objects in this image. You will then be asked to enter the name of the object (examples: car, window).

Labeling tools

Polygons in this image (<u>XML</u>)

Object statistics

How many more images do we need label?

Mosaic showing 12,000 fully annotated images

Interactive version at: http://people.csail.mit.edu/torralba/research/LabelMe/labelmeMap/

How many images do we need to label?

Beyond object annotation Building a database of 3D scenes

B.C. Russell and A. Torralba. CVPR 2009.

3D models

1km

Objects in context

Contextual object relationships

Carbonetto, de Freitas & Barnard (2004)

Kumar, Hebert (2005)

Torralba Murphy Freeman (2004)

Fink & Perona (2003)

A. eye feature from raw image

D. eye feature from eye detection image

image

E. Sudderth et al (2005)

The context challenge

How far can you go without using an object detector?

What are the hidden objects?

What are the hidden objects?

What are the hidden objects?

Chance ~ 1/30000

Global and local representations

Global and local representations

An integrated model of Scenes, Objects, and Parts

Global scene representations

Bag of words

Sivic et. al., ICCV 2005 Fei-Fei and Perona, CVPR 2005

Non localized textons

Spatially organized textures

M. Gorkani, R. Picard, ICPR 1994 A. Oliva, A. Torralba, IJCV 2001

Spatial structure is important in order to provide context for object localization

Features for matching images: Gist

Oliva and Torralba, 2001

Apply oriented Gabor filters over different scales
Average filter energy in each bin

- 8 orientations
- 4 scales
- <u>x 16</u> bins
- 512 dimensions
- Used for scene recognitionSimilar to SIFT (Lowe 1999)

Example visual gists

Global features (I) ~ global features (I') Oliva & Torralba (2001)

Context-based vision system for place and object recognition

- Hidden states = location (63 values)
- Observations = v_t^G (80 dimensions)
- Transition matrix encodes topology of environment
- Observation model is a mixture of Gaussians centered on prototypes (100 views per place)

Torralba, Murphy, Freeman and Rubin. ICCV 2003

Our mobile rig

Torralba, Murphy, Freeman, Rubin. 2003

Place recognition demo

Application of object detection for image retrieval

Results using the keyboard detector alone

The system does not care about the scene, but we do...

We know there is a keyboard present in this scene even if we cannot see it clearly.

We know there is no keyboard present in this scene

An integrated model of Scenes, Objects, and Parts

Application of object detection for image retrieval

Context driven object detection

3d Scene Context

Hoiem, Efros, Hebert ICCV 2005

3d Scene Context

Hoiem, Efros, Hebert ICCV 2005

An integrated model of Scenes, Objects, and Parts

We train a multiview car detector.

 $p(d | F=1) = N(d | \mu_1, \sigma_1)$ $p(d | F=0) = N(d | \mu_0, \sigma_0)$

An integrated model of Scenes, Objects, and Parts

Predicting object location

Predicting location

Torralba & Sinha, 2001; Murphy, Torralba, Freeman, 2003; Hoeim, Efros, Hebert. 2006

Car detection without a car detector

screens

car

pedestrian

Detecting faces without a face detector

An integrated model of Scenes, Objects, and Parts

A car out of context ...

Failures

• If the detector fails... context can not help

Failures

• If the detector fails... context can not help

• If the detector produces a contextually coherent false alarm, context will increase

the error

Benefits of context

Increases performances

Increases efficiency

Reduced search space

3D City Modeling using Cognitive Loops

Figure 6. Stages of the recognition system: (a) initial detections before and (b) after applying ground plane constraints, (c) temporal integration on reconstructed map, (d) estimated 3D car locations, rendered back into the original image.

Large databases

Why is scene understanding hard? Scenes are unique

But not all scenes are so original

But not all scenes are so original

The two extremes of learning

80.000.000 images

The Power Of

Lots

Of

Images

A. Torralba, R. Fergus, W.T. Freeman. PAMI 2008

The Power Of Lots Of

Images

The Power Of Lots Of

Images

What can we do with a good similarity metric and **a lot of data**?

Nearest neighbors

The space of world images

Hays, Efros, Siggraph 2006 Russell, Liu, Torralba, Fergus, Freeman. NIPS 2007`

With a good image similarity and a lot of data...

With a good image similarity and a lot of data...

With a good image similarity and a lot of data...

SIFT flow:

dense correspondence across different scenes

Ce Liu

Liu, Yuen, Torralba. CVPR 2009.

Berg, Berg, Malik CVPR 2005

Yuille '91; Brunelli & Poggio '93; Lades, v.d. Malsburg et al. '93; Cootes, Lanitis, Taylor et al. '95; Amit & Geman '95, '99 ; Perona et al. '95, '96, '98, '00; Felzenszwalb & Huttenlocher '00

Liu, Yuen, Torralba CVPR 2009

Object recognition by scene alignment

The simplest alignment problem: matching two consecutive frames

Hypothesis: if we have a dataset that is large enough, we can find an image that is close enough to our input.

Dense SIFT descriptor

128 dimensions/pixel

SIFT (scale-invariant feature transform)

- 8 orientations, 4×4 cell grid
- Characterize local image gradient

SIFT Visualization: map 128 dimensions in 3D color space

Matching dense SIFT descriptors

RGB images

SIFT images

Objective function of SIFT flow

• The energy function is similar to that of optical flow:

$$E(\mathbf{w}) = \sum_{\mathbf{p}} \min\left(\left\|s_1(\mathbf{p}) - s_2(\mathbf{p} + \mathbf{w}(\mathbf{p}))\right\|_1, t\right) + \frac{\text{Data term (reconstruction)}}{\sum_{\mathbf{p}} \eta\left(|u(\mathbf{p})| + |v(\mathbf{p})|\right) + \frac{\text{Small displacement bias}}{\sum_{(\mathbf{p}, \mathbf{q}) \in \varepsilon} \min\left(\alpha |u(\mathbf{p}) - u(\mathbf{q})|, d\right) + \min\left(\alpha |v(\mathbf{p}) - v(\mathbf{q})|, d\right)}$$

Jumess tern

 p, q: grid coordinate, w: flow vector, u, v: x- and ycomponents, s₁, s₂: SIFT descriptors

System overview

tree

sky road

field car

unlabeled

System overview

Scene parsing results (2)

Predicting events

Predicting events

Query

Query

Retrieved video

Query

Retrieved video

Synthesized video

Query

Retrieved video

Synthesized video

Query

Retrieved video

Synthesized video

Query

Retrieved video

Synthesized video

Summary

- Gist of the scene & context models for object and scene recognition
- Building datasets for computer vision
- Exploiting large databases and non-parametric methods for scene understanding

We have better low and mid-level vision Better learning algorithms Lot's of computational power And lot's of data

We are running out of excuses