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Testimonials: “since | attended this class, | can recognize all the objects that | see”



A computer vision goal

Recognize many different objects under
many viewing conditions in unconstrained

settings.
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Object recognition in 60+ minutes




Why is object recognition a hard task?




Challenges 1: view point variation

Slides: course object recognition

Michelangelo 1475-1564 \ & ICCv 2005




Challenges 2: illumination

slide credit: S. Ullman




Challenges 3: occlusion

Slides: course object recognition

Magritte, 1957 ICCV 2005




Challenges 4: scale

Slides: course object recognition
ICCV 2005




Challenges 5: deformation

Slides: course object recognition

ICCV 2005 Xu, Beihong 1943




Challenges 6: intra-class variation

Slides: course object recognition
ICCV 2005




Challenges 7: background clutter

Brady, M. J., & Kersten, D. (2003). Bootstrapped Iearnig of novel objects. J Vis, 3(6), 413-422



your visual system is amazing



your visual system is amazing?



Discover the camouflaged object

Brady, M. J., & Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422



Discover the camouflaged object

Brady, M. J., & Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422


















Any guesses?







Why do we care about recognition?
Perception of function: We can perceive the 3D

shape, texture, material properties, without
knowing about objects. But, the concept of
category encapsulates also information about
what can we do with those objects.

“We therefore include the perception of function as a proper —indeed, crucial- subject
for vision science”, from Vision Science, chapter 9, Palmer.




The perception of function
* Direct perception (affordances): Gibson

Flat surface
Horizontal J| Sittable
Knee-high upon

* Mediated perception (Categorization)

Flat surface .
Horizontal .| Chair | Sittable
Knee-high upon




Direct perception

Some aspects of an object function can be
perceived directly

* Functional form: Some forms clearly
indicate to a function (“sittable-upon”,
container, cutting device, ...)

Sittable-upon gittaple-upon It does not seem easy
to sit-upon this...




Direct perception

Some aspects of an object function can be
perceived directly

» Observer relativity: Function is observer
dependent




Limitations of Direct Perception

Objects of similar structure might have very different functions

b X
Figure 9.1.2 Objects with similar structure but different fune- R (T

3 » 1t Jhearaae tras e y not
tions. Mailboxes afford letter mailing, whereas tr ash cans do not,

s sical feature h as
even though they have many similar physical fu\tuuiﬁ. suc -
) 3 1 arge ¢ mser

size, location, and presence of an opening large enough to

letters and medium-sized packages.

Not all functions seem to be available from direct visual information only.

The functions are the same at some level of description: we can put things
inside in both and somebody will come later to empty them. However, we
are not expected to put inside the same kinds of things...



Limitations of Direct Perception

Visual appearance might be a very weak cue to function

Propulsion system

Strong protective surface
Something that looks like a door

Sure, | can travel to space on
this object

\




How do we achieve Mediated
perception?

Well... this requires object recognition (for
more details, see entire course)



Object recognition
Is it really so hard?

Find the chair in this image Output of normalized correlation
1




Object recognition
Is it really so hard?

Find the chair in this image

Pretty much garbage
Simple template matching is not going to make it



Object recognition
Is it really so hard?

Find the chair in this image

A “popular method is that of template matching, by point to point correlation of a
model pattern with the image pattern. These techniques are inadequate for three-
dimensional scene analysis for many reasons, such as occlusion, changes in viewing
angle, and articulation of parts.” Nivatia & Binford, 1977.



A short story of object recognition




S0, let’'s make the problem simpler:
Block world

Fig. 1. A system for recognizing 3-d polyhedral scenes. a) L.G. Roberts. b)A blocks
world scene. c)Detected edges using a 2x2 gradient operator. d) A 3-d polyhedral
description of the scene, formed automatically from the single image. e) The 3-d scene
displayed with a viewpoint different from the original image to demonstrate its accuracy
and completeness. (b) - e) are taken from [64] with permission MIT Press.)

Nice framework to develop fancy math, but too far from reality...

Object Recognition in the Geometric Era:
a Retrospective. Joseph L. Mundy. 2006



Binford and generalized Recognition by
cylinders components

Irving Biederman

Recognition-by-Components: A Theory of Human Image
Fig. 3. The representation of objects by assemblies of generalized cylinders. a) Thomas Understanding.
Binford. b) A range image of a doll. ¢) The resulting set of generalized cylinders. ( b) Psychological Review, 1987.

and c) are taken from Agin [1] with permission.)

-U s

2. Tapered 3. Pyramid 4. Bent 5. Cylinder
block Block

6. Tapered 7. Cone 8. Barrel 9. Ellipsoid 10. Bent
Cylinder Cylinder

Object Recognition in the Geometric Era:
Introduced in computer vision by A. Pentland, 1986. ) gnition | '

a Retrospective. Joseph L. Mundy. 2006



Parts and Structure approaches

With a different perspective, these models focused more on the
geometry than on defining the constituent elements:

Fischler & Elschlager 1973

Yuille ‘91

Brunelli & Poggio ‘93

Lades, v.d. Malsburg et al. ‘93
Cootes, Lanitis, Taylor et al. ‘95

Amit & Geman ‘95, ‘99

Perona et al. ‘95, ‘96, '98, 00, '03, ‘04

LEFT | A"
EDGE

MOUTH

Felzenszwalb & Huttenlocher ,OO, ‘04 Figure from [Fischler & Elschlager 73]
Crandall & Huttenlocher ’05, '06
Leibe & Schiele 03, '04

Many papers since 2000



But, despite promising initial results...things did not
work out so well (lack of data, processing power,
lack of reliable methods for low-level and mid-
level vision)

Instead, a different way of thinking about object
detection started making some progress:
learning based approaches and classifiers,
which ignored low and mid-level vision.



Face detection and the success
of learning based approaches

* The representation and matching of pictorial structures Fischler, Elschlager (1973).

* Face recognition using eigenfaces M. Turk and A. Pentland (1991).

* Human Face Detection in Visual Scenes - Rowley, Baluja, Kanade (1995)

 Graded Learning for Object Detection - Fleuret, Geman (1999)

* Robust Real-time Object Detection - Viola, Jones (2001)

* Feature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images - Heisele, Serre,
Mukherjee, Poggio (2001)



——— TN
EadsaN - T
. |

&

S eve EYE
m O
' verr [ 468 Ao O\ RIGHT
3 " EDGCE NOSE A EDGE

?’()a o)

MOUTH

* The representation and matching of pictorial structures Fischler, Elschlager (1973)

* Face recognition using eigenfaces M. Turk and A. Pentland (1991).

* Human Face Detection in Visual Scenes - Rowley, Baluja, Kanade (1995)

* Graded Learning for Object Detection - Fleuret, Geman (1999)

* Robust Real-time Object Detection - Viola, Jones (2001)

* Feature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images - Heisele, Serre,
Mukherjee, Poggio (2001)



Face. detection

[Face priority AE] When a bright part of the face is too bright



A simple object detector

« Simple but contains some of same basic
elements of many state of the art detectors.

» Based on boosting which makes all the
stages of the training and testing easy to
understand.

Most of the slides are from the ICCV 05 short course
http://people.csail.mit.edu/torralba/shortCourseRLOC/



Discriminative vs. generative

p(Data, No Zebra)

» Generative model

p(Data, Zebra)

(The artist)
» Discriminative model p(Zebra|Data)
1 1
(The lousy painter) > < p(No Zebra|Data)
0.5f
00 10 20 30 40 5IO 6IO 7I0
X = data

Im pote-2brs

 Classification function

0 10 20 30 40 50 60 70 80
X = data



Discriminative methods

Object detection and recognition is formulated as a classification problem.
The image is partitioned into a set of overlapping windows

... and a decision is taken at each window about if it contains a target object or not.

Decision
Background boundary

Where are the screens?

Computer screen

Bag of image patches

In some feature space



A simple object detector with Boosting

" J Simple object detector with boosting - Mozilla I'irefox
Ple  [dt Vew Go [ookmarks Tools |elp

o 9 ’9.:. A simple object detector Download

" e @peess with boosting ) )

"V ihe * Toolbox for manipulating dataset
‘e .. Recognizing and Learning Object Categories

* Code and dataset

Boosting provides a simple framework to develop robust object detection algorithms. This set of functions provide a minimal set to
build an object detection algorithm. It is entirely written on Matlab in order to make it easily accesible as a teaching tool. Therefore,
it is not appropriate for building real-time applications

Setup
Download the code and datasets M atl a b Cod e

Download the LabelMe toolbox

Unzip both files. Modify the paths in initpath.m

.
e v bt - Gentle boost
Maodify the folder paths in paramaters. m to point to the locations of the images and annotations e n e OOS I n

Description of the functions : ;

S * Object detector using a part based model
Alx:(.::t::ll:mllxlﬂﬂnhm the matlab path. You should run this command when you start the Matlab session
paremeters.m - Contains parameters to configure the classifiers and the database

Boosting tools

demoGentleBoost m - simple demo of gentleBoost using stumps on two dimensions

Scripts - .
createDatabases m - creates the training and test database using the LabelMe database D ata Set W I t h Ca rS a n d CO m p u te r m O n Ito rS
createDictionary.m « creates a dictionary of filtered patches from the target object

computel eatures m - precomputes the features of all images and stores the feature outputs on the center of the target object and on a
sparse set of locations from the background

trainDetector. m - creates the training and test database using the LabelMe database

runDetector.m - runs the detector on test images Detector output
. Input image with ground truth Boosting margin Thresholded output targets=1, correct=1, false alarms=0
Foatures and weak detectors . - >

convCrossCony m - Weak detector; computes template matching with a localized patch in object centered coordinates

Detector
singleScaleBoostedDetector.m - runs the strong classifier on an image at a single scale and outputs bounding boxes and scores

LabelMe toolbox
LabelMe - Describes the utility functions used to manipulate the database
.|
Done

http://people.csail.mit.edu/torralba/iccv2005/




Why boosting?

* A simple algorithm for learning robust classifiers
— Freund & Shapire, 1995
— Friedman, Hastie, Tibshhirani, 1998

* Provides efficient algorithm for sparse visual
feature selection

— Tieu & Viola, 2000
— Viola & Jones, 2003

« Easy to implement, not requires external
optimization tools.



Boosting

* Defines a classifier using an additive model:

F(x) = 0{‘1‘7}1(513) + axfa(z) + azfz(z) + ...

Strong Weak classifier
classifier
Weight
Features

vector



Boosting

* Defines a classifier using an additive model:

F(x) = O‘ﬂl]}l(fp) + axfa(z) + azfz(z) + ...

Strong Weak classifier
classifier
Weight
Features
vector

* We need to define a family of weak classifiers

fk($) from a family of weak classifiers



From images to features:
Weak detectors

We will now define a family of visual
features that can be used as weak
classifiers ("weak detectors™)

* ’

Takes image as input and the output is binary response.
The output is a weak detector.




Object recognition
Is it really so hard?

Find the chair in this image

But what if we use smaller patches? Just a part of the chair?



Parts

But what if we use smaller patches? Just a part of the chair?

5

Find a chair in this image

Seems to fire on Igs... not so bad



Weak detectors

Part based: similar to part-based generative
models. We create weak detectors by
using parts and voting for the object center
location

% =

-~ /\‘,‘/\n

Car model

|
ﬁ-\ H

/'\ﬂ

Screen model

These features are used for the detector on the course web site.



Weak detectors

First we collect a set of part templates from a set of training
objects.

Vidal-Naquet, Uliman (2003)

’ —>
|




Weak detectors

We now define a family of “weak detectors” as:

Better than chance




Weak detectors

We can do a better job using filtered images

- — =——

hi(l,z,y) = [|I * f;| ® P;] * g;

Still a weak detector
but better than before




Training

First we evaluate all the N features on all the training images.

Feature 1

Feature N

Then, we sample the feature outputs on the object center and at random
locations in the background:
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Representation and object model

Selected features for the screen detector

- L
olll ol /[ & il
N BN BN
_ 1 3, 3 4 10 100
- Lousy painter
— _

~—




Representation and object model

Selected features for the car detector

ol | | o=

10 100




Example: screen detection

Feature




Example: screen detection

Feature Thresholded

I output
‘l. 1 —
[ fu

-—

Weak ‘detector’
Produces many false alarms.



Example: screen detection

Feature Thresholded  Strong classifier
at iteration 1




Example: screen detection

Feature Thresholded Strong
output output classifier

- A-‘

T~

Second weak ‘detector’

Produces a different set of
false alarms.



Example: screen detection

Feature Thresholded Strong
, output output classifier
L W o_—

- ’ ."-.‘.:-

Strong classifier
at iteration 2



Example: screen detection

Feature Thresholded Strong
output output

classifier

Strong classifier
at iteration 10



Example: screen detection

Feature Thresholded Strong
classifier

Adding
features

Final
classification

Strong classifier
at iteration 200



Weak detectors

Textures of textures
Tieu and Viola, CVPR 2000. One of the first papers to use boosting for vision.

Gije= > II*fil la*fjl Lo *fx

: mput image
pixels

input image

| (== P PO
A== 1. =
s

i — |
A - =

.= ..._:'. \

Every combination of three filters
generates a different feature

This gives thousands of features. Boosting selects a sparse subset, so computations
on test time are very efficient. Boosting also avoids overfitting to some extend.




Weak detectors

Haar filters and integral image
Viola and Jones, ICCV 2001

The average intensity in the
block is computed with four
sums independently of the
block size.



Haar wavelets

Papageorgiou & Poggio (2000)

wavelets in 2D

-1 1 -1

1

vertical horizontal diagonal

Polynomial SVM



Edges and chamfer distamnce

Gavrila, Philomin, ICCV 1999



Edge fragments

J. Shotton, A. Blake, R. Cipolla.
Multi-Scale Categorical Object Recognition

Using Contour Fragments. In IEEE Trans.
on PAMI, 30(7):1270-1281, July 2008.

~
z = LR

Fig. 1. Object recognition using contour fragments. Our innate
biological vision system is able to interpret spatially arranged local
fragments of contour to recognize the objects present. In this work we
show that an automatic computer vision system can also successfully
exploit the cue of contour for object recognition.

All matched boundary

fragments

Opelt, Pinz, Zisserman, ECCV 2006

Twoboundary  Matching Yaon the edge image

fragments

=L e
& NS)

!

CSimilarities of matche®>

Matching fgjbor'I the edge image
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S = @
r

@
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Overlap of centroid predictions

Cyoting for same centroid>

Centroid Voting on a subset of the matched fragments

Segmentation / Detection  Backprojected Maximum



Weak detectors

Other weak detectors:

« Carmichael, Hebert 2004

* Yuille, Snow, Nitzbert, 1998
 Amit, Geman 1998

« Papageorgiou, Poggio, 2000
* Heisele, Serre, Poggio, 2001
« Agarwal, Awan, Roth, 2004

« Schneiderman, Kanade 2004



Maximal suppression

Detect local maximum of the response. We are only allowed detecting each
object once. The rest will be considered false alarms.

This post-processing stage can have a very strong impact in the final
performance.



Evaluation

When do we have a correct
detection?

Is this correct?

Area intersection
Area union

« ROC
* Precision-recall

>0.5



Histograms of oriented gradients

Dalal & Trigs, 2006

X I Not a person




Histograms of oriented gradients

« Shape context
Belongie, Malik, Puzicha, NIPS 2000

* SIFT, D. Lowe, ICCV 1999

— Count the number of points
T T T inside each bin, e.g.:
AR R '\V B

r ”:/”(/' 1 o
\‘\\‘i*'r/; ‘?\ EIE

. <t . ! Count =10
\_-/ ....-. 3

Image gradients Keypoint descriptor % Compact representation

of distribution of points
relative to each point

 Dalal & Trigs, 2006

Orientation Voting

— Overlapping Blocks

Input Image Gradient Image

SR

Local Normalization

weighted weighted
pos wis neg wts

input image




Adding parts

Felzenszwalb, McAllester, Ramanan. 2008.
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Bicycle

Bottle

Felzenszwalb, McAllester, Ramanan. 2008.



Felzenszwalb, McAllester, Ramanan. 2008.



Beyond single classes















Generallzmg Across Categorles

Can we transfer knowledge from one object category to another?
Slide by Erik Sudderth



How many categories?



“Muchas”
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How many object categories are there?
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Biederman 1987



Categorical hierarchies

Categories can be organized in hierarchies (tree structures are commonly used)

&sychological phenomenon
[

cognition

o substagce~location .

con

Living
thing

instrumentali
rganism ¢

From Wordnet



Which level of categorization
s the right one?

Car is an object composed of:
a few doors, four wheels (not all visible at all times), a roof,
front lights, windshield

)

If you are thinking in buying a car, you might want to be a bit more specific about
your categorization.




Multiclass object detection
the not so early days



Multiclass object detection
the not so early days

Using a set of independent binary classifiers was a common strategy:

There is nothing wrong with this approach if you have access to
lots of training data and you do not care about efficiency.




Some symptoms of one-vs-all
multiclass approaches

What is the best representation to detect a traftic sign?

— —
¢ K ONEWAY

Very regular object: template matching will do the job

Parts derived from

training a binary n E
classifier. H ! E ﬂ

Some of these parts cannot be used for anything else than this object.

~100%
detection rate
with O false alarms




Some symptoms of one-vs-all
multiclass approaches

Computational cost grows linearly with Nclasses * Nviews * Nstyles ...

707

One-vs-all

Number of features
(98] +~ ()] (@)
S S S S

\®)
)

-
S

072 4 6 8 10 12 14 16 18202J2
Number of classes



Shared features

* Is learning the object class 1000 easier
than learning the first?

-

« Can we transfer knowledge from one
object to another?

* Are the shared properties interesting by
themselves?




Multitask learning

R. Caruana. Multitask Learning. ML 1997

“MTL improves generalization by leveraging the domain-specific information
contained in the training signals of related tasks. It does this by training tasks in
parallel while using a shared representation”.

Task 1 Task 2 Task 3 ‘ ‘ l l

L J Lo < J L)
O, () (® I I e

O\OW%\&O/ O\Om SEEEE X vs., el o

O000CCO00O0 oNoNoNoNoNo RO CO0O0CO00O0

t f f

INPUTS INPUTS INPUTS

INPUTS

Sejnowski & Rosenberg 1986; Hinton 1986; Le Cun et al. 1989; Suddarth &
Kergosien 1990; Pratt et al. 1991; Sharkey & Sharkey 1992; ...



Multitask learning

R. Caruana. Multitask Learning. ML 1997

Primary task: detect door knobs

Tasks used:
*horizontal location of doorknob *horizontal location of right door jamb
*single or double door *width of left door jamb
*horizontal location of doorway center width of right door jamb
*width of doorway *horizontal location of left edge of door
*horizontal location of left door jamb *horizontal location of right edge of door
ROOT-MEAN SQUARED ERROR ON TEST SET
TASK Single Task Backprop (STL) MTL

6HU 24HU 96HU 120HU

Doorknob Loc 085 082 081 062



Convolutional Neural Network

INPUT feature maps feature maps feature maps feature maps OUTPUT
28x28 4@24x24 4@12x12 12@8x8 12@4x4 26@1x1

Le Cun et al, 98

Translation invariance is already built into the network

The output neurons share all the intermediate levels



Sharing transformations

Miller, E., Matsakis, N., and Viola, P. (2000). Learning from one example
through shared densities on transforms. In IEEE Computer Vision and
Pattern Recognition.

10 L)
51 5| T
o [ | 2| 3|« , ‘ =
Latent Image Transform 00 VAR »5-'»“10 OD - S _[,5_7,_‘__ _ ’10
516|799
10
5
Observed Image 0
0

Transformations are shared
and can be learnt from other tasks.

| Training Samples | Basic Hausdorff | With Congealing | With Transform Density |

1000 92.5% 87.3% 96.4%
l 29.7% 60.0% 89.3%




Sharing in constellation models

(next Wednesday)

RIGHT
EDGE

MOUTH

Pictorial Structures
Fischler & Elschlager, IEEE Trans. Comp. 1973

Constellation Model
Fergus, Perona, & Zisserman, CVPR 2003

SVM Detectors
Heisele, Poggio, et. al., NIPS 2001

Model-Guided Segmentation
Mori, Ren, Efros, & Malik, CVPR 2004



Additive models and boosting
(more details on Wednesday)

* Independent binary classifiers:

Car detector

Face detector

 Binary classifiers that share features:

> Screen detector

~ Car detector

Face detector

Torralba, Murphy, Freeman. CVPR 2004. PAMI 2007




pedestrian B
chair |!

Specific feature

LMestrian
Nir

‘ { \-_Q Traftic light

| {"2 One way Sign

| /; zlg: 4hﬂFacc

Strength of feature response

o_

Non-shared feature: this feature
1S too specific to faces.



Shared feature

&Pedcs%

ll - ; glg Chair
'[Trafﬂc light fg

IE)ne way sigp; EE g

Il' : g QFacc

Strength of feature response

shared feature




(250

200+~

100

50+

150 | Class-specific fea’Eu res| / |

Total numlber of
features for all
the classes

/

- |Shared features

0

10 20 3
Number of object classes

50 training samples/class
29 object classes
2000 entries 1n the dictionary

Results averaged on 20 runs
Error bars = 80% 1nterval

Torralba, Murphy, Freeman. CVPR 2004. PAMI 2007



Generalization as a function of object
similarities

12 unrelated object classes 12 viewpoints
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Number of training samples per class Number of training samples per class

Torralba, Murphy, Freeman. CVPR 2004. PAMI 2007



3D object models



2D frontal face deection

Amazing how far they have gotten with so little...



People have the bad taste of not being
rotationally symmetric

éxamples of un-collaborative subjects



Objects are not flat




3D drives perception of important
object attributes

by Roger Shepard ("Turning the Tables”)

Depth processing is automatic, and we can not shut it down...



Class experiment



Class experiment

Experiment 1: draw a horse (the entire
body, not just the head) in a white piece of
paper.

Do not look at your neighbor! You already
know how a horse looks like... no need to
cheat.




Class experiment

Experiment 2: draw a horse (the entire
body, not just the head) but this time
chose a viewpoint as weird as possible.




Anonymous participant

=y

N

¥




3D object categorization

Wait: object categorization in humans is not
iInvariant to 3D pose




3D object categorization

Despite we can categorize all three
pictures as being views of a horse,
the three pictures do not look as
being equally typical views of
horses. And they do not seem to
be recognizable with the same
easiness.




Canonical Perspective

Examples of canonical perspective:

In a recognition task, reaction time
correlated with the ratings.

PIANO IEAPOT

%2

CAR CHAIR CAMERA

Canonical views are recognized faster
at the entry level.

CLOCK TELEPHONE HOUSE

PENCIL SHARPENER SHOE

From Vision Science, Palmer



Canonical Viewpoint

Frequency hypothesis: easiness of recognition is
related to the number of times we have see the
objects from each viewpoint.

For a computer, using its Google memory, a horse
looks like:

GO &.)Sle horse [ Searchimages | [_Searchthe Wep | £2enc=d imeae Seer

Moderate SafeSearch is on New! Google Image Labeler

Images Showing:  Allimage sizes N Results 1 - 20 of about 40,200,000 for horse [definition]. (0.05 seconds)

Related searches: cartoon horse running horse horse head

=

{ X Ty e < \
Horse photo of horse galloping on beach ~ Swimming with horses on day 5 of the Horse tack and riding apparel The Arabian horses at Smoky Mountain
635 x 449 - 117k - jpg 1024 x 768 - 88k - jpg 849 x 565 - 77k - jpg
www.historyforkids.org www.hedweb.com 657 x 430 - 58k - jpg www.theequestriancorner.com 550 x 681 - 254k - jpg
[ More from www.hedweb.com ] www_horseriding.gr www.smokymountainparkarabians.com

It is not a uniform sampling on viewpoints
(some artificial datasets might contain non natural statistics)



Canonical Viewpoint

Maximal information hypothesis:

Clocks are preferred as purely frontal

( ;O ()gle clock [ Search Images ][ Search the Web ] —g—;:f::::;ms 2 Sqgech

Moderate SafeSearch is on

Images Showing: ' Allimage sizes IV] Results 1 - 18 of about 38,300,000 for

Related searches: cartoon clock clock clipart alarm clock clock face

A2 1\
".‘/‘" lO 2 N
}.‘9 3‘;‘.
Y 8 4
clock character Wind-up alarm clocks have been Artistic Clock And Wall Clock ... mechanical clock If it is 3 o'clock and we add 5 ...
359 x 344 - 4k - gif 360 x 360 - 18k - jpg screensaver. 305 x 319 - 4k - gif
school.discoveryeducation.com 346 x 510 - 22k - jpg www.global-b2b-network.com 640 x 480 - 53k - jpg www-math._cudenver.edu
electronics.howstuffworks.com davinciautomata.wordpress.com [ More from

www-math.cudenver.edu ]




Solution to deal with 3D variations:
“*do not deal with it”

“not”’-Dealing with rotations and pose:

Train a different
model for each view.

(b) For cars, classifiers are trained on 8 viewpoints

The combined detector is invariant to pose variations without an explicit 3D model.



Shared features for Multi-view object
detection

240 270 300

M uﬁﬁl T

Training does not require having different views of the same object.

View
Invariant
features

l

View
specific
features

Torralba, Murphy, Freeman. PAMI 07



Shared features for Multi-view
object detection

Sharing 1s not a tree. Depends also on 3D symmetries.

Torralba, Murphy, Freeman. PAMI 07



Multi-view object detection

Strong learner
H response for
car as function
of assumed
view angle

lr -
Joint boosting
o Independent
= boosting
c
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3
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)
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0 False alarms 0.05

Fig. 19.  ROC for view invariant car detection. The graph compares the
ROC for the multiview classifier trained using joint boosting for 12 views
and using independent boosting for each view. In both cases, the classifier is
trained with 20 samples per view and only 70 features (stumps) are used.

Torralba, Murphy, Freeman. PAMI 07



Towards Multi-View Object Class

Detection

Alexander Thomas

Vittorio Ferrari
Bastian Leibe
Tinne Tuytelaars
Bernt Schiele
Luc Van Gool

Voting schemes

—
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Figure 2. Visual representation of our multi-view model. Only
viewpoints lving on a circle around the object are shown. How-
ever, the proposed method supports the general case of viewpoints
distributed over the whole viewing sphere.



1ivLIv.

Viewpoint-Independent Object Class Detection using 3D Feature Maps
o e —

Training dataset: synthetic objects

.m
i3
Distance
Figure 1. Examples for 3D models of our two-class training database. . Discretization of the camera parameters azimuth, eleva-
tion and distance during training.

Features

Each cluster casts votes for the
voting bins of the discrete poses
contained in its internal list.

Figure 4. Each codebook entry stores the mean descriptor and the o
Liebelt, Schmid, Schertler. CVPR 2008

3D positions of all the similar features which form a cluster.






Stages of processing

Stages in Object Perception

Edge
Extraction
Detection of Parsing at Regions
Nonaccidental of Concavity
Properties

Determination of

Components

Matching of Components
to Object Representations

Y

Object
Identification

Figure 2. Presumed processing stages in object recognition.

“Parsing is performed, primarily at concave regions, simultaneously with a
detection of nonaccidental properties.”



Models of object recognition

|. Biederman, “Recognition-by-components: A theory of human image
understanding,” Psychological Review, 1987.

M. Riesenhuber and T. Poggio, “Hierarchical models of object recognition in
cortex,” Nature Neuroscience 1999.
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T. Serre, L. Wolf and T. Poggio. “Object recognition with features inspired
by visual cortex”. CVPR 2005



Reusable Parts

Krempp, Geman, & Amit “Sequential Learning of Reusable Parts for Object
Detection”. TR 2002

Goal: Look for a vocabulary of edges that reduces the number of

features.
Examples of reused parts
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Sharing invariances

S. Thrun. Is Learning the n-th Thing Any Easier Than Learning The First?

NIPS 1996

Knowledge is transferred between tasks via a learned model of the
invariances of the domain: object recognition is invariant to rotation,
translation, scaling, lighting, ... These invariances are common to all

object recognition tasks.

Toy world

Ll
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Without sharing
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training examples



Some symptoms of one-vs-all
multiclass approaches

Part-based object representation (looking for meaningful parts):

* A. Agarwal and D. Roth

[T B G (7] R
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* M. Weber, M. Welling and P. Perona

B2 e g EsECZENE B_TdARF*™
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These studies try to recover parts that are meaningful. But 1s this the
right thing to do? The derived parts may be too specific, and they are
not likely to be useful in a general system.



Sharing patches
 Bart and Ullman, 2004

For a new class, use only features similar to features that where good for other

1L Nl
Proposed Dog g : . i ~
features N | E ' l_ raa . |

Figure 1. Feature adaptation. (a) Top row: features extracted from multiple images of cows (first
three) and horses (last three), as described in section 3.1. Bottom row: features adapted to the
dogs class by the proposed cross-generalization algorithm (section 3.2), using a single dog image.

classes:




Boosting

* |t is a sequential procedure:
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Toy example

Weak learners from the family of lines
e ®e¢ ® e ©
¢ Each data point has
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h => p(error) = 0.5 itis at chance



Toy example

()
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® @ Each data point has
0 el o
®@ |0 p OO‘ O a class label:
e | o] QLo ® +1 @
o o) @) O O ® () yt:{ ©)
e d o 1)
O
@ ° ® o O @ O
0® © and a weight:
) ) ) () () w, =1
()
() | O ®
@ O
Gl

This one seems to be the best

This is a ‘weak classifier’: It performs slightly better than chance.



Toy example

Each data point has
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a class label:
{1
-1(©)

We update the weights:

Wy W, exp{-y; H}

We set a new problem for which the previous weak classifier performs at chance again



Toy example

Each data point has

a class label:
+1 (@)

Ytz{
‘ -1 (0)

We update the weights:

Wy W, exp{-y; H}

We set a new problem for which the previous weak classifier performs at chance again



Toy example

Each data point has

a class label:
{1
-1(©)

@ We update the weights:

Wy W, exp{-y; H}

We set a new problem for which the previous weak classifier performs at chance again



Toy example

Each data point has

a class label:
{1
-1 (O

@ ® We update the weights:

Wy W, exp{-y; H}

We set a new problem for which the previous weak classifier performs at chance again



Toy example

\

The strong (non- linear) classifier is built as the combination of
all the weak (linear) classifiers.



