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big numbers
e seconds since big bang: ~ 101/
e atoms in the universe: ~1080

* 65x65 8-bit gray-scale images: ~10100%
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“The distribution of natural images is complicated. Perhaps it is
something like beer foam, which is mostly empty but contains a thin
mesh-work of fluid which fills the space and occupies almost no volume.
The fluid region represents those images which are natural in character.”

|[Ruderman 1996]
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natural image statistics
* natural images are rare in image space

o they distinguish by

nonrandom structures §

e common statistical
properties of natural
images is the focal
element in the study
of natural image
statistics
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why are we interested in
hatural image statistics?

Visual
cortex

Retina
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computer vision applications

* image restoration
- de-noising, de-blurring and de-mosaicing,
super-resolution and in-painting

®* image compression
e texture synthesis
* image segmentation

e features for object detection and classification
(SIFT, gist, “primal sketch”, saliency, etc)

e many others
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machine
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neuro-
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Image
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scope of this tutorial

 important developments following a
general theme

e focusing on concepts
- light on math or specific applications

* gray-scale intensity image, do not cover
- color
- time (video)
- multi-image information (stereo)
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main components

representation
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representation

Transform

Representation
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why representation matters?
e example (from David Marr)
e representation for numbers
* Arabic: 123
e Roman: MCXXIII

* binary: 1111011

e English: one hundred and twenty
three




why representation matters?
e example (from David Marr)
e representation for numbers
* Arabic: 123 x 10
e Roman: MCXXIII x X

* binary: 1111011 x 110

e English: one hundred and twenty
three x ten




why representation matters?
e example (from David Marr)
e representation for numbers
e Arabic: 123 x 4
¢ Roman: MCXXIII x IV
* binary: 1111011 x 100

e English: one hundred and twenty
three x four




linear representations

pixel

Fourier

wavelet
- localized \/\
- oriented
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main components

observations

representation
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image data

e calibrated - linearized response

o relatively large number

[van Hateren & van der Schaaf, 1998]
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observations

second-order pixel correlations
1/f power law of frequency domain energy
importance of phases

heavy-tail non-Gaussian marginals in wavelet
domain

near elliptical shape of joint densities in
wavelet domain

decay of dependency in wavelet domain
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main components

observations

representation

model
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models
physical imaging process (e.g., occlusion)
nonlinear manifold of natural images

non-parametric implicit model based on large
set of images

matching statistics of natural image signals
with density models <-- our focus

natural
images

all possible images
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main components

observations

representation

model

applications

Bayesian
framework
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Bayesian framework

image (x)

27

X

s min [ Lo/ (5)p(ylo)p(o)da

I

x’(y): estimator

L(x,x’

p(x): prior model for natural images

(y)): loss functional

min / L(z,2"(y))p(z|y)dx

>

est. (x')

p(y | x): likelihood -- from corruption process
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application: Bayesian denoising
e additive Gaussian noise
y = Tr+w
p(ylz) o exp[—(y —x)°/20;]
e maximum a posterior (MAP)

rmap = argmax p(xly) = argmax p(y|x)p(z)

X X

* minimum mean squares error (MMSE)

IMMES = argmin/”x—x’HQp(x\y)da:
CB’ €T

. wp(y|z)p(z)d
| p(y|z)p(z)dx

= F(z|y)
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main components

observations

representation

efficient
coding
Ny

model

applications
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representation

Transform

* unsupervised learning

Representation

e specify desired properties of the transform outputs

what are such properties?
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what makes a good representation?
e intuitively, transformed signal should be
“simpler”
- reduced dimensionality
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what makes a good representation?

e intuitively, transformed signal should be

“simpler”
- reduced dependency

r . — 7 rhasless dependency than x
- optimum: r is independent, P(7 H p(r:)

* reducing dependency is a general approach to
relieve the curse of dimensionality

e are there dependency in natural images?
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redundancy in natural images

—

* structure = predictability = redundancy

——

| Kersten, 1987]
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measure of statistical dependency

multi-information (M]):

I(#) = D (p@) Hpm))

| |
M=
oS
T F
s —
2 o
T o3
= 5
w =
N T
T

[Studeny and Vejnarova, 1998]
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efficient coding

[Attneave ’54; Barlow ’61; Laughlin ’81; Atick "90; Bialek etal ‘9O1]

:17:’,.::7“ I(r,x)=H(r)— H(r|x)

® maximize mutual information of stimulus &
response, subject to constraints (e.g. metabolic)

® noiseless case => redundancy reductlon
H(rlx)=0=1I(r,z) = ZHTZ

= 1ndependent components

- efficient (maxEnt) marginals
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main components

observations

representation

model

applications
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closed loop

observations

representation

/

e—— model

applications
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| domal

pixe

33
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observation

l(x+1,y)

T . T
. ° . R

[(x+2,y)
[(x+4,y)

Correlation

10 20 30 40
Spatial separation (pixels)
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model

* maximum entropy density [Jaynes 54}

- assume zero mean
- ¥ = E(zz7): consistent w/ second order
statistics
- find p(Z) with maximum entropy
- solution:
1

p(ZT) x exp (—5 _’TZ_13_3’> /ﬁ
g
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Gaussian model for Bayesian
denoising
additive Gaussian noise
y = T4+w
p(y|Z) o expl—||y— Z||?/20,)]
Gaussian model
1
p(T) o< exp (—5 _’T21:1_;’>

posterior density (another Gaussian)

1 = =2

2
202

inference (Wiener filter)

Ivap = TvMse = S(Z + o2 1)1y
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etficient coding transform

e for Gaussian p(x)
d
I(X) x Z log(32);; — logdet(X)
i=1

e minimum (independent) when X is diagonal

e atransform that diagonalizes Z can eliminate
all dependencies (second-order)
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PCA

eigen-decomposition of =: ¥ = UAU "
- U: orthonormal matrix (rotation)
UlU =UU! =1
- A: diagonal matrix, Aji = 0 -- eigenvalue

E{UTz2U'®)"Y = U'E{zz"\U
= U'UANUTU = A

s = Ulx, or x = Us, s is independent Gaussian

principal component analysis (PCA)
- Karhunen Loeve transform

Monday, August 10, 2009
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PCA

\
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PCA bases learned from natural images (U)
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representation

e PCA is for local patches p—
- data dependent SRR
- expensive for large images
S==Z 6%
. . . | XA
e assume translation invariance :

cyclic boundary handling
- image lattice on a torus
- covariance matrix is block circulant
- eigenvectors are complex exponential
- diagonalized (decorrelated) with DFT
- PCA => Fourier representation
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observations

e spectral power

30

-5 4 9 1

-3
Iogz(frequenoy/n)
[Ritterman 52; DeRiugin 56; Field 87; Tolhurst 92; Ruderman/Bialek 94; ...]

figure from [Simoncelli 05]
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* power law

- scale invariance F(sw) = s?F(w)
e denoising (Wiener filter in frequency

domain)

) A/
X(UJ) p— A/w’y _|_ 0-2

Y(w)
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0O

further observations

&

&4
Natural River and Forest Mountain Field Beach Coast
object waterfall
o A A [\ f
> S/ N/ S N N
N W e x \\v 7 \
Man-made Portrait Indoor Street High Cit}";\fie“f Highway
object scene building

[Torralba and Oliva, 2003]
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zero-phase (symmetric) whitening (ZCA)

At =yuA—zU”

minimum wiring length
receptive fields of retina neurons [Atick & Redlich, 92]
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second-order constraints are weak

1/w" Gaussian sample

P(x)

whitened natural image

F

f_l

G

f_l

=

figure courtesy of Eero Simoncelli
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pIXel

summary
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summary

second order
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summary

second order ‘\

pIXel

power spectrum

AN

PCA/Fourier

(Gaussian

—
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summary

second order ‘\
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power spectrum

PCA/Fourier
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—

power law model
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summary

second order ‘\

pIXel

power spectrum

PCA/Fourier

(Gauss!

—

Not enough!

power law model
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observation

® sparseness

log p(Xx)

[Burt&Adelson 82; Field 87; Mallat 89; Daugman 89, ...]
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model

if we only enforce consistency on 1D

marginal densities, i.e., p(xi) = qi(xi)

- maximum entropic density is the
factorial density p(Z) = Hf;lzl qi(x;)

- multi-information is non-negative, and
achieves minimum (zero) when x;s are
independent H(Z) =) . H(z;) — I(%)

1

there are second order dependencies, so

derived model is a linearly transformed
factorial (LTF) model

Monday, August 10, 2009
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model

e linearly transformed factorial (LTF)
- independent sources: p(3) = [T;, p(s:)
- A: invertible linear transform (basis)

‘ | S1
T = A= |a --- adyg ;
‘ | s,

—

= S$101 + -+ + Sqdd

- Al: filters for analysis

§=A"'%

Monday, August 10, 2009

53



LTF model

e SVD of matrix A: A =UAY2y7T
- U,V: orthonormal matrices (rotation)
UlU=UU!'=Tand VIV=VV!I =]

- A: diagonal matrix
(Aii)1/2 > 0 -- singular value

—————

Monday, August 10, 2009
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marginal model

e well fit with generalized Gaussian

[Mallat 89; Simoncelli&Adelson 96; Moulin&Liu 99; ...]

log(Probability)

(4
7

" p=0.48
AH/H = 0.0014

log(Probability)
log(Probability)

p=0.46
AH/H = 0.0031

’

p =0.58
AH/H = 0.0011

Wavelet coefficient value Wavelet coefficient value Wavelet coefficient value
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Bayesian denoising

[dz Py (y|z) Pe(x) x
fdl Py|;1?(y|~) "\ L
f dx P n "U - l) Pilz
fa’z Puly—z) Pal:

~>
P
=
e
=
~

. W
- =

7
—~
o
e

R S ~

o~

p=0)>5

[Simoncelli & Adelson, ‘96]
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scale mixture of Gaussians (GSM)

x — x
o o /)
N
X X
[Andrews & Mallows 74, Wainwright & Simoncelli, 99]
L = ’LL\/E

- u: zero mean Gaussian with unit variance

- z: positive random variable
- special cases (different p(z))

generalized Gaussian, Student’s t, Bessel’s K, Cauchy,
a-stable, etc
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efficient coding transtorm

LTF model => independent component

analysis (ICA)
[Comon 94; Cardoso 96; Bell/Sejnowski 97; ...]

- many different implementations (JADE,
InfoMax, FastICA, etc.)

- Interpretation using SVD
F=Alz=vAYV2uTz
- where to get U
E{zz'} = AF{s5 }A'
— UAYV2VTIVAY2UT
= UAU?
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PCA

ICA
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PCA

ICA
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ICA PCA

-— -
o+ < N\
-
7,
/, !
’ / 7 4
, ’
Vi 7’
4
7’
-’
\ Ay

&

&
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PCA

ICA

v
e
~——F—

v

N
\F

Y~

T

— Ut

TPCA

UL 7

= VA~

TICA
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finding V
¢ find final rotation that maximizes non-

Gaussianity
- linear mixing makes more Gaussian (CLT)
- equivalent to maximize sparseness

figure from [Bethge 2008]
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ICA bases (squared columns of A) learned from natural images
- similar shape to receptive field of V1 simple cells
[Olshausen & Field 1996, Bell & Sejnowski 1997]
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representation

Gabor wavelet basis - . -
\\

e ICA basis resemble wavelet and other
multi-scale oriented linear representations
- localized in spatial location, frequency
band and local orientation

e [CA basis are learned from data, while
wavelet basis are fixed

\ .
.-
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band-pass

summary
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summary

sparsity

band-pass
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band-pas

summary

sparsity ‘\

higher-order
dependency

ICA/wavelet

LT

—
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band-pas

summary

sparsity ‘\

higher-order
dependency

ICA/wavelet

LT

—

Not enough!
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problems with LTF

any band-pass or high-pass filter will
lead to heavy tail marginals (even
random ones)

if natural images are truly linear mixture
of independent non-Gaussian sources,
random projection (filtering) should
look like Gaussian

- central limit theorem

Monday, August 10, 2009
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problems W1th LTF

[Simoncelli ’97; Buccigrossi &Simoncelli *99]

® [ arge-magnitude subband coetficients are found at
neighboring positions, orientations, and scales.
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. === raw
Y B pcalica

0.4+

5

o 0.37

&)

P

= 0.2

=
0.1

1 > 4 8 16 32
Separation
ICA achieves very little improvement
over PCA in terms of dependency reduction
[Bethge 06, Lyu & Simoncelli 08]
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sample from LTF

natural images after

figure courtesy of Eero Simoncelli
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remedy

e assumptions in LTF model and ICA
- factorial marginals for filter outputs
- linear combination
- invertible

Monday, August 10, 2009
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remedy

e assumptions in LTF model and ICA

- factorial marginals for filter outputs

- linear combination
. 1]
model => [Zhu, Wu & Mumford 1997; Portilla &

Simonce]

1i 2000]

MaxEnt

oint density with constraints on filter output

representation => sparse coding [Olshausen & Field

1996]

- find filters giving optimum sparsity
- compressed sensing [Candes & Donoho 2003]
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remedy

e assumptions in LTF model and ICA
- factorial marginals for filter outputs

- Hrearecombination nonlinear

- invertible
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joint density of natural image
band-pass filter responses
with separation of 2 pixels
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elliptically symmetric density

o
: "\\Q\\

Pesd (L) = —=T XX

whitening

q

spherically symmetric density

(Fang et.al. 1990)
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identical non-Gaussian marginals

factorial density spherical density
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identical non-Gaussian marginals

factorial density spherical density
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0.2

0.15f

0.1r

0.05f

w— bk
= gpherical

= factorial l

[N

3

6 9 _12 15
kurtosis

3x3

18 20

data (ICA’d): ——

n el 0]
0.2r - spherical [
= factorial
0.15¢
0.1r
0.05¢
0 ‘ ‘ ‘
3 6 9 12 15 18 20

kurtosis

X7

sphericalized: ——

0.4r
0.35¢
0.37
0.25¢
0.27
0.15¢
0.17
0.05¢

el 0]
= gpherical
* = factorial |]

AN

12 15 18 20

kurtosis

15x15

factorialized: ——

e Histograms, kurtosis of projections of image blocks onto random
unit-norm basis functions.
* These imply data are closer to spherical than factorial
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Vo =X Linearly
transformed

factorial

[ XN
= AN
Factorial Gaussian Spherical
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transformed
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= AN
Factorial Gaussian Spherical
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Vo =X Linearly
transformed

factorial

N\~ ~— ~J
= AN
Factorial Gaussian Spherical
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Linearly

transformed
factorial

Gaussian Spherical

Factorial
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ICA PCA

e/

=

7

&

81
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ICA PCA

e/

=

s S\
~_ —r—

7

2N

e
e

4
&)
&

&
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elliptical models of natural images

- Simoncelli, 1997;
- Zetzsche and Krieger, 1999;
- Huang and Mumford, 1999;

\\\ - Wainwright and Simoncelli, 2000;
/\;ﬁ - Hyvarinen et al., 2000;
&5\/ - Parra et al., 2001;
"\ - Srivastava et al., 2002;
) - Sendur and Selesnick, 2002;

JL - Teh et al., 2003;

- Gehler and Welling, 2006
- etc.

|[Fang et.al. 1990]
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joint GSM model

e
N

S
p(

Image data GSM simulation

10° ‘ ‘ 10°

10° I ‘ 10°
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PCA/whitening

Linearly
transformed
factorial

Factorial

Gaussian

N

S

[~

Spherical
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PCA/whitening
ICA

Factorial Gaussian Spherical




PCA/whitening
ICA 20?

Factorial Gaussian Spherical
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nonlinear representations

complex wavelet phase-based [Ates &
Orchid, 2003]

orientation-based [Hammand & Simoncelli
2006]

nonlinear whitening [Gluckman 2005}

local divisive normalization [Malo et.al.
2004]

global divisive normalization [Lyu &
Simoncelli 2007,2008]
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Gaussian is the only density that can be both factorial and
spherically symmetric [Nash and Klamkin 1976]
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ICA PCA

e/

=

el SN
~ T

7

e
e

90
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radial Gaussianization (RG)

[Lyu & Simoncelli, 2008,2009]
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radial Gaussianization (RG)

A"

A | Sws
= R

\ VY
1A

X[ A

> - I €

Jrﬂ P k‘
A AR

/71\\

N

[Lyu & Simoncelli, 2008,2009]
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radial Gaussianization (RG)

Py (r) o exp(—r?/2)

pi(r) o< rf(=1%/2)

[Lyu & Simoncelli, 2008,2009]
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radial Gaussianization (RG)

Py (r) o exp(—r?/2)

[Lyu & Simoncelli, 2008,2009]
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radial Gaussianization (RG)

Py (r) o exp(—r?/2)

o 9UFall)
rg —— — %%
SR

[Lyu & Simoncelli, 2008,2009]
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ICA coefficients

Radially factorized
coefficients
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'Y ===raw
\‘ B pcalica
0.4 % —rg
S 0.3}
O
%
= 0.2
=
0.1}
O 1 1 1
1 2 4 8 16 32

Separation
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0.5
'Y ===raw
/ ) B pcalica
04r * m— g

O

O

1 2 4 8 16 32
Separation
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Bl pcalica

1 2 4 8 16 32
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---raW

Bl pcalica

4 8
Separation

16
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---raW

Bl pcalica

1 2 4 8 16 32
Separation
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Separation
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blk size = 3x3 1 13/ plksize=15x15 B
07t R ] | | |
121 ey
+ +
¥ 9
0.6F SRt 14F /]
1 ,,,,,,,,,,,,,,,,,,,,,
0.5 i
+ 44 + +
o9t B 5 .
O I | | |
W 08 c‘).!' ffffffffffffff
A 3 -2l -
| | 0.7 e A
o -~ R IIEIRTHRR SRR o6 . ]
02 03 04 05 06

(+)Irc — Iraw
(o) Iica — Iraw

blocks of local mean removed pixel blocks of natural images

(Lyu & Simoncelli, Neural Computation, to appear)
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marginal Gaussianization
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band-pas

summary

sparsity ‘\

higher-order
dependency

ICA/wavelet

LT

—

RG

—

Not enough!

elliptical model
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adjacent

near

-100 0 100

far other scale

-100 0 100

%;/ \N

_10
150
100
50
0
-50
-100
-150

other ori

100

® Nearby: densities are approximately circular/elliptical

® Distant: densities are approximately factorial

[Simoncelli, ‘97; Wainwright&Simoncelli, ‘99]
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extended models

independent subspace and topographical ICA
|[Hoyer & Hyvarinen, 2001,2003; Karklin & Lewicki
2005]

adaptive covariance structures [Hammond &
Simoncelli, 2006; Guerrero-Colon et.al. 2008;
Karklin & Lewicki 2009]

product of t experts [Osindero et.al. 2003]
fields of experts [Roth & Black, 2005]

tree and fields of GSMs [Wainwright & Simoncellj,
2003; Lyu & Simoncelli, 2008]

implicit MRF model [Lyu 2009]
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z field

x field

FoGSM:

e U : zero mean homogeneous Gauss MRF

e 7 : exponentiated homogeneous Gauss MRF
e 7|7 : inhomogeneous Gauss MRF

e 7 V7 : homogeneous Gauss MRF

e marginal distribution is GSM

e generative model: efficient sampling
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marginal

Barbara

boat house

sample, - ----- Gaussian

3 A =32 orientation

subband

FoGSM
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Lena Boats

L 1W
—

v v
% 5
o —o| o —p|
< <
-3 -3
-4 -4
51015 25 50 75 100 51015 25 50 75 100
) )
— FoGSM H BM3D ¢ VD
% GSM A FoE

peak-signal-to-noise-ratio (PSNR)

259
\/Zi,j (Ioriginal(iaj) - Idenoised(iaj))2

20 * log,
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original image noisy image (o = 25) matlab wiener?2 FoGSM
(14.15dB) (27.19dB) (30.02dB)
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noisy image (- = 100) (8.13dB)
L =) a

matlab Wil ener2(29 32dB) (18 38dB) FoGSM (23 OldB)
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pairwise conditional density

I-'

|h E(x2 | x1)+std (x2 | x1)

E(x2 | x1)

n E(x2 | x1)-std (x2 | x1)

X1

p(x2 | x1)

“bow-tie”
|[Buccigrossi & Simoncelli, 97]
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pairwise conditional density

E(Xz | X1)-I—Std (Xz | X1)

E(x2 | x1)

E(xo|r1) =~ ax;

var(xs|r1) =~ b+ cxf
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conditional density

g = E(%\%’j,jeN(i)): Z gL j
JEN(7)
O',L-Z = var(w;|T; jen)) = b+ Z cjx?
JEN (1)

* maxEnt conditional density

(il o) = g exp (L)

2 e ny) = X

p 7,JEN(2) \/27_‘_0_22 P 20_22

- singleton conditionals

- joint MRF density can be determined by

all singletons (Brook’s lemma)
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implicit MRF
e defined by all singletons
e joint density (and clique potential) is
implicit

¢ learning: maximum pseudo-likelihood

oooooooooooooooooooo



[CM-MAP denoising

argmax p(Z|y) = argmax p(y|Z)p(Z) = argmaxlog p(y|7) + log p(Z)

X

T T

- set initial value for #(9, and ¢t = 1
- repeat until convergence

- repeat for all ¢

- compute the current estimation for z;, as

— argmax logp(xg ), co gt)l,

XL

t—1 t—1
Lgy L rE_|_1 )7 ( )’y)

"

Cte—t+1
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[CM-MAP denoising

argmax log p(y|Z) + log p(Z)

L4
= argmaxlogp(y|T) +logp(w1, -+, Ti—1,Ti, Tit1, + , Tn)
L4
= argmax log p(y]T) +log p(xi|x; jen())
T S——— —
can be further simplified  singleton conditional
+  logpla;5en() -
—_—

constant w.r.t x;

local adaptive and iterative Wiener filtering
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summary

observations

representation [ ————————— model

applications
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what need to be done

inhomogeneous structures

- structural (edge, contour, etc.)
- textual (grass, leaves, etc.)

- smooth (fog, sky, etc.)

local orientations and relative phases

holy grail: comprehensive model &
representations to capture all these
variations
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big question marks

e what are natural images, anyway?

=

e ironically, white noises are “natural” as

they are the result of cosmic radiations

* naturalness is subjective
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peeling the onion

natural
images

all possible images
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peeling the onion

natural
images

images of same
marginal stats

all possible images
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peeling the onion

images of same
second order stats

natural
images

images of same
marginal stats

all possible images
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peeling the onion

images of same
second order stats

natural
images

images of same
marginal stats

images of same
higher order stats

all possible images

Monday, August 10, 2009 119



resources

D. L. Ruderman. The statistics of natural images. Network:
Computation in Neural Systems, 5:517-548, 1996.

E. P. Simoncelli and B. Olshausen. Natural image statistics and
neural representation. Annual Review of Neuroscience, 24:1193—
1216, 2001.

S.-C. Zhu. Statistical modeling and conceptualization of visual
patterns. IEEE Trans PAMI, 25(6), 2003

A. Srivastava, A. B. Lee, E. P. Simoncelli, and S.-C. Zhu. On
advances in statistical modeling of natural images. ]. Math. Imaging
and Vision, 18(1):17-33, 2003.

E. P. Simoncelli. Statistical modeling of photographic images. In
Handbook of Image and Video Processing, 431-441. Academic
Press, 2005.

A. Hyvdrinen, J. Hurri, and P. O. Hoyer. Natural Image Statistics:
A probabilistic approach to early computational vision. Springer, 2009.

Monday, August 10, 2009

120



- > &
- -

be .
[ -

thank you

= &
i
i
-
N
!
i
¢

121

Monday, August 10, 2009



