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big numbers
• seconds since big bang: ~ 1017

• atoms in the universe: ∼1080

• 65×65 8-bit gray-scale images: ∼1010000
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...  ...
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...  ...

“The distribution of natural images is complicated. Perhaps it is 
something like beer foam, which is mostly empty but contains a thin 
mesh-work of fluid which fills the space and occupies almost no volume. 
The fluid region represents those images which are natural in character.”

                                                                                                   [Ruderman 1996]

 images are not random
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natural image statistics
• natural images are rare in image space
• they distinguish by

nonrandom structures
• common statistical

properties of natural
images is the focal
element in the study
of natural image
statistics
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computer vision applications
• image restoration

- de-noising, de-blurring and de-mosaicing, 
super-resolution and in-painting

• image compression

• texture synthesis

• image segmentation

• features for object detection and classification 
(SIFT, gist, “primal sketch”, saliency, etc)

• many others
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scope of this tutorial
• important developments following a 

general theme
• focusing on concepts 

- light on math or specific applications
• gray-scale intensity image, do not cover

- color
- time (video)
- multi-image information (stereo)
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representation

main components
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representation
Neural characterization

Ingredients:

• stimuli
• response model
• estimation method

Transform Representation
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why representation matters?   
• example (from David Marr)
• representation for numbers

• Arabic: 123
• Roman: MCXXIII
• binary: 1111011
• English: one hundred and twenty 

three
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why representation matters?   
• example (from David Marr)
• representation for numbers

• Arabic: 123 × 10
• Roman: MCXXIII × X
• binary: 1111011 × 110
• English: one hundred and twenty 

three × ten
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why representation matters?   
• example (from David Marr)
• representation for numbers

• Arabic: 123 × 4
• Roman: MCXXIII × IV
• binary: 1111011 × 100
• English: one hundred and twenty 

three × four
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linear representations
• pixel

• Fourier

• wavelet
- localized
- oriented
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representation

observations

main components
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• calibrated - linearized response

• relatively large number

image data

[van Hateren & van der Schaaf, 1998]
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observations
• second-order pixel correlations

• 1/f power law of frequency domain energy

• importance of phases

• heavy-tail non-Gaussian marginals in wavelet 
domain

• near elliptical shape of joint densities in 
wavelet domain

• decay of dependency in wavelet domain 

• ………….
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representation

observations

model

main components
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models
• physical imaging process (e.g., occlusion)

• nonlinear manifold of natural images

• non-parametric implicit model based on large 
set of images

• matching statistics of natural image signals
with density models <-- our focus

F -11/f2

P(c)

Gaussian model is weak

a. b.

ω2F F−1
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4
-4
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-420
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-20

a. b. c.

P(x)

F−1ω−2
natural
images

all possible images
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representation

observations

applications

model

main components

Bayesian 
framework
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Bayesian framework

• x’(y): estimator

• L(x,x’(y)): loss functional

• p(x): prior model for natural images

• p(y|x): likelihood -- from corruption process

image (x) obs. (y)corruption
??

est. (x’)

min
x′

∫

x
L(x, x′(y))p(x|y)dx

∝ min
x′

∫

x
L(x, x′(y))p(y|x)p(x)dx
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application: Bayesian denoising
• additive Gaussian noise

• maximum a posterior (MAP)

• minimum mean squares error (MMSE)

xMAP = argmax
x

p(x|y) = argmax
x

p(y|x)p(x)

xMMES = argmin
x′

∫

x
‖x− x′‖2p(x|y)dx

=
∫

x xp(y|x)p(x)dx∫
x p(y|x)p(x)dx

= E(x|y)

y = x + w

p(y|x) ∝ exp[−(y − x)2/2σ2
w]
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representation

observations

applications

model
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efficient 
coding
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representation

Neural characterization

Ingredients:

• stimuli
• response model
• estimation method

Transform Representation

• unsupervised learning

• specify desired properties of the transform outputs

                     what are such properties?
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what makes a good representation?
• intuitively, transformed signal should be 

“simpler”
- reduced dimensionality
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what makes a good representation?
• intuitively, transformed signal should be 

“simpler”
- reduced dependency

                                  r has less dependency than x

- optimum: r is independent, 

• reducing dependency is a general approach to 
relieve the curse of dimensionality

• are there dependency in natural images?

x r

p(r) =
d∏

i=1

p(ri)
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redundancy in natural images
• structure = predictability = redundancy

[Kersten, 1987]
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measure of statistical dependency

multi-information (MI):

 [Studeny and Vejnarova, 1998]

I(!x) = DKL

(
p(!x)

∥∥∥∥∥
∏

k

p(xk)

)

=
∫

!x
p(!x) log

p(!x)∏
k p(xk)

d!x

=
d∑

i=1

H(xk)−H(!x)
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efficient coding 
[Attneave ’54; Barlow ’61; Laughlin ’81; Atick ’90; Bialek etal ‘91]

• maximize mutual information of stimulus & 
response, subject to constraints (e.g. metabolic)

• noiseless case => redundancy reduction:

- independent components
- efficient (maxEnt) marginals

I(r, x) = H(r)−H(r|x)x r

H(r|x) = 0⇒ I(r, x) = H(r) =
d∑

i=1

H(ri)− I(r)
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representation

observations

applications

model

main components

31Monday, August 10, 2009



closed loop

representation

observations

applications

model
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pixel domain
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model
• maximum entropy density [Jaynes 54]

- assume zero mean
-                    : consistent w/ second order
   statistics
- find         with maximum entropy
- solution:

Σ = E(!x!xT )

p(!x)

p(!x) ∝ exp
(
−1

2
!xT Σ−1!x

)
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Gaussian model for Bayesian 
denoising

• additive Gaussian noise

• Gaussian model

• posterior density (another Gaussian)

• inference (Wiener filter)

p(!x) ∝ exp
(
−1

2
!xT Σ−1!x

)

p(!x|!x) ∝ exp
(
−1

2
!xT Σ−1!x− ‖!x− !y‖2

2σ2
w

)

!xMAP = !xMMSE = Σ(Σ + σ2
wI)−1!y

!y = !x + !w

p(!y|!x) ∝ exp[−‖!y − !x‖2/2σ2
w]
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efficient coding transform
• for Gaussian p(x)

• minimum (independent) when Σ is diagonal 

• a transform that diagonalizes Σ can eliminate 
all dependencies (second-order)

I(!x) ∝
d∑

i=1

log(Σ)ii − log det(Σ)
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PCA
• eigen-decomposition of Σ:

- U: orthonormal matrix (rotation)
   UTU = UUT = I
- Λ: diagonal matrix, Λii ≥ 0 -- eigenvalue

• s = UTx, or x = Us, s is independent Gaussian

• principal component analysis (PCA) 
- Karhunen Loeve transform

Σ = UΛUT

E{UT !x(UT !x)T } = UT E{!x!xT }U
= UT UΛUT U = Λ
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PCA

!x
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PCA

!x

!xPCA = UT !x
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PCA bases learned from natural images (U)

41Monday, August 10, 2009



representation
• PCA is for local patches

- data dependent
- expensive for large images

• assume translation invariance 
cyclic boundary handling 
- image lattice on a torus
   - covariance matrix is block circulant
      - eigenvectors are complex exponential
        - diagonalized (decorrelated) with DFT
           - PCA => Fourier representation
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observations
• spectral power

[Field, 1994]

figure from [Simoncelli 05]

Spectral power

Structural:

F (sω) = spF (ω)

F (ω) ∝ 1
ωp

[Ritterman 52; DeRiugin 56; Field 87; Tolhurst 92; Ruderman/Bialek 94; ...]

Assume scale-invariance:

then:
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0
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6
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0 p
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e
r

Empirical:
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model
• power law

- scale invariance
• denoising (Wiener filter in frequency 

domain)

X̂(ω) =
A/ωγ

A/ωγ + σ2
· Y (ω)

F (sω) = spF (ω)

F (ω) =
A

ωγ
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[Torralba and Oliva, 2003]

further observations
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PCA

whitening

!x

UT !x

Σ = UΛUT

Λ−
1
2 UT !x

V Λ−
1
2 UT !xnot unique!
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zero-phase (symmetric) whitening (ZCA)

minimum wiring length
receptive fields of retina neurons [Atick & Redlich, 92]

A−1 = UΛ−
1
2 UT
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second-order constraints are weak

F -11/f2

P(c)

Gaussian model is weak

a. b.

ω2F F−1

P(x)

F−1ω−2

figure courtesy of Eero Simoncelli

1/ϖγ Gaussian sample

whitened natural image
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pixel
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pixel

second order

Gaussian

summary

Not enough!

PCA/Fourier

power spectrum

power law model
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bandpass filter domain

⊗ =
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• sparseness

[Burt&Adelson 82; Field 87; Mallat 89; Daugman 89, ...]

observation

lo
g 

p(
x)

0
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model
• if we only enforce consistency on 1D 

marginal densities, i.e., p(xi) = qi(xi)
- maximum entropic density is the 
  factorial density 

- multi-information is non-negative, and 
achieves minimum (zero) when xis are 
independent          

• there are second order dependencies, so 
derived model is a linearly transformed 
factorial (LTF) model 

p(!x) =
∏d

i=1 qi(xi)

H(!x) =
∑

i H(xi)− I(!x)
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model
• linearly transformed factorial (LTF)

- independent sources:
- A: invertible linear transform (basis)

- A-1: filters for analysis

p(!s) =
∏d

i=1 p(si)

!x = A!s =




| · · · |

!a1 · · · !ad

| · · · |








s1
...
sd





= s1!a1 + · · · + sd!ad

!s = A−1!x
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LTF model
• SVD of matrix A: 

-  U,V: orthonormal matrices (rotation)
   UTU = UUT = I and VTV = VVT = I 
- Λ: diagonal matrix
  (Λii)1/2 ≥ 0 -- singular value 

s x = U Λ1/2VTs

rotation scale rotation

A = UΛ1/2V T

VTs Λ1/2VTs
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marginal model
• well fit with generalized Gaussian

Marginal densities

P (x) ∝ exp−|x/s|p

[Mallat 89;  Simoncelli&Adelson 96;  Moulin&Liu 99;  ...]

Well-fit by a generalized Gaussian:

Wavelet coefficient value
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b
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)
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b
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b
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ty
)

p = 0.59

!H/H = 0.0012

Fig. 4. Log histograms of a single wavelet subband of four example images (see Fig. 1 for image description). For each
histogram, tails are truncated so as to show 99.8% of the distribution. Also shown (dashed lines) are fitted model densities
corresponding to equation (3). Text indicates the maximum-likelihood value of p used for the fitted model density, and
the relative entropy (Kullback-Leibler divergence) of the model and histogram, as a fraction of the total entropy of the
histogram.

non-Gaussian than others. By the mid 1990s, a number
of authors had developed methods of optimizing a ba-
sis of filters in order to to maximize the non-Gaussianity
of the responses [e.g., 36, 4]. Often these methods oper-
ate by optimizing a higher-order statistic such as kurto-
sis (the fourth moment divided by the squared variance).
The resulting basis sets contain oriented filters of different
sizes with frequency bandwidths of roughly one octave.
Figure 5 shows an example basis set, obtained by opti-
mizing kurtosis of the marginal responses to an ensemble
of 12 × 12 pixel blocks drawn from a large ensemble of
natural images. In parallel with these statistical develop-
ments, authors from a variety of communities were devel-
oping multi-scale orthonormal bases for signal and image
analysis, now generically known as “wavelets” (see chap-
ter 4.2 in this volume). These provide a good approxima-
tion to optimized bases such as that shown in Fig. 5.

Once we’ve transformed the image to a multi-scale
wavelet representation, what statistical model can we use
to characterize the the coefficients? The statistical moti-
vation for the choice of basis came from the shape of the
marginals, and thus it would seem natural to assume that
the coefficients within a subband are independent and
identically distributed. With this assumption, the model
is completely determined by the marginal statistics of the
coefficients, which can be examined empirically as in the
examples of Fig. 4. For natural images, these histograms
are surprisingly well described by a two-parameter gen-
eralized Gaussian (also known as a stretched, or generalized
exponential) distribution [e.g., 31, 47, 34]:

Pc(c; s, p) =
exp(−|c/s|p)

Z(s, p)
, (3)

where the normalization constant is Z(s, p) = 2 s
pΓ( 1

p ).
An exponent of p = 2 corresponds to a Gaussian den-
sity, and p = 1 corresponds to the Laplacian density. In

Fig. 5. Example basis functions derived by optimizing a
marginal kurtosis criterion [see 35].

5

[Mallat 89;  Simoncelli&Adelson 96;  Moulin&Liu 99;  …] 

p(s) ∝ exp
(
− |s|p

σ

)
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Bayesian denoisingII. BLS for non-Gaussian prior

• Assume marginal distribution [Mallat ‘89]:

• Then Bayes estimator is generally nonlinear:

P (x) ∝ exp−|x/s|p

p = 2.0 p = 1.0 p = 0.5

[Simoncelli & Adelson, ‘96]
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scale mixture of Gaussians (GSM)
•

- u: zero mean Gaussian with unit variance
- z: positive random variable
- special cases (different p(z))
 generalized Gaussian, Student’s t, Bessel’s K, Cauchy,
 α-stable, etc

p(
x)

x

p(
x)

x

=

[Andrews & Mallows 74, Wainwright & Simoncelli, 99]
x = u

√
z
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efficient coding transform
• LTF model => independent component 

analysis (ICA) 
[Comon 94; Cardoso 96; Bell/Sejnowski 97; …]

- many different implementations (JADE, 
InfoMax, FastICA, etc.)
- interpretation using SVD

- where to get U
!s = A−1!x = V Λ−1/2UT !x

E{!x!xT } = AE{!s!sT }AT

= UΛ1/2V T IV Λ1/2UT

= UΛUT
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PCAICA

!x

59Monday, August 10, 2009



PCAICA

!x

!xPCA = UT !x
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PCAICA

!x

!xwht = Λ−
1
2 UT !x

!xPCA = UT !x
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PCAICA

!x

!xwht = Λ−
1
2 UT !x

!xPCA = UT !x

!xICA = V Λ−
1
2 UT !x
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• find final rotation that maximizes non-
Gaussianity 
- linear mixing makes more Gaussian (CLT)
- equivalent to maximize sparseness

Computational Vision & Neuroscience Group

/73

Higher-order redundancy reduction:
Independent Component Analysis (ICA)

Find the most non-Gaussian directions:

48
finding V

figure from [Bethge 2008]
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ICA bases (squared columns of A) learned from natural images
- similar shape to receptive field of V1 simple cells 
  [Olshausen & Field 1996, Bell & Sejnowski 1997]
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break
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representation
• ICA basis resemble wavelet and other 

multi-scale oriented linear representations
- localized in spatial location, frequency 
band and local orientation

• ICA basis are learned from data, while 
wavelet basis are fixed

Gabor wavelet basis
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band-pass

summary
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band-pass

sparsity

LTF

summary

ICA/wavelet

higher-order
dependency
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band-pass

sparsity

LTF

summary

Not enough!

ICA/wavelet

higher-order
dependency
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problems with LTF
• any band-pass or high-pass filter will 

lead to heavy tail marginals (even 
random ones)

• if natural images are truly linear mixture 
of independent non-Gaussian sources, 
random projection (filtering) should 
look like Gaussian
- central limit theorem
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problems with LTF

• Large-magnitude subband coefficients are found at 

neighboring positions, orientations,  and scales.

 

[Simoncelli ’97; Buccigrossi &Simoncelli ’99]
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ICA achieves very little improvement
over PCA in terms of dependency reduction
                [Bethge 06, Lyu & Simoncelli 08]
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LTF also a weak model...

Sample Gaussianized

Sample ICA-transformed

and Gaussianized

figure courtesy of Eero Simoncelli

sample from LTF
natural images after 

ICA filtering
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remedy
• assumptions in LTF model and ICA

- factorial marginals for filter outputs
- linear combination
- invertible

69Monday, August 10, 2009



remedy
• assumptions in LTF model and ICA

- factorial marginals for filter outputs
- linear combination
- invertible

• model => [Zhu, Wu & Mumford 1997; Portilla & 
Simoncelli 2000]
MaxEnt joint density with constraints on filter output

• representation => sparse coding [Olshausen & Field 
1996]
- find filters giving optimum sparsity
- compressed sensing [Candes & Donoho 2003]
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remedy
• assumptions in LTF model and ICA

- factorial marginals for filter outputs
- linear combination nonlinear 
- invertible
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joint density of natural image  
band-pass filter responses 
with separation of 2 pixels
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elliptically symmetric density

pesd(!x) =
1

α|Σ| 1
2
f

(
−1

2
!xT Σ−1!x

)
pssd(!x) =

1
α

f

(
−1

2
!xT !x

)

spherically symmetric density

whitening

(Fang et.al. 1990)
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Spherical vs LTF
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data (ICA’d): factorialized:sphericalized:

• Histograms,  kurtosis of projections of image blocks onto random 

unit-norm basis functions.

• These imply data are closer to spherical than factorial

[Lyu & Simoncelli 08]
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Elliptical
Linearly  

transformed  
factorial 

Factorial Gaussian Spherical 

77Monday, August 10, 2009



Elliptical
Linearly  

transformed  
factorial 

Factorial Gaussian Spherical 
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PCAICA
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PCAICA
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[Fang et.al. 1990]

- Simoncelli, 1997;
- Zetzsche and Krieger, 1999;
- Huang and Mumford, 1999; 
- Wainwright and Simoncelli, 2000; 
- Hyvärinen et al., 2000; 
- Parra et al., 2001; 
- Srivastava et al., 2002; 
- Sendur and Selesnick, 2002; 
- Teh et al., 2003; 
- Gehler and Welling, 2006
- etc.

elliptical models of natural images
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p(
x)

x

joint GSM model

!x = !u
√

z

GSM simulation

!!" " !"
#"

"

#"
!

!!" " !"
#"

"

#"
!

Image data GSM simulation

[Wainwright & Simoncelli, NIPS*99]
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PCA/whitening
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Elliptical
Linearly  

transformed  
factorial 

Factorial Gaussian Spherical 

PCA/whitening

???ICA
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nonlinear representations
• complex wavelet phase-based [Ates & 

Orchid, 2003]

• orientation-based [Hammand & Simoncelli 
2006]

• nonlinear whitening [Gluckman 2005]

• local divisive normalization [Malo et.al. 
2004]

• global divisive normalization [Lyu & 
Simoncelli 2007,2008]
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Gaussian is the only density that can be both factorial and 
spherically symmetric [Nash and Klamkin 1976]

p(!x) =
1√

(2π)d
exp

(
−!xT !x

2

)

=
1√

(2π)d
exp

(
−1

2

d∑

i=1

x2
i

)

=
d∏

i=1

1√
2π

exp
(
−1

2
x2

i

)

=
d∏

i=1

p(xi)
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PCAICA

?
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radial Gaussianization (RG)

[Lyu & Simoncelli, 2008,2009]
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radial Gaussianization (RG)

[Lyu & Simoncelli, 2008,2009]
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radial Gaussianization (RG)

pχ(r) ∝ r exp(−r2/2)

pr(r) ∝ rf(−r2/2)

[Lyu & Simoncelli, 2008,2009]
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radial Gaussianization (RG)

g(r) = F−1
χ Fr(r)

pχ(r) ∝ r exp(−r2/2)

pr(r) ∝ rf(−r2/2)

[Lyu & Simoncelli, 2008,2009]
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radial Gaussianization (RG)

!xrg =
g(‖!xwht‖)
‖!xwht‖

!xwht

g(r) = F−1
χ Fr(r)

pχ(r) ∝ r exp(−r2/2)

pr(r) ∝ rf(−r2/2)

[Lyu & Simoncelli, 2008,2009]
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0.2 0.3 0.4 0.5 0.6

0.2

0.3

0.4

0.5

0.6

0.7
blk size = 3x3

0.6 0.7 0.8 0.9 1 1.1

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3 blk size = 15x15

IPCA − IRAW IPCA − IRAW

blocks of local mean removed pixel blocks of natural images

(+)IRG − IRAW

(◦)IICA − IRAW

 (Lyu & Simoncelli, Neural Computation, to appear)
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PCAICA RG

unification as
Gaussianization?
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marginal Gaussianization

p
(x
)

x

p(y)

y
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Joint densities
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Fig. 8. Empirical joint distributions of wavelet coefficients associated with different pairs of basis functions, for a single
image of a New York City street scene (see Fig. 1 for image description). The top row shows joint distributions as contour
plots, with lines drawn at equal intervals of log probability. The three leftmost examples correspond to pairs of basis func-
tions at the same scale and orientation, but separated by different spatial offsets. The next corresponds to a pair at adjacent
scales (but the same orientation, and nearly the same position), and the rightmost corresponds to a pair at orthogonal orien-
tations (but the same scale and nearly the same position). The bottom row shows corresponding conditional distributions:
brightness corresponds to frequency of occurance, except that each column has been independently rescaled to fill the full
range of intensities.

remain. First, although the normalized coefficients are
certainly closer to a homogeneous field, the signs of the
coefficients still exhibit important structure. Second, the
variance field itself is far from homogeneous, with most
of the significant values concentrated on one-dimensional
contours.

4 Discussion

After nearly 50 years of Fourier/Gaussian modeling, the
late 1980s and 1990s saw sudden and remarkable shift in
viewpoint, arising from the confluence of (a) multi-scale
image decompositions, (b) non-Gaussian statistical obser-
vations and descriptions, and (c) variance-adaptive sta-
tistical models based on hidden variables. The improve-
ments in image processing applications arising from these
ideas have been steady and substantial. But the complete
synthesis of these ideas, and development of further re-
finements are still underway.

Variants of the GSMmodel described in the previous sec-
tion seem to represent the current state-of-the-art, both in
terms of characterizing the density of coefficients, and in
terms of the quality of results in image processing appli-

cations. There are several issues that seem to be of pri-
mary importance in trying to extend such models. First,
a number of authors have examined different methods of
describing regularities in the local variance field. These
include spatial random fields [23, 26, 24], and multiscale
tree-structured models [40, 55]. Much of the structure in
the variance field may be attributed to discontinuous fea-
tures such as edges, lines, or corners. There is a substan-
tial literature in computer vision describing such struc-
tures [e.g., 57, 32, 17, 27, 56], but it has proven difficult
to establish models that are both explicit and flexible. Fi-
nally, there have been several recent studies investigat-
ing geometric regularities that arise from the continuity
of contours and boundaries [45, 16, 19, 21, 60]. These and
other image structures will undoubtedly be incorporated
into future statistical models, leading to further improve-
ments in image processing applications.

References
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timation. Computational Statistics and Data Analysis,
39:435–451, 2002.

9

[Simoncelli, ‘97;  Wainwright&Simoncelli, ‘99]

•  Nearby: densities are approximately circular/elliptical

• Distant: densities are approximately factorial
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extended models
• independent subspace and topographical ICA 

[Hoyer & Hyvarinen, 2001,2003; Karklin & Lewicki 
2005]

• adaptive covariance structures [Hammond & 
Simoncelli, 2006; Guerrero-Colon et.al. 2008; 
Karklin & Lewicki 2009]

• product of t experts [Osindero et.al. 2003]

• fields of experts [Roth & Black, 2005]

• tree and fields of GSMs [Wainwright & Simoncelli, 
2003; Lyu & Simoncelli, 2008]

• implicit MRF model [Lyu 2009]
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x field

z field

FoGSM: !x
d= !u⊗

√
!z

• !u : zero mean homogeneous Gauss MRF

• !z : exponentiated homogeneous Gauss MRF

• !x|!z : inhomogeneous Gauss MRF

• !x#
√

!z : homogeneous Gauss MRF

• marginal distribution is GSM

• generative model: efficient sampling
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x u log z
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∆ = 1 ∆ = 8 ∆ = 32 orientation scale

subband

FoGSM

simulation: subband pairwise joint density

Barbara boat house

subband, sample, · · · · · · Gaussian

simulation: marginal densities

marginal

joint
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Fig. 6. Performance comparison of denoising methods for three different images. Plotted are differences in PSNR for different input noise levels (σ) between
FoGSM and four other methods (! BM3D [37], " BLS-GSM [17], # kSVD [39] and $ FoE [27]). The PSNR values for these methods were taken from
corresponding publications.

original image noisy image (σ = 50) (PSNR = 14.15dB)

local GSM [17] (PSNR = 25.45dB) FoGSM (PSNR = 26.40dB)

Fig. 7. Denoising results using local GSM [17] and FoGSM.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

FoE

kSVD

GSM

BM3DFoGSM

[Lyu&Simoncelli, PAMI 08]

State-of-the-art denoising

20 ∗ log10
255√∑

i,j (Ioriginal(i, j)− Idenoised(i, j))
2

peak-signal-to-noise-ratio (PSNR)
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original image noisy image (σ = 25) matlab wiener2 FoGSM

(14.15dB) (27.19dB) (30.02dB)
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original image noisy image (σ = 100) (8.13dB)

matlab wiener2(29.32dB) (18.38dB) FoGSM (23.01dB)
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pairwise conditional density

x1

x 2

p(x2|x1)

E(x2|x1)

E(x2|x1)+std (x2|x1)

E(x2|x1)-std (x2|x1)

“bow-tie”
[Buccigrossi & Simoncelli, 97]
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pairwise conditional density

x1

x 2

E(x2|x1)

E(x2|x1)+std (x2|x1)

E(x2|x1)-std (x2|x1)

E(x2|x1) ≈ ax1

var(x2|x1) ≈ b + cx2
1
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conditional density

• maxEnt conditional density

- singleton conditionals
- joint MRF density can be determined by 
all singletons (Brook’s lemma)

µi = E(xi|xj,j∈N (i)) =
∑

j∈N(i)

ajxj

σ2
i = var(xi|xj,j∈N (i)) = b +

∑

j∈N(i)

cjx
2
j

p(xi|xj,j∈N (i)) =
1√
2πσ2

i

exp
(
− (xi − µi)2

2σ2
i

)

112Monday, August 10, 2009



implicit MRF
• defined by all singletons
• joint density (and clique potential) is 

implicit
• learning: maximum pseudo-likelihood
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ICM-MAP denoising

argmax
!x

p(!x|!y) = argmax
!x

p(!y|!x)p(!x) = argmax
!x

log p(!y|!x) + log p(!x)

- set initial value for !x(0), and t = 1

- repeat until convergence

- repeat for all i

- compute the current estimation for xi, as

x(t)
i = argmax

xi

log p(x(t)
1 , · · · , x(t)

i−1,

xi, x
(t−1)
i+1 , · · · , x(t−1)

d |!y).

- t← t + 1
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ICM-MAP denoising
argmax

xi

log p(!y|!x) + log p(!x)

= argmax
xi

log p(!y|!x) + log p(x1, · · · , xi−1, xi, xi+1, · · · , xn)

= argmax
xi

log p(!y|!x)︸ ︷︷ ︸
can be further simplified

+ log p(xi|xj,j∈N(i))︸ ︷︷ ︸
singleton conditional

+ !!!!!!!
!!!!!!!log p(xj,j∈N(i))︸ ︷︷ ︸
constant w.r.t xi

.

local adaptive and iterative Wiener filtering

xi =
σ2

wσ2
i

σ2
w + σ2

i



 yi

σ2
w

+
µi

σ2
i

−
∑

i!=j

wij(xj − yj)





.
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summary

representation

observations

applications

model
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what need to be done
• inhomogeneous structures

- structural (edge, contour, etc.)
- textual (grass, leaves, etc.)
- smooth (fog, sky, etc.)

• local orientations and relative phases

holy grail: comprehensive model & 
representations to capture all these 
variations
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big question marks
• what are natural images, anyway?

• ironically, white noises are “natural” as 
they are the result of cosmic radiations

• naturalness is subjective
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peeling the onion

all possible images

natural
images
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peeling the onion

images of same 
marginal stats

all possible images

natural
images
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peeling the onion

images of same 
marginal stats

images of same 
second order stats

all possible images

natural
images
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peeling the onion

images of same 
marginal stats

images of same 
second order stats

images of same 
higher order stats

all possible images

natural
images
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thank you
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