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Interactions with the world are fundamental



Implausible motions

[Poon and Fleet, 01]

Kinematic Model:  damped 2nd-order Markov model with Beta     
process noise and joint angle limits

Observations:  steerable pyramid coefficients (image edges) 

 Inference:  hybrid Monte Carlo particle filter



Implausible motions

[Urtasun et al. ICCV `05]

Kinematic Model:  GPLVM for pose, with 2nd-order dynamics

Observations:  tracked 2D patches on body (WSL tracker) 

 Inference:  MAP estimation (hill climbing)



Implausible motions

Kinematic Model:  Gaussian process dynamical model (GPDM)

Observations:  tracked 2D patches on body (WSL tracker) 

 Inference:  MAP estimation (hill climbing) with sliding window

[Urtasun et al. CVPR `06]



Will learning scale?

Problem:  Learning kinematic pose and motion models from 

motion capture data, with dependence on the environment 

and other bodies, may be untenable …



Physics-based models

Physics specifies the motions of bodies and their interactions in 
terms of inertial descriptions and forces, and generalize naturally 
to account for:

 balance and body lean (e.g., on hills)

 sudden accelerations (e.g., collisions)

 static contact (e.g., avoiding footskate) 

 variations in style due to speed and mass                  
distribution (e.g., carrying an object)

 …



Physics-based models for pose tracking

How should we incorporate physical principles in models of 
biological motion? 

 to ensure physically plausible pose estimates

 to reduce reliance on mocap data

 to understanding interactions



Modeling full-body dynamics is difficult

[Liu et al. `06] [Kawada Industries HRP-2. `03]



Passive dynamics

[McGeer 1990] [Collins & Ruina 2005]

But much of walking is essentially passive.



Simplified planar biomechanical models

 point-mass at hip, massless 
legs with prismatic joints, 
and impulsive toe-off force

 inverted pendular motion

[Blickhan & Full 1993; Srinivasan 
& Ruina 2000]
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Monopode

 rigid bodies for torso and legs

 forces due to torsional spring 
between legs and an impulsive 
toe-off

[McGeer 1990; Kuo 2001,2002]
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Anthropomorphic Walker



Anthropomorphic walker gait



Different speeds and step-lengths

Speed: 6.7 km/hr;  Step length: 0.875m

[Brubaker et al. `07]



Different speeds and step-lengths

Speed: 4.0 km/hr;  Step length: 0.875m



Different speeds and step-lengths

Speed: 2.7 km/hr;  Step length: 0.875m



Different speeds and step-lengths

Speed: 2.7 km/hr;  Step length: 0.625m



Different speeds and step-lengths

Speed: 2.7 km/hr;  Step length: 0.375m



The Kneed Walker

Kneed planar walker comprises 

 torso, legs with knees & feet

 inertial parameters from 
biomechanical data

[Brubaker and Fleet `08]

Dynamics due to: 

 joint torques                    
(for torso, hip, & knees)

 impulse applied at toe-off              

(with magnitude   )

 gravitational acceleration        
(w.r.t. ground slope     )

τto , τh, τk1 , τk2

τto
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τk1
τk2
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γ



The Kneed Walker

Joint torques are parameterized 

as damped linear springs.

For hip torque

with stiffness and damping 

coefficients,      and     , and 
resting length

τh = κh (φt2 +φt1−φh)
− dh(φ̇t2 +φ̇t1)

κh dh

φh

τto

τh

τk1
τk2

ι

γ



The Kneed Walker

Equations of motion

spring 
torques

forces due to 
gravity and joints… plus ground collisions 

and joint limits (esp. knee)

generalized 
mass matrix

acceleration

M q̈ = fs(!κ, !d, !φ ) + fg + fc

τto

τh

τk1
τk2

ι

γ



Kneed Walker: Ground collisions

Ground collisions modeled as 

instantaneous and inelastic.

Produces an instantaneous 

change in velocities

post-contact 
velocites

pre-contact 
velocities

impulse

M+ q̇+ = M−q̇− + S(ι)

τto

τh

τk1
τk2

ι

γ



Kneed Walker: Joint limits

When a joint limit violation is detected in simulation

 localize constraint boundary (i.e., the time at which 
joint limit reached), and treat as impulsive collision

 as long as constraint is then “active”, include              
a virtual reactive force to enforce joint limits 

 augmented equations of motion
[
M −a
aT 0

] (
q̈
τ

)
=

(
F
0

)

Joint limits easily expressed as constraints aT q ≥ b

Fj

ajτj



Prior for the Kneed Walker

How do we design a prior distribution over the dynamics parameters 
to encourage plausible human-like walking motions?

Assumption:  Human walking motions are characterized by efficient, 
stable, cyclic gaits.

Approach:  

 Find control parameters that, with minimal energy, produce 
optimal cyclic gaits over a wide range of natural human speeds 
and step lengths, for a range of surface slopes.

 Assume additive process noise in the control parameters to 
capture variations in style.



Efficient, cyclic gaits

Search for dynamics parameters                              and initial 
state                      that produce cyclic locomotion at speed   , 
step length   , and slope      with minimal “energy”.  

Solve  

where  

and                           measures the deviation from periodic motion 
with target speed and step-length   



Efficient, cyclic gaits

Speed: 5.8 km/hr;  Step length: 0.6 m;  Slope: 0o



Efficient, cyclic gaits

Speed: 6.5 km/hr;  Step length: 0.6 m;  Slope: 4.3o



Efficient, cyclic gaits

Speed: 3.6 km/hr;  Step length: 0.4 m;  Slope: 4.3o



Efficient, cyclic gaits

Speed: 5.0 km/hr;  Step length: 0.6 m;  Slope: 2.1o



Efficient, cyclic gaits

Speed: 4.3 km/hr;  Step length: 0.8 m;  Slope: -2.1o



Efficient, cyclic gaits

Speed: 5.8 km/hr;  Step length: 1.0 m;  Slope: -4.3o



Stochastic dynamics

Our prior over human walking motions is derived from the 
manifold of optimal cyclic gaits:

 We assume additive noise on the control parameters 
(spring stiffness, resting lengths, and impulse magnitude).

 We also assume additive noise on the resulting torques.



3D kinematic model

Kinematic parameters (15D) include 
global torso position and orientation, 
plus hips, knees and ankles.

 dynamics constrains contact of 
stance foot, hip angles (in sagittal 
plane), and knee/ankle angles

 other parameters modeled as 
smooth, second-order Markov 
processes.

 limb lengths assumed to be static



Graphical model

2D dynamics 3D kinematics image 
observations



 step 1. sample next state: s(j)
t ∼ p(st | s(j)

t−1)

Bayesian people tracking

dynamics pose

likelihood posteriortransition

 resample when the effective number of samples becomes small
simulate dynamics sample kinematicssample control 

parameters

Image observations: z1:t ≡ (z1, ..., zt)

State: st = [dt, kt]

Posterior distribution:

p(s1:t | z1:t) ∝ p(zt | st) p(st | s1:t−1) p(s1:t−1 | z1:t−1)

Sequential Monte Carlo inference:

 particle set                                     approximates p(s1:t | z1:t)St = { s(j)
1:t , w(j)

t }N
j=1

 step 2. update weight: w(j)
t = c w(j)

t−1 p(zt | s(j)
t )



Bayesian people tracking

Proposals for re-sampling are given by Monte Carlo approximation,                         

                                   , to the windowed smoothing distributionQt = {s(j)
t , ŵ(j)

t }N
j=1

p(st | z1:t+τ ) ∝
∫

st+1,t+τ

p(zt:t+τ | st:t+τ ) p(st:t+τ | z1:t−1)



past future

t t+τ

Re-sample      when the effective sample size                           drops 
below threshold.  Then, 

 draw sample index

 assign samples and perform importance re-weighting: 

St [
∑

j

(ŵ(j)
j )2]−1

k(i) ∼ multinomial{ŵ(j)
t }N

j=1

s(k)
t ← s(i)

t w(k)
t ← w(i)

t /ŵ(i)
t



Image observations

Optical flow

robust regression for 
translation in local 

neighborhoods

Foreground model

Gaussian mixture 
model for color (RGB) 
of pixels in each part                         

Background model

mean color (RGB) and 
luminance gradient

with covariance matrix
E[!I(x, y), ∇L(x, y)]



Calibration and initialization

Camera calibrated with respect to ground plane.
Assume the ground plane orientation in known.
Body position, pose and dynamics coarsely set manually



Speed change



Image observations

negative log background likelihood



Speed change

MAP Pose Trajectory (half speed)



Speed change

Synthetic rendering of MAP Pose Trajectory (half speed)



Occlusion

MAP Pose Trajectory (half speed)



Occlusion

Synthetic rendering of MAP Pose Trajectory (half speed)



Sloped surface (~10o)

MAP Pose Trajectory (half speed)



Sloped surface (~10o)

Synthetic rendering of MAP Pose Trajectory (half speed)



Expt 4: HumanEva Data	 	

Synchronized motion capture and video

 mocap provides ground truth and data for learned models
 four cameras (for monocular and multiview tracking)
 diverse range of motions
 blind benchmark error reporting



HumanEva Results: Monocular	

camera 2: Tracking input camera 3: Evaluation



HumanEva Results: Binocular

cameras 2 and 3:  Binocular tracking input



HumanEva Results	
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Conclusions

Low-dimensional dynamics capture key physical properties 
of motion and ground contact.  The models 

 are stable and simple to control, and

 generalize to a wide range of walking motions

Combined with kinematic models, they provide useful 
walking models for human pose tracking.



Limitations & Future Work

 Extend locomotion dynamics to capture standing (two-foot 
contact) and running (no contact during flight phase)

 Learning 
- parameters of physics-based models from mocap
- conditional kinematics.

 3D physics-based models of locomotion 

 …

Our work has just scratched the surface
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