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Pose tracking as Bayesian filtering

Posterior distribution

Filtering distribution

p(motion | video) =
p(video | motion) p(motion)

p(video)

p(poset | images1:t) =
p(imaget | poset) p(poset | images1:t−1)

p(images1:t)



Motion capture data

[Johansson, ’73]



Motion capture data

3D articulated modelmotion capture



Motion capture data



Model-based pose tracking

Mocap Data Motion/Pose Model

Learning

Off-line Learning

PriorOn-line Tracking

Video Pose

Tracking



Model-based pose tracking

Mocap Data Motion/Pose Model

Learning

Off-line Learning

Problem: Human pose data are high-dimensional, and difficult to 
obtain, so over-fitting and generalization are significant issues in 

learning useful models.



Latent variable models

Joint angle pose space (y)Low-dim. latent space (x)

Density function over pose and motion (latent trajectories)

Mapping from latent positions to poses, g

Latent dynamical model, f

g

f



Latent variable models

Joint angle pose space (y)Low-dim. latent space (x)

g

f

Linear dynamical system:

g
f

A

B

x1 x2 x3

y1 y2 y3

yt = g(xt;B) + ny,t

xt = f(xt−1;A) + nx,t



Gaussian Process Latent Variable Model

Nonlinear generalization of 
probabilistic PCA 
[Lawrence `05].
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Gaussian Process
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Model averaging (marginalization of the parameters) helps to avoid  

problems due to over-fitting and under-fitting with small data sets.
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Gaussian Process

Output    is modeled as a function of input    :y x

y = g(x) =
∑

j

wj φj(x) = wT Φ(x)

If                      , then         is zero-mean Gaussian with covariance

k(x,x′) ≡ E[ yy′ ] = Φ(x)T Φ(x′)

w ∼ N (0, I) y | x

A Gaussian process is fully specified by a mean function and a 
covariance function              and its hyper-parameters;  E.g.,k(x,x′)

Linear:

RBF:

k(x,x′) = θ xT x′

k(x,x′) = θ exp(−γ

2
‖x− x′‖2)



Gaussian Process Latent Variable Model (GPLVM)

Learning:  Maximize log likelihood of the data to find latent positions 
and kernel hyper-parameters, given an initial guess (e.g., use PCA).

Joint likelihood of vector-valued data                                                 ,  
given the latent positions                               :

Y = [y1, ...,yN ]T , yn ∈ RD

X = [x1, ...,xN ]T

p(Y |X) =
D∏

d=1

N (Yd; 0, K)

where       denotes the        dimension of the training data, and the 
kernel matrix has elements                               and is shared by all 
data dimensions.

Yd dth

(K)ij = k(xi, xj)



Conditional (predictive) distribution

where 

Given a model                       , the distribution over the data 

conditioned on a latent position,     , is Gaussian: 

M = (Y,X) y∗
x∗

m(x∗) = Y K−1k(x∗)
σ2(x∗) = k(x∗,x∗)− k(x∗)T K−1 k(x∗)
k(x∗) = [k(x∗,x1), ..., k(x∗,xN )]T

y∗ |x∗,M ∼ N (m(x∗), σ2(x∗) ID )
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Gaussian Process Latent Variable Model

log 
variance
−D lnσ2

y|x

mean 
pose
m(x)



Conditional (predictive) distribution

Pose Space (Y)Latent Space (X)

The negative log density for a new pose, given                        ,  

has a simple form:

L(x∗,y∗;M) =
‖y∗ −m(x∗)‖2

2σ2(x∗)
+

D

2
lnσ2(x∗)

x∗

y∗

m(x∗)



Gaussian Process Dynamical Model (GPDM)

Assume IID Gaussian noise, and 

f(x;A) =
∑

i

ai φi(x)

with Gaussian priors on                  and                           A ≡ {ai} B ≡ {bj}

g(x;B) =
∑

j

bj ψj(x)

Latent dynamical model  [Wang et al 05]:

xt = f(xt−1;A) + nx,t

yt = g(xt;B) + ny,t

Marginalize out              , and then optimize the latent positions,      

                  , to simultaneously minimize pose reconstruction
error and prediction error on training sequence                   .                        

{ai,bj}
{x, ...,xN}

{y, ...,yN}



Reconstruction

The data likelihood for the reconstruction mapping, given centered  
inputs                                                has the form:Y ≡ [y, ...,yN ]T , yn ∈ RD

p(Y | X, !β,W) =
|W|N√

(2π)ND|KY |D
exp

(
−1

2
tr(K−1

Y YW2YT )
)

where

        is a kernel matrix shared across pose outputs, with entries

                                             for kernel function  

        with hyperparameters      

	                                  scales the different pose parametersW ≡ diag(w1, ..., wD)

!β = {β1, β2, β3}

(KY )ij = kY (xi,xj)
KY

kY (x,x′) = β1 exp
(
−β2

2
||x− x′||2

)
+ β−1

3 δx,x′



Dynamics

The latent dynamic process on                                               has a 

similar form: 

X ≡ [x, ...,xN ]T , xn ∈ Rd

p(X | !α) =
N (x1;0, Id)√

(2π)(N−1) d |KX |d
exp

(
−1

2
tr(K−1

X X̂X̂T )
)

where

       is a kernel matrix defined by kernel function

with hyperparameters

KX

X̂ = [x2, ...,xN ]T

kX(x,x′) = α1 exp
(
−α2

2
||x−x′||2

)
+ α3xT x′ + α−1

4 δx′

!α



Learning

GPDM posterior:

reconstruction 
likelihood

priorsdynamics 
likelihood

training 
motions

kernel  
hyperparameters

latent 
trajectories

p(Y,X, ᾱ, β̄,W) = p(Y | X, β̄,W) p(X | ᾱ) p(ᾱ) p(β̄)

To estimate the latent coordinates & kernel parameters we minimize

L = − ln p(X, ᾱ, β̄,W |Y)

with respect to                and      .WX, ᾱ, β̄



GPDM prior over new poses and motions

L(x,y;M) =
‖W(y − f(x))‖2

2σ2
Y (x)

+
D

2
lnσ2

Y (x)

The model                                         then provides a density function 
over new poses, with negative log likelihood:

M ≡ (Y,X, !α, !β,W)

and a density over latent trajectories, with negative log likelihood:

LD(X̄; x̄0, M) =
1
2
tr

(
K̄−1

X X̄X̄T
)

+
d

2
ln |K̄X |



3D B-GPDM for walking

GPDM: sample trajectories

6 walking subjects,1 gait cycle each, on treadmill at same speed 
with a 20 DOF joint parameterization.

[Urtasun et al, `06]

GPDM: log reconstruction 

variance    lnσ2
y | x,X,Y



3D B-GPDM for walking

6 walking subjects,1 gait cycle each, on treadmill at same speed 
with a 20 DOF joint parameterization.

GPDM: mean tracjectoryGPDM: log reconstruction 

variance    lnσ2
y | x,X,Y

[Urtasun et al, `06]



People tracking with GPDM

global 
pose

joint 
angles

latent 
coordinates

[Urtasun et al, `06]

Image Observations:

GPDM:

State:

I1:t ≡ (I1, ..., It)

φt = [Gt, yt, xt]

M

likelihood predictionposterior

Inference: MAP estimation by gradient ascent on the posterior:

p(φt | I1:t,M) ∝ p(It |φt) p(φt | I1:t−1, M)

Temporal predictions for the global DOFs based on a damped 
second-order Markov model.



Measurement model

Measurements are the 2D image positions for several locations on 
the body, obtained with a 2D patch-based tracker [Jepson et al 03]. 

Assume the measurements are corrupted with IID Gaussian noise.



Tracking experiments

Input videos:
 noisy measurements
 occlusion (measurement loss)
 speed change (1 octave)
 stylistic variation

Initialization:
 2D WSL points and 3D model are initialized manually in 

the first frame



Occlusion

3D animated characters

3D 
model 

overlaid 
on video



Occlusion

3D 
model 

overlaid 
on video

3D animated characters



Exaggerated gait

3D 
model 

overlaid 
on video

3D animated characters



Latent trajectories

Hedvig
Shrub

Occlusion
Exaggerated
Training Data



Multiple speeds and visualization of pathologies

Two subjects, four walk gait cycles at each of 9 speeds (3-7 km/hr)

Two subjects with a knee pathology.



But

GPLVM has its limits …

 models don’t scale

 they don’t handle different styles of motion

 efficiency is a major issue

 the amount of data required for training is daunting



Multiple motions often produce poor models

GPDM with MAP learning

4 walking subjects,  2 gait cycles each, 50 DOFs



Multiple motions often produce poor models

Marginalize latent positions, and solve with HMC-EM  [Wang et al, ‘06]

4 walking subjects,  2 gait cycles each, 50 DOFs



Problems with multiple motions / styles

But there is more valuable information in the training data, and 

prior knowledge about human pose and motion that can be used 
to significantly influence the structure and quality of the models.

With sparse mocap data, it is often hard to generalize well from 

the motions of a few individuals with different styles.

GPLVMs do not ensure that the map from the pose space     to 

the latent space     is smooth,  i.e., that nearby poses map to 
nearby latent positions.

x
y



Topologically-constrained GPLVM

[Urtasun et al. ICML ’08]

Global constraints on latent space topology (e.g., for periodic motions), 

and local topological constraints to preserve pose neighborhoods.

9 walk cycles and 
10 jog cycles, with 
different speeds 

and subjects       



Topologically-constrained GPLVM

[Urtasun et al. ICML ’08]

Simulation with transitions.



Style-content separation

6 motions, 314 poses in total,  y ∈ R89

[Wang et al. ICML ’07]



Style-content separation

data

factor 1 …factor 2 factor N

Multilinear style-content models 
[Tenenbaum and Freeman ’00; 
Vasilescu and Terzopoulos ‘02]

y =
∑

i,j,k,..

wijk... aibjck · · · + ε

Nonlinear basis functions  
[Elgammal and Lee ‘04]

y =
∑

i,j

wij aiφj(b) + ε

gait, 
phase,
identity,
gender, 
...

pose



Multifactor GPLVM

Suppose    depends linearly on latent style parameters                 , 

and nonlinearly on    :
s1, s2, ...y

x

y =
∑

i

sigi(x) + ε =
∑

i

siwT
i Φ(x) + ε

where Φ(x) = [φ1(x), ...,φNx(x)]T

kx(x,x′)

If                          and                           , then          is zero-mean 

Gaussian, with covariance 

wi ∼ N (0, I) ε ∼ N (0, β−1) y | x

E[yy′] = sT s′ Φ(x)T Φ(x′) + β−1δ

where s = [s1, ..., sNs ]
T

ks(s, s′)

[Wang et al. ICML ’07]



Multifactor locomotion model

linear kernels for identity 
and gait (style) 

RBF kernel for state 
(content)

scale of variance for 
dimensional d

additive white process 
noise 

Three-factor latent model with                        :X = {s,g,x}

:  identity of the subject 
performing the motion

:  gait of the motion     
(walk, run, stride) 

:  current state of motion 
(evolves w.r.t. time)   

x

g

s

Covariance function:

kd(X ,X ′) = θd sT s′ gT g′ e−
γ
2 ||x−x′||2 + β−1δ

[Wang et al. ICML ’07]



Training data

stride

run

walk

subject 1 subject 2 subject 3

Each training motion is a sequence of poses, sharing the same 
combination of subject (  ) and gait (   ). s g



A locomotion model

The state of the motion (  ) is assumed to lie on the unit circle, 
which is shared by all motions.  

x



A locomotion model

θ0

∆θ

θt = θ0 + t ∆θ

xt = [cos θt, sin θt]T

We assume no knowledge of 
correspondence between poses 
(i.e., no “time-warping”).

Each sequence is parameterized 
by      and       , which are learned.θ0 ∆θ



Generating new motions

stride

run

walk

subject 1 subject 2 subject 3

The GP model provides a Gaussian prediction for new motions.     
We use the mean to generate motions with different styles.



Generating new motions

subject 1, walk
subject 1, stride
(generated)

[Wang et al. ICML ’07]



Generating new motions

subject 3, stride
subject 1, stride
(generated)

[Wang et al. ICML ’07]



Generating new motions

subject 2, walk
subject 2, stride
(generated)

[Wang et al. ICML ’07]



Generating new motions

subject 3, stride
subject 2, stride
(generated)

[Wang et al. ICML ’07]



Generating new motions

Transitions

[Wang et al. ICML ’07]



Generating new motions

Random motions
[Wang et al. ICML ’07]



Hierarchical GPLVM

Hierarchical GPLVM  [Lawrence and Moore ICML ’07]

left 
arm

abdomen

head

right
arm left

left
right
leg

entire bodyx0

upper/lower 
bodyxu xl

partsxla xh xra xa xrlxll



Hierarchical GPLVM

Data: 1 walk cycle, 1 run cycle

Initialization:  PCA

Learning:  joint ML optimization 
of latent coordinates and hyper-
parameters at all layers.



Hierarchical GPLVM

[Darby et al., BMVC ’09]



Shared latent variable models

Done on whiteboard  [Sigal et al, CVPR ’09]



Selected references
Lawrence N, Probabilistic nonlinear principal components analysis with Gaussian 
Process latent variable models. JMLR 6, 2005 (also see NIPS 2004)

Moore A and Lawrence N, Hierarchical Gaussian process latent variable models.  
Proc ICML, 2007

Navaratnam et al., The joint manifold model for semi-supervised multi-valued 
regression. Proc ICCV, 2007

Quinonero-Candela & Rasmussen,  A unifying view of sparse approximate  
Gaussian Process regression.  JMLR 6, 2006

Sigal L et al., Shared kernel information embedding for discriminative inference.  
Proc IEEE CVPR, 2009

Urtasun R and Darrell T,  Local Probabilistic regression for activity-independent 
human pose inference, Proc CVPR 2008

Urtasun R et al.,  People tracking with the Gaussian process dynamical model.   
Proc IEEE CVPR, 2006

Urtasun R et al., Topologically constrained latent variable models. Proc ICML 2008

Wang J et al ., Multifactor Gaussian process models for style-content separation.  
Proc ICML, 2007.

Wang J et al, Gaussian Process dynamical models for human motion. IEEE Trans 
PAMI 30(2), 2008 (also see NIPS 2005)


