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Looking at People



Challenges:  Complex pose / motion

People have many degrees of freedom, comprising an articulated 

skeleton overlaid with soft tissue and deformable clothing.



Challenges:  Complex movements

People move in complex ways, often communicating with subtle gestures



Challenges:  Appearance, size and shape

People come in all shapes and sizes, with highly variable appearance.



Challenges:  Appearance variability

Image appearance changes dramatically over time 
due to non-rigidity of body and clothing and lighting.



Challenges:  Appearance variability

Image appearance changes dramatically over time 
due to non-rigidity of body and clothing and lighting.



Challenges:  Context dependence

Perceived scene context influences object recognition.

[Courtesy of Antonio Torralba]     



Challenges: Noisy and missing measurements 

Ambiguities in pose are commonplace, due to 
 background clutter
 apparent similarity of parts
 occlusions
 loose clothing 
 …



Challenges:  Depth and reflection ambiguities

image 3D model  
(camera view)

3D model 
(top view)

Multiple 3D poses may be consistent with a given image.

[courtesy of Cristian Sminchisescu]



Model-based pose tracking

Video input 3D articulated model
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Bayesian Filtering

State: n-vector comprising variables to be inferred: 

- continuous variables  [eg., position, velocity, shape, size, …] 

- discrete state variables [eg., # objects, gender, activity, … ]

- state history:

Observations: data from which we estimate state: 

- observation history: z1:t = (z1, ..., zt)

st

s1:t = (s1, ..., st)

zt = f(st)



Bayesian Filtering

Posterior distribution over states conditioned on observations 

likelihood prior

independent 
of state

p(s1:t | z1:t)

Bayes’ rule:

p(s1:t | z1:t) =
p(z1:t | s1:t) p(s1:t)

p(z1:t)

Filtering distribution: marginal posterior at current time

p(st | z1:t) =
∫

s1

∫

st−1

p(s1:t | z1:t)



Simplifying model assumptions

1st-order Markov model for state dynamics:

likelihood  at 
time τ

joint 
likelihood

sequence 
prior

one-step 
transition 

prior

p(st | s1:t−1) = p(st | st−1)

so

p(s1:t) =




t∏

j=2

p(sj | sj−1)



 p(s1)

=
t∏

τ=1

p(zτ | sτ )

Conditional independence of observations 

p(z1:t | s1:t) = p(zt | st) p(z1:t−1 | s1:t−1)



Recursive form of filtering/posterior distribution

Filtering distribution:

likelihood

p(st | z1:t) =
∫

s1

· · ·
∫

st−1

p(s1:t | z1:t)

Prediction distribution (temporal prior):

p(st | z1:t−1) =
∫

st−1

p(st | st−1) p(st−1 | z1:t−1)

= c p(zt | st) p(st | z1:t−1)



Bayesian smoothing	

Inverting the dynamics permits inference backwards in time:

Batch Algorithms (smoothing):  Estimation of state sequences using 
the entire  observation sequence (i.e., all past, present & future data):

- optimal and efficient but not always applicable

Online Algorithms (filtering):  Casual estimation of      occurs as 
observations become available, using present and past data only.

xt

p(sτ | zτ :t) = c p(zτ | sτ )
∫

sτ+1

p(sτ | sτ+1) p(sτ+1 | zτ+1:t)

= c p(zτ | sτ ) p(sτ | zτ+1:t)

Smoothing distribution (forward-backward belief propagation):

p(sτ | z1:t) =
c

p(sτ )
p(zτ | sτ ) p(sτ | z1:τ−1) p(sτ | zτ+1:t)



Kalman filter

Assume linearity and Gaussianity for the observation             
and dynamical models: 

st = A st−1 + ηd ηd ∼ N (0, Cd)

zt = M st + ηm ηm ∼ N (0, Cm)

Key Result:  Prediction and filtering distributions are Gaussian, so  
they may be represented by sufficient statistics:

p(st | z1:t−1) =
∫

st−1

p(st | st−1) p(st−1 | z1:t−1) ∼ N (s−t , C−t )

p(st | z1:t) = c p(zt | st) p(st | z1:t−1) ∼ N (s+
t , C+

t )



Depiction of filtering

posterior

predictionposterior

deterministic drift 

stochastic  
diffusion

s s

ss

p(st−1 | z1:t−1)

p(st | z1:t−1)p(st | z1:t) incorporate data 

zt



Kalman filter

First well-known uses in computer vision:

Road following by tracking lane markers                             
[Dickmanns & Graefe, “Dynamic monocular machine vision.”              
Machine Vision and Applications, 1988]

Rigid structure from feature tracks under perspective projection 
[Broida et al., “Recursive estimation of 3D motion from monocular image 
sequence.”  IEEE Trans. Aerosp. & Elec. Sys., 1990]



Multimodal likelihood functions

Measurement clutter and occlusion often cause multimodal likelihoods. 

[Khan et al,  CVPR ‘04]



Nonlinear dynamics

[Jepson et al, WSL Tracker, PAMI, 2001]

Object motion and interactions between objects often produce 
complex nonlinear dynamics (so Gaussianity is not preserved)



Approximate inference

Coping with multimodal, non-Gaussian distributions 

Optimization (to find MAP solution)

- e.g., WSL tracker

Monte Carlo approximations



WSL tracker

Goal: Tracking with precise alignment over long times 

Problem: Changing appearance and unmodeled deformations

Key: Use ‘stable’ properties of appearance for tracking



WSL tracker



Monte Carlo inference (Particle filters)

Approximate the filtering distribution using point samples:

 By drawing a set of random samples from the filtering distribution, 
we could use samples statistics to approximate expectations 

Let                     be a set of      fair samples from distribution         , 
then for functions 

ES [f(s)] ≡ 1
N

N∑

j=1

f(s(j)) −→ EP [f(s)]N→∞

P(s)NS = {s(j)}
f(s)

Problem: we don’t know how to draw samples from p(st | z1:t)



Importance sampling

weighted 
samples



Importance sampling

Weighted sample set                               S = {s(j), w(j)}

P(s)

Q(s) draw samples         from a proposal distribution         , with 
weights                          , then

s(j)

w(j) = w(s(j))

ES [f(s)] ≡
N∑

j=1

w(j)f(s(j)) −→ EQ [w(s) f(s)]
N→∞

 If                                 then weighted sample statistics approximate 
expectations under         , i.e.,

w(s) = P(s)/Q(s)

EQ [w(s) f(s)] =
∫

w(s) f(s)Q(s) ds

=
∫

f(s)P(s) ds

= EP [f(s)]



Particle filter

Simple particle filter approximates the filtering distribution by drawing 
samples from the prediction distribution:                               

p(st | z1:t) = c p(zt | st) p(st | z1:t−1)

w(s) =
P(s)
Q(s)

Q(s)P(s)



Particle filter

Simple particle filter approximates the filtering distribution by drawing 
samples from the prediction distribution:                               

[Gordon et al ’93;  Isard & Blake ’98; Liu & Chen ’98, …]

p(st | z1:t) = c p(zt | st) p(st | z1:t−1)

posterior posteriortemporal
dynamics

likelihood

sample sample normalize

p(zt | st)p(st | st−1) p(st | z1:t)p(st−1 | z1:t−1)

With resampling at each time step:



Particle filter

Given a weighted sample set                              , the prediction 
distribution is a mixture model

S = {s(j)
t−1, w(j)

t−1}

p(st | z1:t−1) =
N∑

j=1

w(j) p(st | s(j)
t−1)

To draw samples from it:
- sample a component of the mixture by the treating weights as 

mixing probabilities

- then sample from the associated dynamics pdf p(st | s(i)
t−1)

sample
1

0
1

Cumulative distribution of weights

u

i N

u∼U(0, 1)



Particle filter

weighted 
sample set

re-sample   & 
drift

diffuse & 
re-sample

compute  
likelihoods 

weighted 
sample set

[Isard and Blake, IJCV ’98]



Lessons learned: Sampling efficiency

3D Kinematic Model
(28D state: 22 joint angles, 6 global DOFs)

[Choo & Fleet, ICCV ‘01]



Likelihood and dynamics

Xj

sGiven the state,    , and the articulated model, the 3D marker 
positions       onto the 2D image plane:  

dj(s) = Tj(Xj ; s)

Observation model: 

d̂j = dj + ηj , ηj ∼ N (0;σ2
mI2)

where      is isotropic Gaussian for translational & angular variables

Smooth dynamics:
st = st−1 + εt

εt

Likelihood of observed 2D locations,                 :D = {d̂j}

p(D | s) ∝ exp



− 1
2σ2

m

∑

j

|| d̂j − dj(s) ||2






Performance

Estimator Variance:
 multiple runs with independent noise & sampling 
 variance measured as MSE from ground truth (from MCMC)



Problem: Sampling efficiency

Number of samples needed depends on the effective volumes 
(entropies) of the prediction and posterior distributions.

 With random sampling from the prediction density, the number 
of particles grow exponentially for samples to fall on states 
with high posterior.  E.g., for  D-dim spheres, with radii R and r, 

 effective number of ‘independent’ samples:  Ne = 1/
∑

j

(w(j))2

Prediction

 Posterior
N >

(
R

r

)D



Hybrid Monte Carlo filter

Improved sampling through MCMC:

 initialize a set of particles from a particle filter

 select a subset from which to initiate MCMC with      
stochastic gradient search (hybrid Monte Carlo)

optimistic 
extrapolant

HMC filter particle filter

fixed 
variance

[Choo & Fleet, ICCV ‘01]



Mean estimates on independent trials

Black: Ground truth (at frame 10)
Red:   Mean state from 6 random trials

Particle Filter Hybrid MC Filter



Lessons learned: Effective proposals

If proposal and target distributions differ significantly, then:

most particle weights are near zero, and some modes get no 
samples, so the normalization constant c can be wildly wrong.

Prediction distributions                              make poor proposals: 
dynamics are often uncertain, and likelihoods are often peaked.

Q = p(st | z1:t−1)

Use the current observation to improve proposals. 

Let           be a continuous distribution obtained from some    
detector that yields target locations (e.g., a Gaussian mixture). 

Then, just modify the proposal density and importance weights:

D(zt)

with w(st) =
c p(zt | st)
D(zt)

Q = D(zt) p(st | z1:t−1)



Lessons learned: Proper likelihoods

p(I | s) ∝
∏

y∈Df
pf (I(y) | s)

∏
y∈Db

pb(I(y))
∏

y pb(I(y))

=

∏
y∈Df

pf (I(y) | s)
∏

y∈Db
pb(I(y))

∏
y∈Df

pb(I(y) | s)
∏

y∈Db
pb(I(y))

=
∏

y∈Df

pf (I(y) | s)
pb(I(y))

Do not compare states using different sets of observations. 
Explain the entire image or use likelihood ratios. 

E.g., let pixels intensities, conditioned on state be independent 
where       and       are disjoint sets of foreground and background 
pixels, and      and      are the respective likelihood functions.

Divide             by the background likelihood of all  pixels (i.e., as if 
no target is present): 

Df Db

pbpf

p(I | s)



Lessons Learned: Use the right state space

Despite the potential to approximate multimodal posteriors, 
tracking multi targets with a single target state space is unadvised.



Finding occlusion boundaries

Motion boundaries yield information about position and orientation 
of surface boundaries, and about relative surface depths



Finding occlusion boundaries

Estimation of smooth motion and occlusion boundaries on 
hybrid random fields with non-parametric Bayesian inference.

[Nestares and Fleet, CVPR ‘01]



Finding lips and lip reading

Probabilistic detection, tracking, and recognition of motion 
events in video, with learned models of image motion.  

[Fleet, Black, Yacoob and Jepson, IJCV 2000]



Human pose tracking

Estimate the three-dimensional structure of people from video, with 
constraints on their shape, size, & motion.

[Sidenbladh, Black and Fleet, ECCV 2000]
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