Learning Deep Architectures

Yoshua Bengio, U. Montredl

CIFAR NCAP Summer School 2009
August 6th, 2009, Monftreal

Main reference: “Learning Deep Architectures for Al”, Y. Bengio,
to appear in Foundations and Trends in Machine Learning, available on my web page.

Thanks to: Aaron Courville, Pascal Vincent, Dumitru Erhan, Olivier Delalleau, Olivier Breuleux, Yann LeCun,
Guillaume Desjardins, Pascal Lamblin, James Bergstra, Nicolas Le Roux, Max Welling, Myriam Cote,
Jérébme Louradour, Pierre-Antoine Manzagol, Ronan Collobert, Jason Weston

Deep Architectures Work Well

m Beating shallow neural networks on vision and NLP tasks

m Beating SVMs on visions tasks from pixels (and handling dataset
sizes that SVMs cannot handle in NLP)

m Reaching state-of-the-art performance in NLP
m Beating deep neural nets without unsupervised component

m [earn visual features similar to V1 and V2 neurons

Deep Motivations

m Brains have a deep architecture

B Humans organize their ideas hierarchically, through composition
of simpler ideas

m |[nsufficiently deep architectures can be exponentially inefficient

m Distributed (possibly sparse) representations are necessary to
achieve non-local generalization, exponentially more efficient
than 1-of-N enumeration latent variable values

= Multiple levels of latent variables allow combinatorial sharing of
statistical strength

Locally Capture the Variations

* = training example

YA
true functjgh: unkatwn
prediction

f _.-~"learnt = interpolat
(X) f=------------- A ‘

Easy with Few Variations

learned function: prediction = f(x)

The Curse of
Dimensionality

1 dimension:
10 positions
@

2 dimensions:
100 positions
(o]

To generalise locally,
need representative
exemples for all
possible variations!

» 3 dimensions:
1000 positions!

Limits of Local Generalization:
Theoretical Results

(Bengio & Delalleau 2007)

m Theorem: Gaussian kernel machines need at least k examples
to learn a function that has 2k zero-crossings along some line

m Theorem: For a Gaussian kernel machine to learn some

maximally varying functions over d inputs require O(29)
examples

Curse of Dimensionality When
Generalizing Locally on a Manifold

. [shrinking)

‘transformation
@,
él’l

raw input vector space

How to Beat the Curse of Many
Factors of Variation?

Compositionality: exponential gain in representational power

« Distributed representations
« Deep architecture

Distributed Representations

= Many neurons active simultaneously

m [nput represented by the activation of a set of features that
are not mutually exclusive

m Can be exponentially more efficient than local representations

Local vs Distributed

Sub—partition 3
\ Sub—partition 2

\ Cl=l
Cl=1 V20
C2=0 V3=l
C3=0 v/
\2
o . 7\ Cl=1
Sub—partition 1 A Co-1
LCl=1 1\ C3=1
L=l

regions

defined
X by learned =0
prototypes C1=0 .
C2=0 s
C3=0 7
.“l:
U
& C2=1 \ C1=0
; C3=0 \ Ca=1
7 \ C3=1
; \
DISTRIBUTED PARTITION \\

LOCAL PARTITION
\

Neuro-cognitive inspiration

® Brains use a distributed representation

® Brains use a deep architecture

m Brains heavily use unsupervised learning
m Brains learn simpler tasks first

® Human brains developed with
society / culture / education

Deep Architecture in the Brain

Higherlevel visual
abstractions

Area V2 L L Primitive shape detectors

Area V1 Edge detectors

Retina ‘, pixels

Deep Architecture in our Mind

very high level representation:
MAN]| |SITTING

" Humans organize their ideas and A
concepts hierarchically e

A

slightly higher level representation

m Humans first learn simpler concepts and
then compose them to represent more
ObSTrO CT ones raw input vector representation:

, . . _ r=[23[19[20] |18
m Engineers break-up solutions info multiple T

levels of abstraction and processing

m Want to learn / discover these concepts

Deep Architectures and Sharing
Statistical Strength, Multi-Task Learning

.. task 1 task 2 task 3
m Generalizing better to new output y; output y2 output y3

tasks is crucial to approach
Al

m Deep architectures learn
good intermediate
representations that can be
shared across tasks

shared
infermediate
representation h

m A good representation is one
that makes sense for many
tasks

raw input x

Feature and
Sub-Feature Sharing

m Different tasks can share the same
high-level feature

m Different high-level features can be
built from the same set of lower-level
features

m More levels = up to exponential gain
iINn representational efficiency

tfask 1 task N

output v output yn
High-level features :

es [

do

Low-leve

| featur

Architecture Depth

output
element ’ .;J-on
set jx
‘n—eu} on ‘neu#on ‘:neu;'on

b | SRT

‘neuron | neuron ’ neu*on

inputs

Depth =3

Deep Architectures are More Expressive

=

Logic gates

2 layers of — Formal neurons = universal approximator
RBF units

—

Theorems for all 3:
(Hastad et al 86 & 91, Bengio et al 2007)

Functions compactly
represented with k layers may
require exponential size with k-1
layers

Sharing Components in a Deep Architecture

2
(r129)(X2X3) + (1129)(2374) + (X2X3)” + (XoX3)(2374)

Polynomial expressed
with shared components:

advantage of depth may
grow exponentially

How to frain Deep Architecture?

m Great expressive power of deep architectures

m How to frain them?@

The Deep Breakthrough

m Before 2006, training deep architectures was unsuccessful,
except for convolutional neural nets

m Hinton, Osindero & Teh « A Fast Learning Algorithm for Deep
Belief Nets », Neural Computation, 2006

®m Bengio, Lamblin, Popovici, Larochelle « Greedy Layer-Wise
Training of Deep Networks », NIPS'2006

m Ranzato, Poultney, Chopra, LeCun « Efficient Learning of
Sparse Representations with an Energy-Based Model »,
NIPS'2006

Greedy Layer-Wise Pre-Training

QOO0C000) b,

1
|
' RBM '
|
|

©000000) k! O ©OCO000 b
..... > laswuuns —_—_—— == - —_—_— = = d
_____________ > : RBM |.....: :V
©O00000) i '©oooooo) b | QOOO00D) m
| RBM : ; E
: A 4
|©OOOOO® X ' OOOOO0O x QOOOO0Y) x
- _RBJfo_rx_ - RBM for hy RBM for y and h;

Stacking Restricted Boltzmann Machines (RBM) - Deep Belief Network (DBN)
- Supervised deep neural network

Good Old
Multi-Layer Neural Net

®m Each layer outputs vector
2, = sigm(by +Wizk—1) from Zk—1
of previous layer with params by
(vector) and Wy (matrix).

m Qutput layer predicts parametrized
distribution of target variable Y given
iNnput T

Training Multi-Layer Neural Nefts

<
m Qutputs: e.g. multinomial for mulficlass ..__l_c O
classification with softmax output units ./' Zle—1
® ..

ebki‘i'W]./cizk—l
Rki = b 7
Zj € J . . w
xv

m Parameters are frained by gradient-based
conditional log-likelihood, e.g.
1

optimization of fraining criterion involving O
—log P(Y = y|x) = —log 2, 0

Effect of Unsupervised Pre-fraining
AISTATS 2009

25 T

9 layer without pretraining 35 T T T T T T
Ny . - - : :
.1 layer with pretraining : : :

: : , ; g g <—>4 layers without pretraining
Do } 30- ---------- (o4 layers with pretraining

: : ? : : : : : : : : : : : : : : :

20k e , , '

count
)]
2
>
count

1.1 12 13 14 15

16 1.7 18 19 2 21 1 12 14 16 18 2
test error

22 24 26 28

test error

Effect of Depth

w/0o pre-training

with pre-training

- . i;f
e

o™

i i 1
© w w < 4
o o o o

(s4ad) 10010 :ozs&tmmc.uﬁmmﬂ

number of layers

number of layers

Boltzman Machines and MRFs

1 T T
= Boltzmann machines: P(x) = — g~ Energy(z) _ ¢’ zta Wa

(Hinton 84)

m Markov Random Fields:

1 3
P(CU) — ZGZ% ws fi(x)

® More interesting with latent variables!

Restricted Bolizman Machine

= The most popular 1 b ThtcT ot h T Wa
building block for P(x,h) = e
deep architectures
OO0 - ¢ n hidden

m Bipartfite undirected
graphical model

x Observed

RBM with (image, label) visible units

m Can predict a subset y hiaden

of the visible units Q Q Q Q Q Q

given the others x
m Exactly if y takes only / \

few values

] image

= Gibbs C@@@@ LOOOO

sampling o/w label

Y

RBMs are Universal Approximators

(LeRoux & Bengio 2008, Neural Comp.)

m Adding one hidden unit (with proper choice of parameters)
guarantees increasing likelihood

® With enough hidden units, can perfectly model any discrete
distribution

m RBMs with variable nb of hidden units = non-parametric

m Optimal training criterion for RBMs which will be stacked into @
DBN is not the RBM likelihood

RBM Conditionals Factorize

exp(b’x + c’h + h' Wx)

P(hix) = —
() > i exp(b’x + c’h + h'Wx)

1]; exp(cih; + h; Wix)
1L 25 exp(c;h; + h; W;x)

B exp(h;(c; + W;x))
1:[>4, exp(hy(c; + Wix))

= [P,

RBM Energy Gives Binomial Neurons

With h; € {0,1}, recall Energy(x,h) = —b’x — c’h — h'Wx

elci +1W,;x+other terms

elci—l—lwix—i—other terms + 6OC.L-—|—OW,,1x—i—0the7° terms
eCi—i—WiX

eci+WiX + 1
1
1 + e—C-i_W-ix
= sigm(c; + W;x).

1
l+e—a"

since sigm(a) =

RBM Hidden Units Carve Input Space

Partition 3 N
\ JPartition 2

v Cl=1 h] h2 h 3
y C2=0 l:'
Cl=1 \C3=1
C2=0 v/
C3=0 \,*:
N\ Cl=1
K C2=1
“C1=1 C3=1
4 C2=1
. X1 X
e \ oo Partition 1
!f C3:0 \ C2:l

Giblbs Sampling in RBMs

hy ~P(h[x)

h, ~ P(h|%,) hy ~ P(h |)

o~ N

C

%S Xy ~ P(x]hy)

P(h|x) and P(x| h) factorize

T T T
P(x,h) — %eb h+c” z+h” Wx

—

e

X3~ P(x]hy)

m Fasy inference

m Convenient Gibbs sampling

“—

Xx=2>h=>x=>n...

Problems with Giblbs Sampling

In practice, Gibbs sampling does not always mix well...

RBM trained by CD on MNIST

DODDDDRRERaR
nnnnnuuunn Chains from random state
INNNDODOEEEN -
Chains from real digifs

—Energy(x,h)
A

RBM Free Energy P(x,h) = -

» Free Energy = equivalent energy when marginalizing

e—Energy(x,h) e—FreeEnergy(x)

P(x) = Z Z = 7

m Can be computed exactly and efficiently in RBMs

FreeEnergy(x) = —b'x — Z log Z ehi(ci+Wix)
i h;

= Marginal likelihood P(x) tractable up to partition function Z

Factorization of the Free Energy
Let the energy have the following general form:

Energy(x,h) = —8(x) + > . 7i(x, h;)

Then
P(X) — %G—F‘reeEnergy(x) _ %Z e—Energy(x,h)
h
_ 1 YL Y BO-Emah) - Z N Z B(x) H —y:(x,hs)
4 h;y ho hj h; h
eB(x)
— Z e—’Yl(X~,h1) Z 6—72(X:hz) N Z e—’Yk(X,hk)
Z h, ho h;.
BX)

— HZ —7i(x,h;)

FreeEnergy(x) = — log P(x) — log Z = —3(x) — Zk’gz o vi(x.hy)
. -

Energy-Based Models Gradient

e—Energy(x) -
. . —Energy(x)
P(x) = - 7 = zx: e &Y
dlog P(x) OEnergy(x) dlogZ
o0 B 00 06
dlogZ log¥, e Enerey(
00 N oo
10 Zx e—Energy(x)
-7 90
— _l —Energy(x) aEneng()
Z 00

(9Ene1 gy()

_Zp

Boltzmann Machine Gradient

p(.r) = 5 Zh e—Energy(a: h) _

m Gradient has two components:

dlog P(xz)

“positive phose”]

—FreeEnergy(:c)

[“nego’rive phase”

o6

® [n RBMs, easy to sample or sum over h | x

f 9FreecE [~ 8FreeEnergy(a~:)\
— ree geergy(a:))_l_ Z~ P(ZIZ) -

OE h OE h
- Zh P(I’L|CE) nergg(w) n Zx ; P() nergg(x)

J

m Difficult part: sampling from P(x), typically with a Markov chain

Training RBMs

Contrastive Divergence: start negative Gibbs chain aft
(CD-k) observed x, run k Gibbs steps

Persistent CD: run negative Gibbs chain in
(PCD) background while weights slowly
change

Fast PCD: two sets of weights, one with a large
learning rate only used for negative
phase, quickly exploring modes

Herding: Deterministic near-chaos dynamical
system defines both learning and sampling

Tempered MCMC: use higher temperature to escape
modes

Conftrastive Divergence

Contrastive Divergence (CD-k): start negative phase block
Gibbs chain at observed x, run k Gibbs steps (Hinton 2002)

h~P(h|x) h'~P(h[Xx)
K GRS
é c)
Observed x k=2steps Sampled x’
positive phase negative phase
push down

Free Energy

push up

Persistent CD (PCD)

Run negative Gibbs chain in background while weights slowly
change (Younes 2000, Tieleman 2008):

« Guarantees (Younes 89, 2000; Yuille 2004)

* If learning rate decreases in 1/1,
chain mixes before parameters change too much,
chain stays converged when parameters change

h~P(h|x)

previous x’
Observed x new X'’
(positive phase)

Persistent CD with large learning rate

Negative phase samples quickly push up the energy of
wherever they are and quickly move to another mode

push

downl

FreeEnergy

Persistent CD with large step size

Negative phase samples quickly push up the energy of
wherever they are and quickly move to another mode

push
FreeEnergy downl

Persistent CD with large learning rate

Negative phase samples quickly push up the energy of
wherever they are and quickly move to another mode

push

down l

FreeEnergy

Fast Persistent CD and Herding

m Exploit impressively faster mixing achieved when parameters
change quickly (large learning rate) while sampling

m Fast PCD: two sets of weights, one with a large learning rate
only used for negative phase, quickly exploring modes

m Herding (see Max Welling's ICML, UAI and workshop talks):
O-temperature MRFs and RBMs, only use fast weights

Herding MRFs

= Consider O-temperature MRF ¢ = Eaata s+| szfz)] — maXszfz (s)
with state s and weights w

= Fully observed case, observe s~ « argmax, Y w; fi(s)

values s*, dynamical system N B
where s and W evolve W — W+ Eggpa o+ [f(s7)] = f(s7)

m Then statfistics of samples s Eampies s— 1f(87)] = FEaata s+ [f(s1)]
match the data’s stafistics,
even If approximate max, as
long as w remains bounded

Herding RBMs

= Hidden part h of the state s = (x,h)

® Binomial state variables sief{-1,1}
m Stafistics f Si/ Si j
= Optimize h given xin ¢ = Eguq2+ maXZwlfl mngwifi(s)

positive phase
S~ «— argmax, Z wj fi(s

W — W+ Egarg o+ [m;}X f@™ h)] = f(s7)

® |n practice, greedy maximization works, exploiting RBM structure

Fast Mixing with Herding

1119999999

- |'-'-'"-'"-"-"-'l--|

33
nﬂﬂﬁﬂﬁﬁﬁﬁﬁ
31913 I3ISIHIHIDIS IS
b Y
SIRS9955 %55
lefeficiclciiic]E
EEkEERERE
FRIEEIEE R R i

FPCD

EEERIILTITrAIA
FALIRIERY1=)1'530s] (4]
LRI IVIAEARATY
[l r IR 1]
LT 231818 CHCH
EIEIAbICIEIFATAFARA
OIS T F]]]E
5181 0Qge | 7171/
mﬂﬂﬂﬂﬂﬂ MYl
HHMVE vk

Herding

The Sampler as a Generative Model

m |[nstead of the traditional clean separation between model and
sampling procedure

m Consider the overall effect of combining some adaptive
procedure with a sampling procedure as the generative model

m Can be evaluated as such
(without reference to some underlying probability model)

Training data (x,y) Sampled data y

Query inputs X

Tempered MCMC

m Annealing from high-temperature worked well for estimating
log-likelihood (AlS)

m Consider multiple chains at different temperatures and
reversible swaps between adjacent chains

= Higher temperature chains can escape modes

® Model samples are from T=1

Sample Generation Procedure
Training Procedure TMCMC Gibbs (ramdom start) Gibbs (test start)
TMCMC 215.45+2.24 88.43+2.75 60.04 + 2.88
PCD 44,70 £ 2.51 -28.66 + 3.28 -175.08 £ 2.99
CD -2165+0.53 -2154 £ 0.63 -842.76 £ 6.17

Deep Belief Networks

= DBN = sigmoidal belief net with RBM ha
joint for top two layers Top-level RBM

(—2 h2

P(x,h', ..., h') = P(h*~', h") (H P(h’f|h'f+1)> P(x|h')

k=1
hi

m Sampling:
« Sample from top RMB
« Sample from level k given k+1

sampled x

m Level k given level k+1 = same
parametrization as RBM conditional:
stacking RBMs - DBN

From RBM to DBN

m RBM specifies P(v,h) from
P(v|h) and P(h | V)

m Implicitly defines P(v)
and P(h)

m Keep P(v|h) from 15t RBM
and replace P(h) by the
distribution generated by
2nd level RBM

P(h,.h,) = RBM2

P(x|h,) from RBMI

sampled x

h2

hi

Deep Beliet Networks

m Fasy approximate inference hs
* P(h.|h) approximated from the Top-level Rsmg
associated RBM h2

« Approximation because P(h,)
differs between RBM and DBN

hi

® Training:

« Variational bound justifies greedy sampled x
layerwise training of RBMs

log P(x) > Hoenjx) +) Q(h[x) (log P(h) + log P(x|h))
h

« How tfo train all levels together?

Deep Boltzman Machines

(Salakhutdinov et al, AISTATS 2009, Lee et al, ICML 2009)
m Positive phase: variational

approximation (mean-field) * ha
® Negative phase: persistent chain

h2

®m Can (must) inifialize from stacked RBMs
hy

® I[mproved performance on MNIST
from 1.2% to .95% error

~
_/

m Can apply AIS with 2 hidden layers observed x

Estimating Log-Likelihood

m RBMSs: requires estimating partition function
« Reconstruction error provides a cheap proxy
« Log 7 tractable analytically for < 25 binary inputs or hidden

« Lower-bounded (how wellg) with Annealed Importance
Sampling (AlS)

m Deep Belief Networks:
Extensions of AIS (Salakhutdinov & Murray, ICML 2008, NIPS 2008)

m Open guestion: efficient ways to monitor progress

Deep Convolutional Architectures

‘ . :.
ﬁ _.m”.” _W.,._,,.g_ Y,
WY A

OOZ<OFC._|_OZ..W AWXWV

AN

MAX/SUBSAMPLING (4x4)

NN

CONVOLUTIONS AQXWV

A

if,___ _J._ R .i_:_ f,_

\;

Y (luminance)

Mostly from Le Cun’s group (NYU), also Ng (Stanford):
state-of-the-art on MNIST digits, Caltech-101 objec’rs, faces

: ' 7 ;U:
NONENY

64@25x25 64@5x5

32@33x33

32@132x132

INPUT 3@140x140

Convolutional DBNs

(Lee et al, ICML'2009)

faces, cars, airplanes, motorbikes

//‘N Pk, /\ P¥ (pooling layer)

N Hk (detection layer)

/

7
évv / "’WJ‘// v / V (visible layer)

Back to Greedy Layer-Wise Pre-Training

QOO0C000) b,

1
|
' RBM '
|
|

©000000) k! O ©OCO000 b
..... > laswuuns —_—_—— == - —_—_— = = d
_____________ > : RBM |.....: :V
©O00000) i '©oooooo) b | QOOO00D) m
| RBM : ; E
: A 4
|©OOOOO® X ' OOOOO0O x QOOOO0Y) x
- _RBJfo_rx_ - RBM for hy RBM for y and h;

Stacking Restricted Boltzmann Machines (RBM) - Deep Belief Network (DBN)
- Supervised deep neural network

Why are Classifiers Obtained from
DBNs Working so Welle

m General principles?
m Would these principles work for other single-level algorithms?

= Why does it work?

Stacking Auto-Encoders
r Q@

U
hz@OOQOOO) h;@OO(BOOO}
W, W, W,
mOOO0O00QO) hf(ooocioogk)oooo@ fr m©OOO000)
Wi Wy’ W, W,A
x ©OO0OOO000 x©OOOO0 x ©O000D)

Greedy layer-wise unsupervised pre-training also works with
auto-encoders

Auto-encoders and CD

RBM log-likelihood gradient can be written as converging
expansion: CD-k = 2 k terms, reconstruction error ~ 1 term.

g

-1

dlog P(x;) Z (l d log P(xslhs)

00 00

] L [dlog P(hg|xs41)

s=1

L or logP(x,)

:] (Bengio & Delalleau 2009)

Greedy Layerwise Supervised Training

s

U,
hz@oogooo) hz(OOOCA)OOO)
W» U, W,
lielejelelelele) hi(OOQCBQQO) y hr@OO(BQQQ}
w; Uy W, Wi
x s xQO000 x ©O000

Generally worse than unsupervised pre-training but better than
ordinary training of a deep neural network (Bengio et al. 2007).

Supervised Fine-Tuning Is Important

m Greedy layer-wise
unsupervised pre-training
phase with RBMs or auto-
encoders on MNIST

m Supervised phase with or
without unsupervised
updates, with or without
fine-tuning of hidden
layers

m Can train all RBMs at the
same fime, same results

0.10

0.05f

0.00

—— No AA, hidden supervised fine-tuning
------ No AA, no hidden supervised fine-tuning
---- AA, hidden supervised fine-tuning

- - AA, no hidden supervised fine-tuning

50 100 150

200

Sparse Auto-Encoders

(Ranzato et al, 2007; Ranzato et al 2008)

m Sparsity penalty on the intermediate codes
m Like sparse coding but with efficient run-fime encoder

m Sparsity penalty pushes up the free energy of all configurations
(proxy for minimizing the partition function)

m [mpressive results in object classification (convolutional nets):
« MNIST 5% error =record-breaking
« Caltech-101 65% correct = state-of-the-art (Jarrett et al, ICCV 2009)

m Similar results obtained with a convolutional DBN (Lee et al, ICML'2009)

Denoising Auto-Encoder
(Vincent et al, 2008)

Hidden code
(representation) KL(reconstruction | raw input)

OO0

TR
- N\

-
-
-

ROROOl- (00000) (00000)

Corrupted input Raw input reconstruction

= Corrupt the input (e.g. set 25% of inputs 1o 0)
m Reconstruct the uncorrupted input

m Use uncorrupted encoding as input to next level

Denoising Auto-Encoder

m Learns a vector field towards
higher probability regions

... N Corrupted input \
m Minimizes variational lower bound P P

on a generative model

m Similar to pseudo-likelihood

Corrupted input
A

Stacked Denoising Auto-Encoders

m No partifion function, can
measure tfraining criterion

m Fncoder & decoder:
any parametrization

m Performs as well or better
than stacking RBMs for
usupervised pre-training

m Generative model is
semi-parametric

ine classification error

Onl

o — 3 layers w/o pre-training
| T 1 layer with RBM pretraining
3 layers with RBM pre-training

e 1 layer with denoising AA pre-training [
3 layers with denoising AA pre-training |

-3
10 pros S
-4
10 oo]
W’ | ; | i ;
0 1 2 3 4 5 6 7 8 9 10
Number of examples seen <10

Infinite MNIST

Denoising Auto-Encoders: Benchmarks

basic: subset of MNIST digits. (10 000 training samples)

rot: applied random rotation (angle
between 0 and 27 radians)

bg-rand: background made of ran-
dom pixels (value in 0. ..255)

bg-img: background is random patch
from one of 20 images

rot-bg-img: combination of rotation
and background image

rect: discriminate between tall and
wide rectangles.

rect-img: same but rectangles are
random image patches

convex: discriminate between convex I D.HH.D
and non-convex shapes.

Denoising Auto-Encoders: Results

~

Problem SVM,;; DBN-1 DBN-3 SAA-3 SdA-3 (v) SVM,¢(v)
basic 3.03:015 3.94:017 3.11:015 3.46:016 2.80:014(10%) 3.07 (10%)
rot 11.11x028 14.69+031 10.30:027 10.30+027 10.29+027 (10%) 11.62 (10%)

bg-rand 14.58+031 9.80:026 6.73x022 11.28+028 10.38:027 (40%) 15.63 (25%)
bg-img 22.61+0m 16.152032 16.31x032 23.00:037 16.68:033 (25%) 23.15 (25%)
rot-bg-img 55.18+044 52.21:044 47.39:044 51.931044 44.49:044 (25%) 54.16 (10%)
rect 21503 4711019 2.60:014 2.41:013 1.99:012(10%) 2.45 (25%)
rect-img 24.04:03 23.69:037 22.50+037 24.05:037 21.59:036 (25%) 23.00 (10%)

convex 19.13+03¢ 19.92+035 18.63+03s4 18.411034 19.06+034 (10%) 24.20 (10%)

Why is Unsupervised Pre-Training
Working So Welle

m Regularization hypothesis:
« Unsupervised component forces model close to P(x)
« Representations good for P(x) are good for P(y | x)

m Opftimization hypothesis:
« Unsupervised initialization near better local minimum of P(y | x)

« Canreach lower local minimum otherwise not achievable by
random initialization

Learning Trajectories in Function Space

®m Fach point a model
in function space

m Color = epoch A
m Top: trajectories . o
w/0o pre-fraining &, o we o

® FEach trajectory
converges in
different local min.

LS
L
(

= No overlap of
regions with and
W/0 pre-training

Unsupervised learning as regularizer

®m Adding extra regularization
(reducing # hidden units)
hurts more the pre-trained
models

® Pre-trained models have
less variance wrt fraining
sample

m Regularizer = infinite
penalty outside of region
compatible with
unsupervised pre-training

Test error

Fll 7 Fl

1-layer REM 2-layer DBEN 3-layer DEN

1-layer denoising AE 2-layer SDAE 3-layer SDAE

1 layers wio pre-training 2 layers wio pre-training 3 layers wio pre-training —

Test error

1 2
10 10 10

Mumber of hidden units

3

1 2
10 10 10

Mumber of hidden units

3

Test error

1 2
10 10 10

Mumber of hidden units

3

Better optimization of online error

m Both training and online error

are smaller with unsupervised

pre-training

m As # samples 2 00
training err. = online err. =
generalization err.

= Without unsup. pre-tfraining:
can't exploit capacity to
capture complexity in target
function from fraining data

on error

Online classificati

-4
10

-5
10
0

S ——— layer without pre-training
| =3 layers without pre-training
== layer with REM pre-training

3 layers with RBM pre-training

DRI I e 1 layer with denoising auto-encoder pre-training -

.......................

P, . 3 layers with denoising auto-encoder pre-training

........

..........

............................

RN R R R R R T L E L R R TR

.................

1 2 3 4 5 6 7

Pre-training lower layers more critical

test error (perc)

- Pretrain both

18| | [Pretrain 1st only

- Histogram init
[:I Pretrain 2nd only

|:] Random init

1.3

1.2

1.1

Verifies that what
matters is Not just the
marginal distribution
over initial weight
values

(Histogram init.)

The Credit Assignment Problem

m Even with the correct gradient, lower layers (far from the
prediction, close to input) are the most difficult to train

m Lower layers benefit most from unsupervised pre-training
* Local unsupervised signal = extract / disentangle factors
« Temporal constancy
* Mutual information between multiple modalities

m Credit assignment / error information not flowing easily?

m Related to difficulty of credit assignment through time?

Level-Local Learning is Important

m |nifializing each layer of an unsupervised deep Boltzmann
machine helps a lot

m |nifializing each layer of a supervised neural network as an
RBM helps a lot

m Helps most the layers further away from the target
m Noft just an effect of unsupervised prior
m Jointly training all the levels of a deep architecture is difficult

m |nitializing using a level-local learning algorithm
(RBM, auto-encoders, etc.) is a useful trick

Semi-Supervised Embedding

m Use pairs (or triplets) of examples which are known to
represent nearby concepts (or not)

m Bring closer the intermediate representations of supposedly
similar pairs, push away the representations of randomly
chosen pairs

m (Weston, Ratle & Collobert, ICML'2008):
improved semi-supervised learning by combining
unsupervised embedding criterion with supervised gradient

Slow Features

m Successive images in a video = similar
m Randomly chosen pair of images = dissimilar

m Slowly varying features are likely to represent interesting
abstractions

Slow features
15t layer

Learning Dynamics of Deep Nets

Before fine-tuning After fine-tuning

Learning Dynamics of Deep Nets

m As weights become larger, get A

trapped in basin of attfraction
(“quadrant” does not change)

= |nitial updates have a crucial /
influence (“critical period”),

explain more of the variance 0

m Unsupervised pre-training initializes _)

in basin of attraction with good
generalization properties

Order & Selection of Examples Maftters

m Curriculum learning
(Bengio et al, ICML'2009; Krueger & Dayan 2009) " Savo.

m Start with easier examples

m Faster convergence to a better local
minimum in deep architectures —— curriculum

= = no-curriculum

m Also acts like a regularizer with
optimization effecte

® Influencing learning dynamics can
make a big difference

Continuation Methods

®Final solution

Track local minima

Easy to find minimum

Curriculum Learning as Continuation

m Seguence of
training distributions

- Easiest m |nifially peaking on
> Lowerleve easier / simpler ones

abstractions

m Gradually give more
weight fo more
3 « Most difficult examples difficult ones until
« Higher level abstractions reach Targe’r
distribution

Take-Home Messages

® Break-through in learning complicated functions:
deep architectures with distributed representations

= Multiple levels of latent variables:
potentially exponential gain in statistical sharing

= Main challenge: training deep architectures

m RBMs allow fast inference, stacked RBMs / auto-encoders
have fast approximate inference

m Unsupervised pre-training of classifiers acts like a strange
regularizer with improved optimization of online error

m At least as important as the model:
the inference approximations and the learning dynamics

Some Open Problems

m Why is it difficult to train deep architectures?

m What is important in the learning dynamics?e

® How to improve joint training of all layers?

= How to sample better from RBMs and deep generative models?
® Monitoring unsupervised learning quality in deep nets?

m Other ways to guide training of infermediate representations?

s Capturing scene structure and sequential structure?

Thank you for your attention!

m Questions?

m Commentse

