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Deep Architectures Work Well 

  Beating shallow neural networks on vision and NLP tasks 

  Beating SVMs on visions tasks from pixels (and handling dataset 
sizes that SVMs cannot handle in NLP) 

  Reaching state-of-the-art performance in NLP 

  Beating deep neural nets without unsupervised component 

  Learn visual features similar to V1 and V2 neurons 



Deep Motivations 

  Brains have a deep architecture 

  Humans organize their ideas hierarchically, through composition 
of simpler ideas 

  Insufficiently deep architectures can be exponentially inefficient 

 Distributed (possibly sparse) representations are necessary to 
achieve non-local generalization, exponentially more efficient 
than 1-of-N enumeration latent variable values 

 Multiple levels of latent variables allow combinatorial sharing of 
statistical strength 



Locally Capture the Variations 



Easy with Few Variations 



The Curse of 
Dimensionality 

   To generalise locally, 
need representative 
exemples for all 
possible variations! 



Limits of Local Generalization: 
Theoretical Results 

  Theorem: Gaussian kernel machines need at least k examples 
to learn a function that has 2k zero-crossings along some line 

  Theorem: For a Gaussian kernel machine to learn some 
maximally varying functions  over d inputs require O(2d) 
examples 

(Bengio & Delalleau 2007) 



Curse of Dimensionality When 
Generalizing Locally on a Manifold 



How to Beat the Curse of Many 
Factors of Variation? 

Compositionality: exponential gain in representational power 

•  Distributed representations 

•  Deep architecture 



Distributed Representations 

 Many neurons active simultaneously 

  Input represented by the activation of a set of features that 
are not mutually exclusive 

 Can be exponentially more efficient than local representations 



Local vs Distributed 



Neuro-cognitive inspiration 

  Brains use a distributed representation 

  Brains use a deep architecture 

  Brains heavily use unsupervised learning 

  Brains learn simpler tasks first 

  Human brains developed with    
society / culture / education 



Deep Architecture in the Brain 

Retina 

Area V1 

Area V2 

Area V4 

pixels 

Edge detectors 

Primitive shape detectors 

Higher level visual 
abstractions 



Deep Architecture in our Mind 

  Humans organize their ideas and 
concepts hierarchically 

  Humans first learn simpler concepts and 
then compose them to represent more 
abstract ones 

  Engineers break-up solutions into multiple 
levels of abstraction and processing 

 Want to learn / discover these concepts 



Deep Architectures and Sharing 
Statistical Strength, Multi-Task Learning 

 Generalizing better to new 
tasks is crucial to approach 
AI 

 Deep architectures learn 
good intermediate 
representations that can be 
shared across tasks 

 A good representation is one 
that makes sense for many 
tasks 

raw input x 

task 1  
output y1 

task 3  
output y3 

task 2 
output y2 

shared 
intermediate 
representation h 



Feature and 
Sub-Feature Sharing 

 Different tasks can share the same 
high-level feature 

 Different high-level features can be 
built from the same set of lower-level 
features 

 More levels = up to exponential gain 
in representational efficiency … 

… 

… 

… 

… 

task 1  
output y1 

task N  
output yN 

High-level features 

Low-level features 



Architecture Depth 

Depth = 3 Depth = 4 



Deep Architectures are More Expressive 

… 
1 2 3 2

n 

1 2 3
… 

n 

= universal approximator 2 layers of 
Logic gates 
Formal neurons 
RBF units 

Theorems for all 3: 
(Hastad et al 86 & 91, Bengio et al 2007) 

Functions compactly 
represented with k layers may 
require exponential size with k-1 
layers 



Sharing Components in a Deep Architecture 

Polynomial expressed 
with shared components:  

advantage of depth may 
grow exponentially 



How to train Deep Architecture? 

 Great expressive power of deep architectures 

  How to train them? 



The Deep Breakthrough 
  Before 2006, training deep architectures was unsuccessful, 

except for convolutional neural nets 

  Hinton, Osindero & Teh « A Fast Learning Algorithm for Deep 
Belief Nets », Neural Computation, 2006 

  Bengio, Lamblin, Popovici, Larochelle « Greedy Layer-Wise 
Training of Deep Networks », NIPS’2006 

  Ranzato, Poultney, Chopra, LeCun « Efficient Learning of 
Sparse Representations with an Energy-Based Model », 
NIPS’2006 



Greedy Layer-Wise Pre-Training 

Stacking Restricted Boltzmann Machines (RBM)  Deep Belief Network (DBN) 
                                                                                    Supervised deep neural network 



Good Old  
Multi-Layer Neural Net 

  Each layer outputs vector                                                                                    
                       from           

of previous layer with params       
(vector) and         (matrix). 

 Output layer predicts parametrized 
distribution of target variable Y given 
input 

… 

… 

… 

… 

… 



Training Multi-Layer Neural Nets 

 Outputs: e.g. multinomial for multiclass 
classification with softmax output units  

  Parameters are trained by gradient-based 
optimization of training criterion involving 
conditional log-likelihood, e.g. 

… 

… 

… 

… 

… 



Effect of Unsupervised Pre-training 
AISTATS’2009  



Effect of Depth 
w/o pre-training with pre-training 



Boltzman Machines and MRFs 

  Boltzmann machines: 
   (Hinton 84) 

 Markov Random Fields: 

       More interesting with latent variables! 

          



Restricted Boltzman Machine 

  The most popular 
building block for 
deep architectures 

  Bipartite undirected 
graphical model 

      observed 

hidden 



RBM with (image, label) visible units 

 Can predict a subset y 
of the visible units 
given the others x 

  Exactly if y takes only 
few values 

 Gibbs                 
sampling o/w  

      

label 

hidden 

image 



RBMs are Universal Approximators 

 Adding one hidden unit (with proper choice of parameters) 
guarantees increasing likelihood  

 With enough hidden units, can perfectly model any discrete 
distribution 

  RBMs with variable nb of hidden units = non-parametric 

 Optimal training criterion for RBMs which will be stacked into a 
DBN is not the RBM likelihood 

(LeRoux & Bengio 2008, Neural Comp.) 



RBM Conditionals Factorize 



RBM Energy Gives Binomial Neurons 



RBM Hidden Units Carve Input Space 

h1 h2 h3 

x1 x2 



Gibbs Sampling in RBMs 

P(h|x) and P(x|h) factorize 

 h1 ~ P(h|x1)  

 x2 ~ P(x|h1)   x3 ~ P(x|h2)   x1 

 h2 ~ P(h|x2)   h3 ~ P(h|x3)  

  Easy inference 

 Convenient Gibbs sampling 
xhxh…  



Problems with Gibbs Sampling 

In practice, Gibbs sampling does not always mix well… 

Chains from random state 

Chains from real digits 

RBM trained by CD on MNIST 



  Free Energy = equivalent energy when marginalizing 

 Can be computed exactly and efficiently in RBMs 

 Marginal likelihood P(x) tractable up to partition function Z 

RBM Free Energy 



Factorization of the Free Energy 
Let the energy have the following general form: 

Then 



Energy-Based Models Gradient 



Boltzmann Machine Gradient 

 Gradient has two components: 

  In RBMs, easy to sample or sum over h|x 
 Difficult part: sampling from P(x), typically with a Markov chain 

 “negative phase”  “positive phase” 



Training RBMs 
Contrastive Divergence:  

(CD-k) 
start negative Gibbs chain at  
observed x, run k Gibbs steps 

Persistent CD: 
(PCD)  

run negative Gibbs chain in  
background while weights slowly  
change 

Fast PCD: two sets of weights, one with a large 
learning rate only used for negative  
phase, quickly exploring modes 

Herding: Deterministic near-chaos dynamical  
system defines both learning and sampling 

Tempered MCMC: use higher temperature to escape  
modes 



Contrastive Divergence 
Contrastive Divergence (CD-k): start negative phase block 
Gibbs chain at observed x, run k Gibbs steps (Hinton 2002) 

Sampled x’ 
negative phase 

Observed x 
positive phase 

 h ~ P(h|x)  h’ ~ P(h|x’) 

k = 2 steps 

x x’ 

Free Energy 

push down 

push up 



Persistent CD (PCD) 
Run negative Gibbs chain in background while weights slowly 
change (Younes 2000, Tieleman 2008): 

Observed x 
(positive phase) 

new x’ 

 h ~ P(h|x) 

previous x’ 

•  Guarantees (Younes 89, 2000; Yuille 2004) 

•  If learning rate decreases in 1/t,  

   chain mixes before parameters change too much,  

   chain stays converged when parameters change 



Negative phase samples quickly push up the energy of 
wherever they are and quickly move to another mode 

x 

x’ 

FreeEnergy 
push 
down 

push 
up 

Persistent CD with large learning rate 



Persistent CD with large step size 

Negative phase samples quickly push up the energy of 
wherever they are and quickly move to another mode 

x 

x’ 

FreeEnergy 
push 
down 



Negative phase samples quickly push up the energy of 
wherever they are and quickly move to another mode 

x 

x’ 

FreeEnergy 
push 
down 

push 
up 

Persistent CD with large learning rate 



Fast Persistent CD and Herding 

  Exploit impressively faster mixing achieved when parameters 
change quickly (large learning rate) while sampling 

  Fast PCD: two sets of weights, one with a large learning rate 
only used for negative phase, quickly exploring modes 

  Herding (see Max Welling’s ICML, UAI and workshop talks):       
0-temperature MRFs and RBMs, only use fast weights 



Herding MRFs 
 Consider 0-temperature MRF 

with state s and weights w 

  Fully observed case, observe 
values s+, dynamical system 
where s- and W evolve 

  Then statistics of samples s- 
match the data’s statistics,  
even if approximate max, as 
long as w remains bounded 



Herding RBMs 

  Hidden part h of the state s = (x,h) 

  Binomial state variables si ∈ {-1,1} 

  Statistics f si, si sj 

 Optimize h given x in     the 
positive phase 

  In practice, greedy maximization works, exploiting RBM structure  



Fast Mixing with Herding 

FPCD Herding 



The Sampler as a Generative Model 

  Instead of the traditional clean separation between model and 
sampling procedure 

 Consider the overall effect of combining some adaptive 
procedure with a sampling procedure as the generative model 

 Can be evaluated as such                                                   
(without reference to some underlying probability model) 

Training data (x,y) Sampled data y 

Query inputs x 



 Annealing from high-temperature worked well for estimating 
log-likelihood (AIS) 

 Consider multiple chains at different temperatures and 
reversible swaps between adjacent chains 

  Higher temperature chains can escape modes 

 Model samples are from T=1 

Tempered MCMC 

Sample Generation Procedure 

Training Procedure TMCMC Gibbs (ramdom start) Gibbs (test start) 

TMCMC 215.45 ± 2.24 88.43 ± 2.75 60.04 ± 2.88 

PCD 44.70 ± 2.51 -28.66 ± 3.28 -175.08 ± 2.99 

CD -2165 ± 0.53 -2154 ± 0.63 -842.76 ± 6.17 



Deep Belief Networks 

sampled x 

h1 

h2 

h3 

Top-level RBM 

 DBN = sigmoidal belief net with RBM 
joint for top two layers 

  Sampling: 

•  Sample from top RMB 

•  Sample from level k given k+1 

  Level k given level k+1 = same 
parametrization as RBM conditional: 
stacking RBMs  DBN 



From RBM to DBN 

  RBM specifies P(v,h) from 
P(v|h) and P(h|v) 

  Implicitly defines P(v)   
and P(h) 

  Keep P(v|h) from 1st RBM 
and replace P(h) by the 
distribution generated by 
2nd level RBM 

sampled x 

h1 

h2 

P(x|h1) from RBM1 

P(h1,h2) = RBM2 



Deep Belief Networks 
  Easy approximate inference 

•  P(hk+1|hk) approximated from the 
associated RBM 

•  Approximation because P(hk+1) 
differs between RBM and DBN 

  Training: 

•  Variational bound justifies greedy 
layerwise training of RBMs 

•  How to train all levels together? 

sampled x 

h1 

h2 

h3 

Top-level RBM 



Deep Boltzman Machines 
(Salakhutdinov et al, AISTATS 2009, Lee et al, ICML 2009) 

  Positive phase: variational 
approximation (mean-field)  

 Negative phase: persistent chain 

 Can (must) initialize from stacked RBMs 

  Improved performance on MNIST    
from 1.2% to .95% error 

 Can apply AIS with 2 hidden layers observed x 

h1 

h2 

h3 



Estimating Log-Likelihood 

  RBMs: requires estimating partition function 

•  Reconstruction error provides a cheap proxy 

•  Log Z tractable analytically for < 25 binary inputs or hidden 

•  Lower-bounded (how well?) with Annealed Importance 
Sampling (AIS) 

 Deep Belief Networks: 

 Extensions of AIS (Salakhutdinov & Murray, ICML 2008, NIPS 2008) 

 Open question: efficient ways to monitor progress 



Deep Convolutional Architectures 
Mostly from Le Cun’s group (NYU), also Ng (Stanford):  
state-of-the-art on MNIST digits, Caltech-101 objects, faces 



Convolutional DBNs 
(Lee et al, ICML’2009) 



Back to Greedy Layer-Wise Pre-Training 

Stacking Restricted Boltzmann Machines (RBM)  Deep Belief Network (DBN) 
                                                                                    Supervised deep neural network 



Why are Classifiers Obtained from 
DBNs Working so Well? 

 General principles? 

 Would these principles work for other single-level algorithms? 

 Why does it work? 



Stacking Auto-Encoders 

Greedy layer-wise unsupervised pre-training also works with 
auto-encoders 



Auto-encoders and CD 

RBM log-likelihood gradient can be written as converging 
expansion: CD-k = 2 k terms, reconstruction error ~ 1 term. 

(Bengio & Delalleau 2009) 



Greedy Layerwise Supervised Training 

Generally worse than unsupervised pre-training but better than 
ordinary training of a deep neural network (Bengio et al. 2007). 



Supervised Fine-Tuning is Important 
 Greedy layer-wise 

unsupervised pre-training 
phase with RBMs or auto-
encoders on MNIST 

  Supervised phase with or 
without unsupervised 
updates, with or without 
fine-tuning of hidden 
layers 

 Can train all RBMs at the 
same time, same results 



Sparse Auto-Encoders 

  Sparsity penalty on the intermediate codes 

  Like sparse coding but with efficient run-time encoder 

  Sparsity penalty pushes up the free energy of all configurations 
(proxy for minimizing the partition function) 

  Impressive results in object classification (convolutional nets): 

•  MNIST             .5% error      = record-breaking 

•  Caltech-101 65% correct = state-of-the-art (Jarrett et al, ICCV 2009)     

  Similar results obtained with a convolutional DBN (Lee et al, ICML’2009) 

(Ranzato et al, 2007; Ranzato et al 2008) 



Denoising Auto-Encoder 

 Corrupt the input (e.g. set 25% of inputs to 0) 

  Reconstruct the uncorrupted input 

  Use uncorrupted encoding as input to next level 

KL(reconstruction|raw input) 
  Hidden code 
(representation) 

Corrupted input Raw input reconstruction 

(Vincent et al, 2008) 



Denoising Auto-Encoder 
  Learns a vector field towards 

higher probability regions 

 Minimizes variational lower bound 
on a generative model 

  Similar to pseudo-likelihood 

Corrupted input 

Corrupted input 



Stacked Denoising Auto-Encoders 

 No partition function, can 
measure training criterion 

  Encoder & decoder:       
any parametrization 

  Performs as well or better 
than stacking RBMs for 
usupervised pre-training 

 Generative model is     
semi-parametric 

Infinite MNIST 



Denoising Auto-Encoders: Benchmarks 



Denoising Auto-Encoders: Results 



Why is Unsupervised Pre-Training 
Working So Well? 

  Regularization hypothesis:  
•  Unsupervised component forces model close to P(x) 

•  Representations good for P(x) are good for P(y|x)  

 Optimization hypothesis: 
•  Unsupervised initialization near better local minimum of P(y|x) 

•  Can reach lower local minimum otherwise not achievable by 
random initialization 



Learning Trajectories in Function Space 
  Each point a model 

in function space 

 Color = epoch 

  Top: trajectories      
w/o pre-training 

  Each trajectory 
converges in 
different local min. 

 No overlap of 
regions with and     
w/o pre-training 



Unsupervised learning as regularizer 

 Adding extra regularization 
(reducing # hidden units) 
hurts more the pre-trained 
models 

  Pre-trained models have 
less variance wrt training 
sample 

  Regularizer = infinite 
penalty outside of region 
compatible with 
unsupervised pre-training 



Better optimization of online error 

  Both training and online error 
are smaller with unsupervised 
pre-training 

 As # samples             
training err. = online err. = 
generalization err. 

 Without unsup. pre-training: 
can’t exploit capacity to 
capture complexity in target 
function from training data 



Pre-training lower layers more critical 

Verifies that what 
matters is not just the 
marginal distribution 
over initial weight 
values  

(Histogram init.)  



The Credit Assignment Problem 

  Even with the correct gradient, lower layers (far from the 
prediction, close to input) are the most difficult to train 

  Lower layers benefit most from unsupervised pre-training 
•  Local unsupervised signal = extract / disentangle factors 

•  Temporal constancy 

•  Mutual information between multiple modalities 

 Credit assignment / error information not flowing easily? 

  Related to difficulty of credit assignment through time?  



Level-Local Learning is Important 
  Initializing each layer of an unsupervised deep Boltzmann 

machine helps a lot  

  Initializing each layer of a supervised neural network as an 
RBM helps a lot 

  Helps most the layers further away from the target 

 Not just an effect of unsupervised prior 

  Jointly training all the levels of a deep architecture is difficult 

  Initializing using a level-local learning algorithm                
(RBM, auto-encoders, etc.) is a useful trick   



Semi-Supervised Embedding 

  Use pairs (or triplets) of examples which are known to 
represent nearby concepts (or not) 

  Bring closer the intermediate representations of supposedly 
similar pairs, push away the representations of randomly 
chosen pairs 

  (Weston, Ratle & Collobert, ICML’2008):                           
improved semi-supervised learning by combining 
unsupervised embedding criterion with supervised gradient 



Slow Features 

  Successive images in a video = similar 

  Randomly chosen pair of images = dissimilar 

  Slowly varying features are likely to represent interesting 
abstractions 

Slow features 
1st layer 



Learning Dynamics of Deep Nets 

Before fine-tuning After fine-tuning 



Learning Dynamics of Deep Nets 
 As weights become larger, get 

trapped in basin of attraction 
(“quadrant” does not change) 

  Initial updates have a crucial 
influence (“critical period”), 
explain more of the variance 

  Unsupervised pre-training initializes 
in basin of attraction with good 
generalization properties 

0



Order & Selection of Examples Matters 

 Curriculum learning  
(Bengio et al, ICML’2009; Krueger & Dayan 2009)   

  Start with easier examples 

  Faster convergence to a better local 
minimum in deep architectures 

 Also acts like a regularizer with 
optimization effect? 

  Influencing learning dynamics can 
make a big difference 



Continuation Methods 

Track local minima 

Final solution 

Easy to find minimum 



3 •  Most difficult examples 
•  Higher level abstractions 

2 

Curriculum Learning as Continuation 

  Sequence of 
training distributions 

  Initially peaking on 
easier / simpler ones 

 Gradually give more 
weight to more 
difficult ones until 
reach target 
distribution 

1 
•  Easiest 
•  Lower level 
   abstractions 



Take-Home Messages 
  Break-through in learning complicated functions:                  

deep architectures with distributed representations 

 Multiple levels of latent variables:                                      
potentially exponential gain in statistical sharing 

 Main challenge: training deep architectures 

  RBMs allow fast inference, stacked RBMs / auto-encoders   
have fast approximate inference 

  Unsupervised pre-training of classifiers acts like a strange 
regularizer with improved optimization of online error 

 At least as important as the model:                                             
the inference approximations and the learning dynamics 



Some Open Problems 
 Why is it difficult to train deep architectures? 

 What is important in the learning dynamics? 

  How to improve joint training of all layers? 

  How to sample better from RBMs and deep generative models? 

 Monitoring unsupervised learning quality in deep nets? 

 Other ways to guide training of intermediate representations? 

 Capturing scene structure and sequential structure? 



Thank you for your attention! 
 Questions? 

 Comments? 


