
Mixture Models and EM

Goal: Introduction to probabilistic mixture models and the expectation-

maximization (EM) algorithm.

Motivation:

• simultaneous fitting of multiple model instances

• unsupervised clustering of data

• coping with missing data
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Model Fitting: Density Estimation

Let’s say we want to model the distribution of a set of scalar observa-

tions{dk}
K
k=1.

Non-parametric model: Compute a histogram.

Parametric model: Fit an analytic density function to the data.

For example, if we assume the samples were drawn from a Gaussian

distribution, then we could fit a Gaussian density to the databy com-

puting the sample mean and variance:

µ =
1

K

∑

k

dk , σ2 =
1

K − 1

∑

k

(dk − µ)2

Right plot shows a histogram of 150 IID samples drawn from the
Gaussian density on the left (dashed). Overlaid is the estimated Gaus-
sian model (solid).
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Model Fitting: Multiple Data Modes

When the data come from two different sources (e.g., two distinct

physical processes), then a single Gaussian density function will not

fit the data well.

Missing Data: If the assignment of observations to the two modes

wereknown, then we could easily solve for the means and variances

using sample statistics, as before, but only incorporatingthose data

assigned to their respective models.

Soft Assignments: But we don’t know the assignments of pixels to

the two Gaussians. So instead, let’s infer them:

Using Bayes’ rule, the probability thatdk is owned (i.e., generated)

by modelMn is

p(Mn | dk) =
p(dk |Mn) p(Mn)

p(dk)
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Ownership (example)

Above we drew samples from two Gaussians in equal proportions, so

p(M1) = p(M2) =
1

2
, and p(dk |Mn) = G(dk; µn, σ

2
n)

whereG(d; µ, σ2) is a Gaussian pdf with meanµ and varianceσ2

evaluated atd. And rememberp(dk) =
∑

n p(dk |Mn) p(Mn) .

So, theownerships, qn(dk) ≡ p(Mn | dk), then reduce to

q1(dk) =
G(dk; µ1, σ

2
1)

G(dk; µ1, σ2
1) + G(dk; µ2, σ2

2)
, and q2(dk) = 1−q1(dk)

For the 2-component

density below:

Then, the Gaussian parameters are given by weighted sample stats:

µn =
1

Sn

∑

k

qn(dk)dk , σ2
n =

1

Sn

∑

k

qn(dk)(dk−µn)
2 , Sn =

∑

k

qn(dk)

D11: Mixture Models and EM Page: 4



Mixture Model

Assume

• N processes,{Mn}
N
n=1, each of which generates some data (or

measurements).

• Each sampled from processMn is IID with densitypn(d |~an),

where~an denotes parameters for processMn.

• The proportion of the entire data set produced solely byMn is

denotedmn = p(Mn) (it’s called amixing probability).

Generative Process: First, randomly select one of theN processes

according to the mixing probabilities,~m ≡ (m1, ..., mN). Then,

givenn, generate a sample from the observation densitypn(d |~an).

Mixture Model Likelihood: The probability of observing a datum

d from the collection ofN processes is given by their linear mixture:

p(d |M) =
N
∑

n=1

mn pn(d |~an)

Themixture model, M, comprises~m, and the parameters,{~an}
N
n=1.

Mixture Model Inference: Given K IID observations (the data),

{dk}
K
k=1, our goal is to estimate the mixture model parameters.

Remarks: One may also wish to estimateN and the parametric form
of each component, but that’s outside the scope of these notes.
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Expectation-Maximization (EM) Algorithm

EM is an iterative algorithm for parameter estimation, especially use-

ful when one formulates the estimation problem in terms ofobserved

andmissing data.

• Observed data are theK intensities. Missing data are the assign-

ments of observations to model components,zn(dk) ∈ {0, 1}.

Each EM iteration comprises an E-step and an M-step:

E-Step: Compute the expected values of the missing data given the

current model parameter estimate. For mixture models one can

show this gives the ownership probability: E[zn(dk)] = qn(dk).

M-Step: Compute ML model parameters given observed data and

the expected value of the missing data. For mixture models this

yields a weighted regression problem for each model component:

K
∑

k=1

qn(dk)
∂

∂~an
log pn(dk |~an) = ~0 .

and the mixing probabilities aremn = 1
K

∑K
k=1 qn(dk).

Remarks:

• Each EM iteration can be shown to increase the likelihood of the
observed data given the model parameters.

• EM converges to local maxima (not necessarily global maxima).

• An initial guess is required (e.g., random ownerships).
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Derivation of EM for Mixture Models

The mixture model likelihood function is given by:

p
(

{dk}
K
k=1 |M

)

=

K
∏

k=1

p (dk |M) =

K
∏

k=1

N
∑

n=1

mn pn(dk |~an)

whereM ≡
(

~m, {~an}
N
n=1

)

. The log likelihood is then given by

L(M) = log p
(

{dk}
K
k=1 |M

)

=
K
∑

k=1

log

(

N
∑

n=1

mn pn(dk |~an)

)

Our goal is to find extrema of the log likelihood function subject to the constraint that the mixing

probabilities sum to 1. The constraint that
∑

n mn = 1 can be included with a Lagrange multiplier.

Accordingly, the following conditions can be shown to hold at the extrema of the objective function:

1

K

K
∑

k=1

qn(dk) = mn

and

∂L

∂~an

=
K
∑

k=1

qn(dk)
∂

∂~an

log pn(dk |~an) = ~0 .

The first condition is easily derived from the derivative of the log likliehood with respect tomn,

along with the Lagrange multiplier.

The second condition is more involved as we show here, beginning with form of the derivative of

the log likelihood with respect to the motion parameters forthemth component:

∂L

∂~an

=

K
∑

k=1

1
∑N

n=1 mn pn(dk |~an)

∂

∂~an

(

N
∑

n=1

mn pn(dk |~an)

)

=
K
∑

k=1

mn
∑N

n=1 mn pn(dk |~an)

∂

∂~an

pn(dk |~an)

=

K
∑

k=1

mnpn(dk |~an)
∑N

n=1 mn pn(dk |~an)

∂

∂~an

log pn(dk |~an)

The last step is an algebraic manipulation that uses the factthat ∂ log p(a)
∂a

= 1
p(a)

∂p(a)
∂a

.
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Derivation of EM for Mixture Models (cont)

Notice that this equation can be greatly simplified because each term in the sum is really the product

of the ownership probabilityqn(dk) and the derivative of the component log likelihood. Therefore

∂L

∂~an

=
K
∑

k=1

qn(dk)
∂

∂~an

log pn(dk |~an)

This is just a weighted log likelihood. In the case of a Gaussian component likelihood,pn(dk |~an),

this is the derivative of a weighted least-squares error. Thus, setting∂L/∂~an = ~0 in the Gaussian

case yields a weighted least-squares estimate for~an.
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Examples

Example 1: Two distant modes. (We don’t necessarily need EM here
sincehard assignments would be simple to determine, and reasonably
efficient statistically.)

Example 2: Two nearby modes. (Here, the soft ownerships are
essential to the estimation of the mode locations and variances.)
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More Examples

Example 3: Nearby modes with uniformly distributed outliers. The
model is a mixture of two Gaussians and a uniform outlier process.

Example 4: Four modes and uniform noise present a challenge to
EM. With only 1000 samples the model fit is reasonably good.
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