
11

Hence,

∇θJ(θ) = ∇θ

1

2
(Xθ − �y)T (Xθ − �y)

=
1

2
∇θ

�
θTXTXθ − θTXT�y − �yTXθ + �yT�y

�

=
1

2
∇θ tr

�
θTXTXθ − θTXT�y − �yTXθ + �yT�y

�

=
1

2
∇θ

�
tr θTXTXθ − 2tr �yTXθ

�

=
1

2

�
XTXθ +XTXθ − 2XT�y

�

= XTXθ −XT�y

In the third step, we used the fact that the trace of a real number is just the
real number; the fourth step used the fact that trA = trAT , and the fifth
step used Equation (5) with AT = θ, B = BT = XTX, and C = I, and
Equation (1). To minimize J , we set its derivatives to zero, and obtain the
normal equations:

XTXθ = XT�y

Thus, the value of θ that minimizes J(θ) is given in closed form by the
equation

θ = (XTX)−1XT�y.

3 Probabilistic interpretation

When faced with a regression problem, why might linear regression, and
specifically why might the least-squares cost function J , be a reasonable
choice? In this section, we will give a set of probabilistic assumptions, under
which least-squares regression is derived as a very natural algorithm.

Let us assume that the target variables and the inputs are related via the
equation

y(i) = θTx(i) + �(i),

where �(i) is an error term that captures either unmodeled effects (such as
if there are some features very pertinent to predicting housing price, but
that we’d left out of the regression), or random noise. Let us further assume
that the �(i) are distributed IID (independently and identically distributed)
according to a Gaussian distribution (also called a Normal distribution) with

12

mean zero and some variance σ2. We can write this assumption as “�(i) ∼
N (0, σ2).” I.e., the density of �(i) is given by

p(�(i)) =
1

√
2πσ

exp

�

−
(�(i))2

2σ2

�

.

This implies that

p(y(i)|x(i); θ) =
1

√
2πσ

exp

�

−
(y(i) − θTx(i))2

2σ2

�

.

The notation “p(y(i)|x(i); θ)” indicates that this is the distribution of y(i)

given x(i) and parameterized by θ. Note that we should not condition on θ

(“p(y(i)|x(i), θ)”), since θ is not a random variable. We can also write the
distribution of y(i) as as y(i) | x(i); θ ∼ N (θTx(i), σ2).

Given X (the design matrix, which contains all the x(i)’s) and θ, what
is the distribution of the y(i)’s? The probability of the data is given by
p(�y|X; θ). This quantity is typically viewed a function of �y (and perhaps X),
for a fixed value of θ. When we wish to explicitly view this as a function of
θ, we will instead call it the likelihood function:

L(θ) = L(θ;X, �y) = p(�y|X; θ).

Note that by the independence assumption on the �(i)’s (and hence also the
y(i)’s given the x(i)’s), this can also be written

L(θ) =
m�

i=1

p(y(i) | x(i); θ)

=
m�

i=1

1
√
2πσ

exp

�

−
(y(i) − θTx(i))2

2σ2

�

.

Now, given this probabilistic model relating the y(i)’s and the x(i)’s, what
is a reasonable way of choosing our best guess of the parameters θ? The
principal of maximum likelihood says that we should should choose θ so
as to make the data as high probability as possible. I.e., we should choose θ

to maximize L(θ).
Instead of maximizing L(θ), we can also maximize any strictly increasing

function of L(θ). In particular, the derivations will be a bit simpler if we

13

instead maximize the log likelihood �(θ):

�(θ) = logL(θ)

= log

m�

i=1

1
√
2πσ

exp

�

−
(y(i) − θTx(i))2

2σ2

�

=
m�

i=1

log
1

√
2πσ

exp

�

−
(y(i) − θTx(i))2

2σ2

�

= m log
1

√
2πσ

−
1

σ2
·
1

2

m�

i=1

(y(i) − θTx(i))2.

Hence, maximizing �(θ) gives the same answer as minimizing

1

2

m�

i=1

(y(i) − θTx(i))2,

which we recognize to be J(θ), our original least-squares cost function.
To summarize: Under the previous probabilistic assumptions on the data,

least-squares regression corresponds to finding the maximum likelihood esti-
mate of θ. This is thus one set of assumptions under which least-squares re-
gression can be justified as a very natural method that’s just doing maximum
likelihood estimation. (Note however that the probabilistic assumptions are
by no means necessary for least-squares to be a perfectly good and rational
procedure, and there may—and indeed there are—other natural assumptions
that can also be used to justify it.)

Note also that, in our previous discussion, our final choice of θ did not
depend on what was σ2, and indeed we’d have arrived at the same result
even if σ2 were unknown. We will use this fact again later, when we talk
about the exponential family and generalized linear models.

4 Locally weighted linear regression

Consider the problem of predicting y from x ∈ R. The leftmost figure below
shows the result of fitting a y = θ0 + θ1x to a dataset. We see that the data
doesn’t really lie on straight line, and so the fit is not very good.

14

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y

Instead, if we had added an extra feature x2, and fit y = θ0 + θ1x+ θ2x
2,

then we obtain a slightly better fit to the data. (See middle figure) Naively, it
might seem that the more features we add, the better. However, there is also
a danger in adding too many features: The rightmost figure is the result of
fitting a 5-th order polynomial y =

�5
j=0 θjx

j. We see that even though the
fitted curve passes through the data perfectly, we would not expect this to
be a very good predictor of, say, housing prices (y) for different living areas
(x). Without formally defining what these terms mean, we’ll say the figure
on the left shows an instance of underfitting—in which the data clearly
shows structure not captured by the model—and the figure on the right is
an example of overfitting. (Later in this class, when we talk about learning
theory we’ll formalize some of these notions, and also define more carefully
just what it means for a hypothesis to be good or bad.)

As discussed previously, and as shown in the example above, the choice of
features is important to ensuring good performance of a learning algorithm.
(When we talk about model selection, we’ll also see algorithms for automat-
ically choosing a good set of features.) In this section, let us talk briefly talk
about the locally weighted linear regression (LWR) algorithm which, assum-
ing there is sufficient training data, makes the choice of features less critical.
This treatment will be brief, since you’ll get a chance to explore some of the
properties of the LWR algorithm yourself in the homework.

In the original linear regression algorithm, to make a prediction at a query
point x (i.e., to evaluate h(x)), we would:

1. Fit θ to minimize
�

i(y
(i) − θTx(i))2.

2. Output θTx.

In contrast, the locally weighted linear regression algorithm does the fol-
lowing:

1. Fit θ to minimize
�

i w
(i)(y(i) − θTx(i))2.

2. Output θTx.

15

Here, the w(i)’s are non-negative valued weights. Intuitively, if w(i) is large
for a particular value of i, then in picking θ, we’ll try hard to make (y(i) −
θTx(i))2 small. If w(i) is small, then the (y(i) − θTx(i))2 error term will be
pretty much ignored in the fit.

A fairly standard choice for the weights is4

w(i) = exp

�

−
(x(i) − x)2

2τ 2

�

Note that the weights depend on the particular point x at which we’re trying
to evaluate x. Moreover, if |x(i) − x| is small, then w(i) is close to 1; and
if |x(i) − x| is large, then w(i) is small. Hence, θ is chosen giving a much
higher “weight” to the (errors on) training examples close to the query point
x. (Note also that while the formula for the weights takes a form that is
cosmetically similar to the density of a Gaussian distribution, the w(i)’s do
not directly have anything to do with Gaussians, and in particular the w(i)

are not random variables, normally distributed or otherwise.) The parameter
τ controls how quickly the weight of a training example falls off with distance
of its x(i) from the query point x; τ is called the bandwidth parameter, and
is also something that you’ll get to experiment with in your homework.

Locally weighted linear regression is the first example we’re seeing of a
non-parametric algorithm. The (unweighted) linear regression algorithm
that we saw earlier is known as a parametric learning algorithm, because
it has a fixed, finite number of parameters (the θi’s), which are fit to the
data. Once we’ve fit the θi’s and stored them away, we no longer need to
keep the training data around to make future predictions. In contrast, to
make predictions using locally weighted linear regression, we need to keep
the entire training set around. The term “non-parametric” (roughly) refers
to the fact that the amount of stuff we need to keep in order to represent the
hypothesis h grows linearly with the size of the training set.

4If x is vector-valued, this is generalized to be w(i) = exp(−(x(i)−x)T (x(i)−x)/(2τ2)),
or w(i) = exp(−(x(i) − x)TΣ−1(x(i) − x)/2), for an appropriate choice of τ or Σ.

