
CSCC11 Principal Component Analysis

14 Principal Component Analysis

We now turn to consider a form of unsupervised learning called Principal Component Analysis

(PCA), a technique for dimensionality reduction. The goal of PCA, roughly speaking, is to find a

low-dimensional representation of high dimensional data. It is an unsupervised in the sense that

we are not given examples of such mappings (or embeddings). Rather, we are given a collection

of high-dimsional data (e.g., images), and we need to learn a low-dimensional representation (or

latent embedding) and the mapping from the observations space (i.e., the high-dimensional data) to

the latent embedding space (i.e., the low-dimensional representtion). The goal of PCA specifically

is to find the best possible linear mapping from data to a linear subspace of the observation space.

The fact that an effective low-dimensional representation should exist in the first place is based

on the intuition that many high-dimensional data have low-dimensional underlying (physical)

causes. In other words, the data often exhibit regularities or redundancy, such that data points

can often be modelled well as a linear combination of other data points. PCA is one of the simplest

approaches to dimensionality reduction. It is fast and effective, and widely used.

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

Figure 14.1: Here are two sets of 2D points y ∈ R
2. The points in the left scatter plot fill the 2D

space while those on the right are well approximated by a 1D subspace (in this case, along the line

y1 = y2. We might therefore approximate the data on the right by projecting it onto a 1D subspace.

That is, if we represent each datapoint in terms of the closest point on the line y1 = y2, then we

can represent each 2D point with just one value (i.e., where it is along the line). The error in such

a 1D representation would be the distances between points and the line.

Indeed, PCA has been developed independently in several distinct research communities, from

different perspectives, and for different tasks. As such, there are different perspectives on its

motivation and use:

• Visualization: High-dimensional data are extremely hard to visualize, e.g., to see how dis-

joint two different categories of feature vectors might be, or to see how noisy some mea-

surements are. PCA provides a way to project high-dimensional data onto two or three

dimensions for purposes of easy visualization.

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 84

CSCC11 Principal Component Analysis

• Pre-processing: Learning regression and classification models from high-dimensional data

is often difficult, in part because the number of model parameters often grows with the

dimension of the feature space. This will be true with other techniques we discuss later in

the notes (e.g., on clustering). As a consequence, learning is often very slow slow and prone

to over-fitting. This is sometimes called the curse of dimensionality. PCA can be used to

first map the data to a low-dimensional feature space before applying a more sophisticated

algorithm to it. With PCA one can also whiten the representation, which rebalances the

weights of the data to give better performance in some cases (e.g., with artificial neural

networks)..

• Prior Modeling: Bayesian techniques often require generative models to serve as prior

models of some process or class of observations (e.g., images of faces). Such models were

used above in generative approaches to classification. A probabilistic form of PCA can be

used to learn a low-dimensional Gaussian model for data.

• Compression: One of the early uses of PCA was data compression. If one can find a low-

dimensional representation of a high-dimensional image, for example, then one can use such

a representation to store and transmit data more efficiently.

For all these tasks, we want to find a low-dimensional representation of high-dimensional data that

captures as much of the structure of the data as possible, but with relatively few parameters.

14.1 Modelling and Learning

In PCA we assume we are given N , d-dimensional data vectors {yi}
N
i=1, where yi ∈ R

d. Our

goal is to replace these vectors with lower-dimensional vectors {xi}, with dimensionality k, where

k ≪ d. In particular, let’s further assume a simple mapping of the form

y =
k
∑

j=1

wjxj + b = Wx+ b . (14.1)

Here, the matrix W comprises the k basis vectors, W = [w1, ...,wk]. If we also assume Gaussian

noise in the measurements, then this model is looks just like the linear regression model studied

above, but note that in this case, both the matrix W and the x’s are unknown, while in regression

we were given training data comprising both x and y. Since they are not known a priori, the x

coordinates here are often called latent coordinates.

One way to learn the model is to solve the following constrained least-squares problem:

arg min
W,b,{xi}

∑

i

||yi − (Wxi + b) ||2 (14.2)

subject to WTW = Ik , (14.3)

where Ik is the k × k identity matrix. The constraint WTW = Ik requires that we obtain an

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 85

CSCC11 Principal Component Analysis

orthonormal mapping W;1 i.e.,

wT
i wj =

{

1 i = j
0 i 6= j

. (14.4)

This constraint is often used in the formation to resolve an ambiguity in the mapping. If we did not

require W to be orthonormal, then the objective function is underconstrained (why?). Note that an

ambiguity remains in the learning even with this constraint (which one?), but this ambiguity is not

very important.

Stated here without proper derivation, the algorithm for minimizing the objective, to obtain the

mapping, W and b, and the latent coordinates of the training points, {xi}
N
i=1, comprises six main

steps:

1. Let b = 1

N

∑

i yi

2. Compute the data covariance matrix: C = 1

N

∑

i(yi − b)(yi − b)T

3. Let VΛVT = C be the eigenvector decomposition of C.

Here, Λ is a diagonal matrix of eigenvalues (Λ = diag(λ1, ...λd)), and V = [V1, ...Vd]
contains the orthonormal eigenvectors, VTV = Id.

4. Assume the eigenvalues are sorted from largest to smallest (λi ≥ λi+1). If this is not the

case, then sort them along with their corresponding eigenvectors.

5. Let W be a matrix containing the first k eigenvectors: W = [V1, ...Vk].

6. Let xi = WT (yi − b), for all i.

14.2 Representation and Reconstruction of New Data

Suppose we have learned a PCA model, and are given a new ynew value. How do we estimate its

corresponding xnew? This can be done by minimizing

||ynew − (Wxnew + b) ||2 (14.5)

This is a linear least-squares problem, and can be solved with standard methods (in MATLAB,

implemented by the backslash operator). However W is orthonormal, with a simple derivation you

can show that the matrix pseudo-inverse is simply the transpose. As such, the solution simplifies

to

x∗
new

= WT (ynew − b) . (14.6)

1It turns out that this orthogonality constraint on W is not strictly necessary to derive PCA mathematically. By

jointly maximizing the variance in a projection onto k dimensions, one can show that orthogonality emerges naturally

in the solution. But, as is done in many textbooks, it is often easier to derive if one assumes orthogonality in the

formulation.

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 86

CSCC11 Principal Component Analysis

Not surprisingly you will recognize this as the mapping used in Step 6 above to find the latent

coordinates for the training data.

Given the latent repreesentation, x∗
new

, for the new point ynew , we can use the forward model in

Equation (14.1) to ’reconstruct’ the approximation to ynew under the model. This approximation is

y∗
new

= Wx∗
new

+ b, and the error in the reconstructed approximation is simply ||ynew − y∗
new
||2.

14.3 Properties of PCA

Mean zero coefficients. One can show that the PCA coefficients (latent coordinates) that repre-

sent the training data, i.e., {xi}
N
i=1, are mean zero.

Mean(x) ≡
1

N

∑

i

xi =
1

N

∑

i

WT (yi − b)

=
1

N
WT

(

∑

i

yi −Nb

)

= 0 (14.7)

since, in Step 1 above we set b = 1

N

∑

i yi.

Variance maximization. PCA can also be defined in the following way; in fact, this is the orig-

inal definition of PCA, and the one that is often meant when people discuss PCA. However, this

formulation is exactly equivalent to the one discussed above. In this goal, we wish to find the first

principal component w1 to maximize the variance of the first coordinate of the data:

Var(x1) =
1

N

∑

i

x2

1,i =
1

N

∑

i

(wT
1 (yi − b))2 (14.8)

such that ||w1||
2 = 1. Then, we wish to choose the second principal component to be a unit

vector and orthogonal to the first component, while maximizing the variance of x2. The remaining

principle components are also defined in this recursive way, so that each component wi is a unit

vector, orthogonal to all previous basis vectors.

Uncorrelated coefficients. It is straightforward to show that the covariance matrix of the PCA

latent coordinates is the just the upper left k×k submatrix of Λ (i.e., the diagonal matrix containing

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 87

CSCC11 Principal Component Analysis

the k leading eigenvalues of C.

Cov(x) ≡
1

N

∑

i

xix
T
i

=
1

N

∑

i

(WT (yi − b)) (WT (yi − b))T

=
1

N
WT

(

∑

i

(yi − b)(yi − b)T

)

W

= WTCW

= WTVΛVTW

= Λ̃ (14.9)

where Λ̃ is the diagonal matrix containing the k leading eigenvalues in Λ. This simple derivation

also shows that the marginal variances of the PCA coefficients are given by the eigenvalues; i.e.,

Var(xj) = λj .

Out of subspace error. The total variance in the data is given by the sum of the eigenvalues of

the sample covariance matrix C. The variance captured by the PCA latent representation is the

sum of the first k eigenvalues. The total amount of variance lost in the representation is given by

the sum of the remaining eigenvalues. In fact, one can show that the least-squares error in the

approximation to the original data provided by the optimal (ML) model parameters, W∗, {x∗
i },

and b∗, is given by

∑

i

||yi − (W∗x∗
i + b∗) ||2 =

d
∑

j=k+1

λj . (14.10)

When learning a PCA model it is common to use the ratio of the total LS error and the total variance

in the training data (i.e., the sum of all eigenvalues). One needs to choose k to be large enough that

this ratio is small (often 0.1 or less).

Choosing the Subspace Dimension. Choosing the dimension of the subspace, i.e., the number

of principal directions, k, for the low-dimensional approximation to the data is a challenging prob-

lem for which we do not have straightforward solutions. In essence, by choosing the dimension of

the subspace we are effectively tryingn to identify the subspace that contains the signal of interest,

assuming that the structure in the complementary subspace is predominantly noise.

There are two plots that are valuable as they sometimes reveal interesting structure in the data.

The first is to plot the eigenvalues of the data covariance matrix, from largest to smallest along the

x-axes. For some datasets the eigen-values decrease reasonably quickly and then flattern out to

form a long tail. One rule of thumb is that as long the long flat tail is likely noise.

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 88

CSCC11 Principal Component Analysis

Another plot that is commonly used is to plot the fraction of variance captured within the

subspace as a function of the subspace dimension.

h(k) =

∑k

j=1
λj

∑d

j=1
λj

. (14.11)

As the subspace dimension grows one captures more variance in the data. This plot visualizes

clearly how much of the data variance is captured in the subspace. Many practitioners will choose

the subspace dimension k such that some fraction of the data variance (e.g., 90% or 95%), is

captured in the subspace.

14.4 Whitening

Whitening is a preprocess that replaces the data with a representation that has zero-mean and unit

covariance, and is often useful as a data preprocessing step. Given measurements {yi}, we replace

them with {zi} given by

zi = Λ̃
− 1

2WT (yi − b) = Λ̃
− 1

2xi (14.12)

where Λ̃ is a diagonal matrix containing the first k eigenvalues along the diagonal.

Then, one can show that sample mean of the z’s is equal to 0:

Mean(z) = Mean(Λ̃
− 1

2xi) = Λ̃
− 1

2Mean(x) = 0 (14.13)

To derive the sample covariance, we first compute the covariance of the untruncated values, i.e.,

z̃ ≡ Λ− 1

2VT (y − b):

Cov(z̃) ≡
1

N

∑

i

Λ− 1

2VT (yi − b)(yi − b)TVΛ− 1

2

= Λ− 1

2VT

(

1

N

∑

i

(yi − b)(yi − b)T

)

VΛ− 1

2

= Λ− 1

2VTKVΛ− 1

2

= Λ− 1

2VTVΛVTVΛ− 1

2

= Id (14.14)

Since z is just the first k elements of z̃, z has sample covariance Ik.

14.5 Modeling

PCA is sometimes used to model the distribution of a collection of training data, e.g., we can use

it as a form of a “prior”. For example, suppose we have noisy measurements of some y values and

wish to estimate their true values. If we parameterize the unknown y values by their corresponding

x values instead, then we constrain the estimated values to lie in the low-dimensional subspace of

the original data. However, this approach implies a uniform prior over x values, which may be

inadequate, while being intolerant to deviations from the subspace. A better approach with an

inherently probabilistic model is described below.

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 89

CSCC11 Principal Component Analysis

14.6 Probabilistic PCA

Probabilistic PCA is a way to estimate a Gaussian probability distribution over the observation

space, p(y). To that wend, we assume the following probability distribution:

x ∼ N (0, I) (14.15)

y = Wx+ b+ η, η ∼ N (0, σ2I) (14.16)

where x and n are assumed to be statistically independent. The model says that the low-dimensional

coordinates x (i.e., the underlying causes) come from a unit Gaussian distribution, and the y mea-

surements are a linear function of these low-dimensioanl causes, plus Gaussian noise. Note that we

do not require that W be orthonormal anymore (in part because we now constrain the magnitude

of the x variables).

Since x and η are independent and Gaussian, and any linear transformation of a Gaussian

variable is itself Gaussian, y must also be Gaussian. This distribution is:

p(y) =

∫

p(x,y) dx

=

∫

p(y|x) p(x) dx

=

∫

G(y;Wx+ b, σ2I)G(x; 0, I) dx (14.17)

Evaluating this integral will give us p(y), however, there is a simpler way to solve for the parame-

ters of the Gaussian distribution.

Since we know y is Gaussian, all we need to do is derive its mean and covariance, which can

be done as follows (using the fact that mathematical expectation is linear):

Mean(y) ≡ E[y] = E[Wx+ b+ n]

= WE[x] + b+ E[n]

= b (14.18)

Cov(y) ≡ E[(y − b)(y − b)T]

= E[(Wx+ b+ n− b)(Wx+ b+ n− b)T]

= E[(Wx+ n)(Wx+ n)T]

= E[WxxTWT] + E[WxnT] + E[nxTWT] + E[nnT]

= WE[xxT]WT +WE[x]E[nT] + E[n]E[xT]WT + σ2I

= WWT + σ2I . (14.19)

As a consequence, we can now specify the distribution over y as

y ∼ N (b,WWT + σ2I) (14.20)

Learning a PPCA model is equivalent to learning a low-dimensional Gaussian distribution over

the training data. This is illustrated in Figure 14.2. The PPCA model is not as general as learning a

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 90

CSCC11 Principal Component Analysis

x

p(x)

x̂

y2

y1

b b

p(y|x̂)

}

ẑ|w|

w
y2

y1

p(y)

Figure 14.2: This is a visualization of the PPCA generative model, mapping from a 1D latent

representation to a 2D observation space. In particular, a Gaussian in 1D is mapped to a line in

2D, and then blurred with 2D noise. (Figure from Pattern Recognition and Machine Learning by Chris

Bishop.)

full Gaussian model with a d× d covariance matrix. However, it uses fewer numbers to represent

the Gaussian (k d + 1 versus d2/2 + d/2; why?). Because the representation is more compact, it

can be estimated from smaller datasets, and requires less memory to store the model.

These differences will be significant when d is large; e.g., if d = 100, the full covariance

matrix would requires 5050 parameters. One therefore needs hundreds of thousands of data points

to estimate the covariance reliably. However, if the effective dimensionality is, say, 2 or 3, then

the PPCA representation will only have a few hundred parameters, and, accordingly, many fewer

measurements.

Learning. The PPCA model can be learned by Maximum Likelihood, i.e., by minimizing the

negative log likliehood of the data:

L(W,b, σ2) = − ln
N
∏

i=1

G(yi; b, WWT + σ2I)

=
1

2

∑

i

(yi − b)T (WWT+σ2I)−1(yi − b) +
N

2
ln(2π)d|WWT+σ2I| .(14.21)

Setting the gradient to zero, one can show that this can be optimized in closed form. Not surpris-

ingly, the resulting algorithm is very similar to the conventional PCA case above:

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 91

CSCC11 Principal Component Analysis

1. Let b = 1

N

∑

i yi

2. Let C = 1

N

∑

i(yi − b)(yi − b)T

3. Let VΛVT = C be the eigenvector decomposition of C. Λ is a diagonal matrix of eigen-

values (Λ = diag(λ1, ...λd)). The matrix V contains the eigenvectors: V = [V1, ...Vd]
and is orthonormal VTV = Id.

4. Assume that the eigenvalues are sorted from largest to smallest (λi ≥ λi+1). If this is not

the case, sort them (and their corresponding eigenvectors).

5. Let σ2 = 1

d−k

∑d

j=k+1
λj . In words, the estimated noise variance is equal to the average

marginal data variance over all directions that are orthogonal to the k principal directions

(i.e., this is the average variance (per dimension) of the data that is lost in the approximation

of the data in the k dimensional subspace).

6. Let Ṽ be the matrix comprising the first k eigenvectors: Ṽ = [V1, ...Vk], and let Λ̃ be the

diagonal matrix with the k leading eigenvalues: Λ̃ = [λ1, ...λk].

7. W = Ṽ(Λ̃− σ2I)
1

2 .

8. Let xi = WT (yi − b), for all i.

Note that this solution is similar to that in the conventional PCA case with whitening, except that

(a) the noise variance is estimated, and (b) the noise is removed from the variances of the remaining

eigenvalues.

An alternative optimization. In the above learning algorithm, we “marginalized out” x when

estimating PPCA. In other words, we maximized

p(y1:N |W,b, σ2) =

∫

p(y1:N ,x1:N |W,b, σ2) dx1:N

=

∫

p(y1:N |x1:N ,W,b, σ2) p(x1:N) dx1:N

=
∏

i

∫

p(yi |xi,W,b, σ2) p(xi) dxi , (14.22)

instead of maximizing

p(y1:N ,x1:N |W,b, σ2) =
∏

i

p(yi,xi |W,b, σ2)

=
∏

i

p(yi |xi,W,b, σ2) p(xi) (14.23)

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 92

CSCC11 Principal Component Analysis

By integrating out x, we are estimating fewer parameters and thus can get better estimates. Loosely

speaking, doing so might be viewed as being “more Bayesian.” Suppose we did instead try to

estimate the x’s together with the model parameters:

L(x1:N ,W,b, σ2) = − ln p(y1:N ,x1:N |W,b, σ2) (14.24)

=
∑

i

(

1

2σ2
||yi − (Wxi + b)||2 +

1

2
||xi||

2

)

+
N d

2
ln σ2 +N d ln 2π . (14.25)

Now, suppose we are optimizing this objective function, and we have some estimates for W and

x. We can always reduce the objective function by replacing

W ← 2W (14.26)

x ← x/2 (14.27)

By doing this replacement arbitrarily many times, we can get infinitesimal values for x. This

indicates that the objective function is degenerate. Using it will produce poor results.

Note that, however, this arises using the same model as before, but without marginalizing out

x. This illustrates a general principle: The more parameters you estimate (instead of marginalizing

out), the greater the danger of biased and/or degenerate solutions.

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 93

