
CSCC11 Monte Carlo Methods

13 Monte Carlo Methods

Monte Carlo is an umbrella term referring to a set of numerical techniques for solving one or both

of the following problems:

1. Approximating expected values that cannot be compute in closed-form

2. Sampling from distributions for which is a simple sampling algorithm is not available.

Recall that mathematical expectation of a function φ(x) of a continuous variable x with respect to

a distribution p(x) is defined as:

Ep(x)[φ(x)] ≡

∫

p(x)φ(x)dx (13.1)

Monte Carlo methods approximate this integral by drawing N independent samples from p(x)

xi ∼ p(x) (13.2)

and then approximating the integral by the weighted average:

Ep(x)[φ(x)] ≈
1

N

N
∑

i=1

φ(xi) (13.3)

Estimator properties. This estimate is unbiased:

Ep(x1:N)

[

1

N

∑

i

φ(xi)

]

=
1

N

∑

i

Ep(xi)[φ(xi)] =
1

N
NEp(x)[φ(x)] = Ep(x)[φ(x)] (13.4)

Furthermore, the variance of this estimate is inversely proportional to the number of samples:

varp(x1:N)

[

1

N

∑

i

φ(xi)

]

=
1

N2

∑

i

varp(x1:N)[φ(xi)] =
1

N2
Nvarp(xi)[φ(xi)] =

1

N
varp(x)[φ(x)]

(13.5)

Hence, the more samples we get, the better our estimate will be. The weak law of large numbers

tells us that, in the limit the estimator will converge to the true value.

Dealing with unnormalized distributions. We often wish to compute the expected value of a

distribution for which evaluating the normalization constant is difficult. For example, the posterior

distribution over parameters w given data D is:

p(w |D) =
p(D |w) p(w)

p(D)
(13.6)

The posterior mean and covariance (w̄ = E[w] and E[(w − w̄)(w − w̄)T]) can be useful to un-

derstand this posterior, i.e., what we believe the parameter values are “on average,” and how much

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 79

CSCC11 Monte Carlo Methods

uncertainty there is in the parameters. The numerator of p(w |D) is typically easy to compute, but

p(D) entails an integral which is often intractable, and thus must be handled numerically.

More generally, we can pose the problem as estimating the expected value with respect to a

distribution p(x) that can only be evaluated up to a multiplicate constant Z, e.g., P ∗, where

p(x) ≡
1

Z
P ∗(x) , Z =

∫

P ∗(x)dx (13.7)

Monte Carlo methods will allow us to handle distributions of this form.

13.1 Sampling Gaussians

We begin with algorithms for sampling from a Gaussian distribution. For the simple 1-dimensional

case, x ∼ N (0, 1), there is well-known algorithm called the Box-Muller Method that is based on

an approach called rejection sampling. It is implemented in MATLAB in the command randn.

For a general 1D Gaussian, x ∼ N (µ, σ2), we sample a variable z ∼ N (0, 1), and then set

x = σz + µ. You should be able to show that x has the desired mean and variance. For the multi-

dimensional case, x ∼ N (0, I), each element is independent and Gaussian: xi ∼ N (0, 1) and so

each element can be sampled with randn.

To sample from a Gaussian with general mean vector µ and variance matrix Σ we first sample

z ∼ N (0, I), and then set x = Lz + µ, where Σ = LL
T . We can compute L from Σ by the

Cholesky Factorization of Σ, which must be positive definite. Then we have

E[x] = E[Lz+ µ] = LE[z] + µ = µ , (13.8)

and

E[(x− µ)(x− µ)T] = E[Lz(Lz)T] = LE[zzT]LT = LL
T = Σ . (13.9)

13.2 Sampling Categorical Distributions

Another common distribution we may want to sample from is a categorical distribution over a dis-

crete set of possible states. Suppose we have a categorical distribution over K mutually exclusive

states with probabilites P1, P2, ..., PK , where of course Pj ≥ 0 and
∑K

j=1 Pj = 1. As is common

in many samplers, we first draw a random rample from a uniform distribution, for which good

algorithms exist. We then transform the sample using the inverse cumulative distribution function

of the categorical distribution to obtain a fair sample. Here is a description of the algorithm using

(Matlab) pseudocode:

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 80

CSCC11 Monte Carlo Methods

// Construct a CDF from vector of probabilities

CDF = cumsum(prob);

// extract a sample from uniform distribution on [0,1]

z = rand(1, 1);

// use first index j for which CDF(j) > z

m = find(CDF > z);

return m(1)

13.3 Importance Sampling

In most situations it is difficult to sample from the desired distribution p(x), but we can sample

from a similar distribution q(x). Importance sampling is a technique that allows one to approximate

expectation with respect to p(x) by sampling from q(x). The only requirement on q is that it have

the same support as p, i.e., q is nonzero everywhere that p is nonzero.

Importance sampling is based on the following equality:

Eq(x)

[

p(x)

q(x)
φ(x)

]

=

∫

p(x)

q(x)
φ(x)q(x)dx (13.10)

=

∫

φ(x)p(x)dx (13.11)

= Ep(x) [φ(x)] (13.12)

In other words, we can compute the desired expectation by sampling values xi from q(x), and then

computing

Eq

[

p(x)

q(x)
φ(x)

]

≈
1

N

∑

i

p(xi)

q(xi)
φ(xi) (13.13)

It often happens that p and/or q are known only up to multiplicative constants. That is,

p(x) ≡
1

Zp

P ∗(x) and q(x) ≡
1

Zq

Q∗(x) (13.14)

where P ∗ and Q∗ are easy to evaluate but the constants Zp and Zq are not.

Then we have:

Ep(x)[φ(x)] =

∫ 1
Zp
P ∗(x)

1
Zq
Q∗(x)

φ(x)q(x)dx =
Zq

Zp

Eq(x)

[

P ∗(x)

Q∗(x)
φ(x)

]

(13.15)

and so it remains to approximate
Zq

Zp
. If we substitute φ(x) = 1, the above formula states that

Zq

Zp

Eq(x)

[

P ∗(x)

Q∗(x)

]

= 1 (13.16)

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 81

CSCC11 Monte Carlo Methods

p(x) q(x) φ(x)

x

Figure 13.1: Importance sampling can be used to sample complicated distributions like this bi-

modal p(x). Here we draw samples from the simpler unimodal distribution q(x). This will produce

many samples with a low weight since q(x) is large where p(x) is near zero. But q(x) has ample

probability mass around the modes of p(x), so it is a reasonable choice. When q(x) had very little

probability mass around modes of p(x), then estimates obtained from importance sampling will

have high variance. (Figure from Pattern Recognition and Machine Learning by Chris Bishop.)

and so
Zp

Zq
= Eq(x)[

P ∗(x)
Q∗(x)

]. Thus we have:

Ep(x)[φ(x)] =
Eq(x)

[

P ∗(x)
Q∗(x)

φ(x)
]

Eq(x)

[

P ∗(x)
Q∗(x)

] (13.17)

Hence, the importance sampling algorithm is:

1. Sample N values xi ∼ q(xi)

2. Compute

wi =
P ∗(xi)

Q∗(xi)
(13.18)

3. Estimate the expected value

E[φ(x)] ≈

∑

i wiφ(xi)
∑

i wi

(13.19)

The importance sampling algorithm will only work well when q(x) is sufficiently similar to the

function p(x)|φ(x)|. Put more concretely, the variance of the estimator grows as the dissimilarity

between q(x) and p(x)|φ(x)| grows (and is minimized when they are equal). An alternative is to

use the MCMC algorithm to draw samples directly from p(x), as described below.

13.4 Markov Chain Monte Carlo (MCMC)

MCMC is a general algorithm for sampling from any distribution, such as the posterior distribution

over model parameters w. It is an iterative algorithm that, given a sample xt ∼ p(x), modifies

that sample to produce a new sample xt+1 ∼ p(x). This modification is done using a proposal

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 82

CSCC11 Monte Carlo Methods

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Figure 13.2: MCMC applied to a 2D Gaussian with a proposal distribution consisting of a circular

Gaussian centered on the previous sample. Green lines are accepted proposals. Red lines are

rejected. (Figure from Pattern Recognition and Machine Learning by Chris Bishop.)

distribution q(x′|x), that, given a x, randomly selects a “mutation” to x. The proposal distribution

may be almost anything, and it is up to the user of the algorithm to choose this distribution. A

common choice is a Gaussian centered at x: q(x′|x) = N (x′|x, σ2
I). The entire algorithm is

select initial point x1

t← 1
loop

Sample x
′ ∼ q(x′|xt)

α← P ∗(x′)
P ∗(xt)

q(xt|x′)
q(x′|xt)

Sample u ∼ Uniform[0, 1]
if u ≤ α then

xt+1 ← x
′

else

xt+1 ← xt

end if

t← t+ 1
end loop

Amazingly, it can be shown that, if x1 is a sample from p(x), then every subsequent xt is also

a sample from p(x), if they are considered in isolation. The samples are correlated to each other

via the Markov Chain, but the marginal distribution of any individual sample is p(x).
So far we assumed that x1 is a sample from the target distribution, but obtaining this first

sample is difficult. Instead, we must perform a process called burn-in: we initialize with any x1,

and then discard the first T samples obtained by the algorithm. If we pick T large enough we are

guaranteed that remaining samples are fair samples from the target. There is no exact method for

determining a sufficient T however, and so heuristics are used.

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 83

