
CSCC11 Linear Regression

2 Linear Regression

In regression, our goal is to learn a mapping from one real-valued space to another. After learning,

we can use the regression model to predict an output given some new test input. Linear regression

is the simplest form of regression. It is easy to understand, often quite effective, and very efficient

to learn and use.

2.1 The 1D Case

We will start by considering linear regression with one dimensional inputs and outputs. Our goal

is to learn a mapping y = f(x), where x and y are both real-valued scalars (i.e., x ∈ R, y ∈ R).

We will take f to be a linear function,

y = wx+ b , (2.1)

where w is a weight and b is a bias. These two scalars are the parameters of the model, which

we would like to learn from training data. In particular, we wish to estimate w and b from the N
training pairs {(xi, yi)}

N
i=1. Then, once we have values for w and b, we can compute (or predict)

outputs y for some new inputs x.

Given two training data points (i.e., N=2), we can exactly solve for the unknown slope w and

offset b. (How would you formulate this solution?) Unfortunately, this approach is extremely

sensitive to noise in the training data measurements, so you cannot usually trust the resulting

model. Instead, we can find much better models when the two parameters are estimated from

larger data sets. When N > 2 we will not be able to find unique parameter values for which

yi = wxi + b for all i, since we have many more constraints than parameters. That is, given noisy

data it is unlikely that 3 or more points will lie exactly on some line. Rather the best we can hope

for is to find a line that is as close to the training points as possible. To this end, we want to

minimize the errors between the data points and our hypothetical linear model, i.e., yi− (wxi+ b).
The most common way to estimate the parameters of a line in a problem like this is by least-

squares regression. In least-squares regression the quality of the fit between the model and the

training data is specified in terms of the squared error (a.k.a. the squared loss). In more detail, for

the ith training point, the model gives a prediction for y, namely wxi + b. So let’s define the error

for the ith training point, given the model line with parameters w and b, to be the (vertical) distance

from the line to the training point:

ei = yi − (wxi + b) . (2.2)

The sum of the squared errors over all training points is then used to measure the quality of the fit.

It is often called the objective function, energy function or empirical loss:

E(w, b) =
N
∑

i=1

e2i =
N
∑

i=1

(yi − (wxi + b))2 . (2.3)

Importantly, by squareing the errors we obtain a function that is non-negative, and zero if and only

if all the errors are zero. Further, as shown below, it yields a very straightforward computational

solution.

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 5

CSCC11 Linear Regression

Finding the line that minimizes the squared error is equivalent to solving for the w and b that

minimize E(w, b). This can be done by setting the derivatives of E with respect to these parameters

to zero and then solving; i.e.,

∂E

∂b
= −2

∑

i

(yi − (wxi + b)) = 0 . (2.4)

Solving for b gives us the estimate

b∗ =

∑

i yi
N

− w

∑

i xi

N
= ŷ − wx̂ , (2.5)

where we define x̂ and ŷ as the averages of the x’s and y’s, respectively. This equation for b∗ still

depends on w, but we can nevertheless substitute this estimate for b in the original energy function,

and then solve for w. The substitution produces the following energy,

E(w, b) =
∑

i

((yi − ŷ)− w(xi − x̂))2 . (2.6)

Then,

∂E

∂w
= −2

∑

i

((yi − ŷ)− w(xi − x̂))(xi − x̂) , (2.7)

and solving ∂E
∂w

= 0 yields our estimate:

w∗ =

∑

i(yi − ŷ)(xi − x̂)
∑

i(xi − x̂)2
. (2.8)

The values w∗ and b∗ are the least-squares estimates for the parameters of the linear regression.

2.2 Multi-Dimensional Inputs

Now, suppose we wish to learn a mapping from D-dimensional inputs to scalar outputs: x ∈ R
D,

y ∈ R. To this end we will learn a vector of weights w, so the mapping has the form:1

f(x) = wTx+ b =
D
∑

j=1

wjxj + b . (2.9)

For convenience, we can fold the bias b into the weight vector, if we augment the input vector x

with an additional 1; i.e., if we define

w̃ =

w1
...

wD

b

, x̃ =

x1
...

xD

1

(2.10)

1Above we used subscripts to index the training set, while here we are using the subscript to index the elements of

the input and weight vectors. In what follows the context should make it clear what the index denotes.

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 6

CSCC11 Linear Regression

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 2.1: An example of linear regression: The red line is fit to the blue data points by minimizing

the sum of squared errors. The error of a data point is defined to be the vertical distance from the

point to the model line.

then the mapping can be written:

f(x) = w̃T x̃ . (2.11)

Given N training input-output pairs, the least-squares objective function is

E(w̃) =
N
∑

i=1

(yi − w̃T x̃i)
2 . (2.12)

If we stack the outputs in a vector and the inputs in a matrix, then we can also write this as

E(w̃) = ||y − X̃w̃||2 , (2.13)

where

y =

y1
...

yN

, X̃ =

xT
1 1
...

xT
N 1

(2.14)

and || · || is the usual Euclidean norm, i.e., ||v||2 =
∑

i v
2
i . (You should verify for yourself that

Equations (2.12) and (2.13) are equivalent).

Equation (2.13) is known as a linear least-squares problem, and can be solved by methods from

linear algebra. We can rewrite the objective function as:

E(w) = (y − X̃w̃)T (y − X̃w̃)

= w̃T X̃T X̃w̃ − 2yT X̃w̃ + yTy (2.15)

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 7

CSCC11 Linear Regression

We can optimize this by setting all values of ∂E/∂wi = 0 and solving the resulting system of

equations.2 With some work, the solution can be shown to be

w∗ = (X̃T X̃)−1X̃Ty (2.16)

(You may wish to verify for yourself that this reduces to the solution for the 1D case in Section

2.1; however, this takes quite a lot of linear algebra and a little cleverness). The matrix X̃+ ≡
(X̃T X̃)−1X̃T is called the pseudoinverse of X̃, and so the solution can also be written:

w̃∗ = X̃+y (2.17)

In MATLAB, one can directly solve the system of equations using the slash operator:

w̃∗ = X̃\y (2.18)

There are some subtle differences between these two ways of solving the system of equations.

We will not concern ourselves with these here except to say that we recommend using the slash

operator rather than the pseudoinverse.

2.3 Multi-Dimensional Outputs

In the most general case, both the inputs and outputs may be multi-dimensional. For instance,

one might want to predict expected crop yields of several different crops, as a function of dif-

ferent growing conditions, such as soil concentrations, temperatures and precipitation. With D-

dimensional inputs, and K-dimensional outputs y ∈ R
K , a linear mapping from input to output

can be written as

y = W̃T x̃ (2.19)

where W̃ ∈ R
(D+1)×K . It is convenient to express W̃ in terms of its column vectors, i.e.,

W̃ = [w̃1 . . . w̃K] ≡

[

w1 . . . wK

b1 . . . bK

]

. (2.20)

In this way, we then express the mapping from the input x̃ to the jth element of y as yj = w̃T
j x.

Now, given N training samples, denoted {x̃i,yi}
N
i=1 a natural energy function to minimize, to

estimate W̃, is just the squared residual error over all training samples and all output dimensions,

i.e.,

E(W̃) =
N
∑

i=1

K
∑

j=1

(yi,j − w̃T
j x̃i)

2 . (2.21)

There are several ways to conveniently vectorize this energy function. One is to express E
solely as a sum over output dimensions. That is, let y′

j be the N -dimensional vector comprising

the jth component of each output training vector, i.e., y′

j = [y1,j , y2,j , ..., yN,j]
T . Then we can write

E(W̃) =
K
∑

j=1

||y′

j − X̃w̃j||
2 (2.22)

2We will cover this in more detail later in Chapter ??. In the meantime, if this is unclear, start by reviewing your

linear algebra and vector calculus.

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 8

CSCC11 Linear Regression

where X̃T = [x̃1 x̃2 . . . x̃N]. With a little thought you can see that this really amounts to K
distinct estimation problems, the solutions for which are given by w̃∗

j = X̃+y′

j .

Another common convention is to stack up everything into a matrix equation, i.e.,

E(W̃) = ||Y − X̃W̃||2F (2.23)

where Y = [y′

1 . . .y′

K], and ||·||F denotes the Frobenius norm: ||Y||2F =
∑

i,j Y
2
i,j . The Frobenius

norm can also be expressed in terms of the matrix trace, i.e., ||Y||2F = tr(YTY). You should verify

that Equations (2.22) and (2.23) are equivalent representations of the energy function in Equation

(2.21). Finally, the solution, now simultaneously for all K regressors, is again provided by the

pseudoinverse:

W̃∗ = X̃+Y (2.24)

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 9

