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15 Lagrange Multipliers

The Method of Lagrange Multipliers is a powerful technique for constrained optimization. While

it has applications far beyond machine learning (it was originally developed to solve physics equa-

tions), it is used for several key derivations in machine learning.

The problem set-up is as follows: We wish to find extrema (i.e., maxima or minima) of a

differentiable objective function

E(x) = E(x1, x2, ...xD) . (15.1)

If we have no constraints on the problem, then the extrema must necessarily satisfy the following

system of equations in terms of the gradient of E:

∇E = 0 . (15.2)

This is equivalent to requiring that ∂E
∂xi

= 0 for all i. This equation says that there is no way to

infinitesimally perturb x to get a different value for E. That is, the objective function is locally flat.

Now, however, our goal will be to find extrema subject to a constraint:

g(x) = 0 . (15.3)

In other words, we want to find the extrema among the set of points x, all of which satisfy g(x) = 0.

It is sometimes possible to reparameterize the problem to eliminate the constraints (i.e., so that the

new parameterization includes all possible solutions to g(x) = 0). But this can be awkward in

some cases, and impossible in others.

Given the constraint, g(x) = 0, we are no longer looking for a point where no perturbation in

any direction changes E. Instead, we need to find a point at which perturbations that satisfy the

constraints do not change E. This can be expressed by the following condition:

∇E + λ∇g = 0 , (15.4)

for some arbitrary scalar value λ. First note that, for points on the contour g(x) = 0, the gradient

∇g is always perpendicular to the contour (this is a great exercise if you don’t remember how to

prove that this is true). Hence the expression ∇E = −λ∇g says that the gradient of E must be

parallel to the gradient of the contour at a possible solution point. In other words, any perturbation

to x that changes E also makes the constraint become violated. Perturbations that do not change

g, and hence still lie on the contour g(x) = 0 do not change E either. Hence, our goal is to find a

point x that satisfies this gradient condition and also g(x) = 0
In the method of Lagrange multipliers, we change the constrained optimization above into an

unconstrained optimization with a new objective function, called the Lagrangian:

L(x, λ) = E(x) + λg(x) . (15.5)

Now, our goal is to find extrema of L with respect to both x and λ. The key fact is that extrema

of the unconstrained objective L are the extrema of the original constrained problem. So we
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Figure 15.1: The set of solutions to g(x) = 0 visualized as a curve. The gradient ∇g is always

normal to the curve. At an extremal point, ∇E points is parallel to ∇g. (Figure from Pattern

Recognition and Machine Learning by Chris Bishop.)

have eliminated the nasty constraints by changing the objective function and also introducing new

unknowns.

To see why, let’s look at the extrema of L. Because L depends on two parameters its extrema

must necessarily satisfy two gradient constraints, i.e.,

∂L

∂λ
= g(x) = 0 (15.6)

∂L

∂x
= ∇E + λ∇g = 0 . (15.7)

One can immediately see that these gradient constraints are exactly the conditions given above.

The first equation ensures that g(x) is zero, and the second is our constraint that the gradients

of E and g mucst be parallel. Using the Lagrangian is a convenient way to combine these two

constraints into one unconstrained optimization.

15.1 Examples

Minimizing on a circle. We begin with a simple geometric example. We have the following

constrained optimization problem:

argminx,y x+ y (15.8)

subject to x2 + y2 = 1 (15.9)

In words, we want to find the point on a unit circle that minimizes x+ y. The problem is depicted

in Fig. 15.2. Here, E(x, y) = x+ y and g(x, y) = x2 + y2 − 1. The Lagrangian for this problem

is given by

L(x, y, λ) = x+ y + λ(x2 + y2 − 1) . (15.10)
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Figure 15.2: Illustration of the maximization on a circle problem. (Image from Wikipedia.)

Setting the gradient to zero (with respect to x, y and λ) gives us the following system of equations:

∂L

∂x
= 1 + 2λx = 0 (15.11)

∂L

∂y
= 1 + 2λy = 0 (15.12)

∂L

∂λ
= x2 + y2 − 1 = 0 (15.13)

The first two equations ensure that x = y. Substituting this into the constraint and solving gives

two solutions x = y = ± 1√
2
. Substituting these two solutions into the objective, we find that the

minimum occurs at x = y = − 1√
2
.

Estimating a Categorial distribution. A Categorial distribution over a random variable c with

K possible discrete, disjoint states (or outcomes). Accordingly it is specified by K probabilities,

denoted here by pk:

P (c = k) ≡ pk , (15.14)

for k = 1...K, and let p = (p1, ..., pK). For example, in coin-flipping the outcome of a coin

flip follows a Bernoulli distribution, which is the special case of a Categorical distribution when

K = 2, and c = 1 might indicate that the coin lands heads side up.

Suppose we observe N independent draws from such a random process, i.e., we observe the

sequence c1:N . The likelihood of the observed data is therefore the product of the N independent

likelihoods:

P (c1:N |p) =
K
∏

i=1

P (ci |p) =
∏

k

pNk

k , (15.15)
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where Nk is the number of times that c = k, i.e., the number of occurrences of the k-th state.

To estimate this Categorical distribution, we minimize the negative log-likelihood of the ob-

served data,

min−
∑

k

Nk ln pk (15.16)

subject to
∑

k

pk = 1 and pk ≥ 0, for all k . (15.17)

The constraints here are required to ensure that the p’s form a valid probability distribution. (One

way to optimize this problem is to reparameterize the probabilities, i.e., replace pK in the likelihood

by 1−
∑K−1

k=1
pk, and then optimize the unconstrained problem in closed-form. While this method

does work in this case, it breaks the natural symmetry of the problem, resulting in some messy

calculations. Moreover, this method often cannot be generalized to other problems.)

The Lagrangian for this problem is

L(p, λ) = −
∑

k

Nk ln pk + λ

(

∑

k

pk − 1

)

. (15.18)

Here, we omit the constraint that pk ≥ 0 and hope that this constraint will be satisfied by the

solution (it will). Setting the gradient to zero gives

∂L

∂pk
= −

Nk

pk
+ λ = 0 for all k (15.19)

∂L

∂λ
=

∑

k

pk − 1 = 0 (15.20)

Multiplying ∂L/∂pk = 0 by pk, and summing over k yields

0 = −

K
∑

k=1

Nk + λ
∑

k

pk = −N + λ , (15.21)

since
∑

k Nk = N and
∑

k pk = 1. Hence, the optimal λ = N . Substituting this into ∂L/∂pk and

solving yields the estimated probabilities

pk =
Nk

N
, (15.22)

which is the familiar maximum-likelihood estimator for a Categorical distribution.

Maximum variance PCA. In the original formulation of PCA, the goal is to find a low-dimensional

projection of N data points y. Here, suppose we just want to find a one-dimensional subspace

spanned by the vector w. In that case the subspace projection is given by

x = wT (y − b) . (15.23)
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One way to formulate PCA is as a optimization to find the direction w which maximizes the vari-

ance of the projection, subject to the constraint that wTw = 1. The Lagrangian can be expressed

as

L(w,b, λ) =
1

N

∑

i

(

xi −
1

N

∑

i

xi

)

2

+ λ(wTw − 1)

=
1

N

∑

i

(

wT (yi − b)−
1

N

∑

i

wT (yi − b)

)

2

+ λ(wTw − 1)

=
1

N

∑

i

(

wT

(

(yi − b)−
1

N

∑

i

(yi − b)

))

2

+ λ(wTw − 1)

=
1

N

∑

i

(

wT (yi − ȳ)
)2

+ λ(wTw − 1)

=
1

N

∑

i

wT (yi − ȳ)(yi − ȳ)Tw + λ(wTw − 1)

= wT

(

1

N

∑

i

(yi − ȳ)(yi − ȳ)T

)

w + λ(wTw − 1) , (15.24)

where ȳ =
∑

i yi/N .

Solving ∂L/∂w = 0 yields

(

1

N

∑

i

(yi − ȳ)(yi − ȳ)T

)

w = λw (15.25)

This is the eigenvector equation. That is, w must be an eigenvector of the sample covariance matrix

of the y′s. And λ must be the corresponding eigenvalue. In order to determine which one, we can

substitute this equality into the Lagrangian to obtain

L = wTλw + λ(wTw − 1)

= λ , (15.26)

since wTw = 1. Since our goal is to maximize the variance, we choose the eigenvector w which

has the largest eigenvalue λ.

We have not yet selected b, but it is clear that the value of the objective function does not

depend on b, so we might as well set it to be the mean of the data b =
∑

i yi/N , which results in

the x′s having zero mean, i.e.,
∑

i xi/N = 0.

15.2 Least-Squares PCA in 1D

Let’s now consider a different way to formulate PCA. Instead of finding the direction of maximum

variance, let’s find the one-dimensional projection which minimizes the squared error in the sub-

space approximation. Specifically, we are given a collection of data vectors y1:N , and wish to find
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a bias b, a single unit vector w, and one-dimensional coordinates x1:N , to minimize:

arg min
w,x1:N ,b

∑

i

||yi − (wxi + b)||2 (15.27)

subject to wTw = 1 (15.28)

Here, xi specifies position along a line with direction w and distance from the origin ||b||. The

total error is the sum of squared Euclidean distances between data points yi and their corresponding

points on the model line.1 The vector w is called the first principal component. The Lagrangian is:

L(w, x1:N ,b, λ) =
∑

i

||yi − (wxi + b)||2 + λ(||w||2 − 1) (15.29)

There are several sets of unknowns, and we derive their optimal values each in turn.

Projections (xi). We first derive the projections:

∂L

∂xi

= −2wT (yi − (wxi + b)) = 0 (15.30)

Using wTw = 1 and solving for xi gives:

xi = wT (yi − b) (15.31)

Bias (b). We begin by differentiating:

∂L

∂b
= −2

∑

i

(yi − (wxi + b)) (15.32)

Substituting in Equation 15.31 gives

∂L

∂b
= −2

∑

i

(yi − (wwT (yi − b) + b))

= −2
∑

i

yi + 2wwT
∑

i

yi − 2NwwTb+ 2Nb

= −2(I−wwT )
∑

i

yi + 2(I−wwT )Nb = 0 (15.33)

Factoring out 2(I−wwT ) from both terms, one can see that we obtain

b =
1

N

∑

i

yi (15.34)

1It is important to note that this optimization problem differs in subtle ways from the linear regression earlier in

the notes. With linear regression we had multi-dimensional inputs and a scalar output. Here we have vector-valued

data y and we are trying to find a scalar input x. In linear regression we minimized the error in the predicted y (i.e.,

the vertical distance of each point to the curve), while here the error is the Euclidean distant from each 2D data point

y to a location on the model line.
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Basis vector (w). To make things simpler, we will define ỹi = (yi − b) as the mean-centered

data points, and the reconstructions are then xi = wT ỹi, and the objective function is:

L =
∑

i

||ỹi −wxi||
2 + λ(wTw − 1)

=
∑

i

||ỹi −wwT ỹi||
2 + λ(wTw − 1)

=
∑

i

(ỹi −wwT ỹi)
T (ỹi −wwT ỹi) + λ(wTw − 1)

=
∑

i

(ỹT
i ỹi − 2ỹT

i wwT ỹi + ỹT
i wwTwwT ỹi) + λ(wTw − 1)

=
∑

i

ỹT
i ỹi −

∑

i

(ỹT
i w)2 + λ(wTw − 1) (15.35)

where we have used wTw = 1. We then differentiate and simplify:

∂L

∂w
= −2

∑

i

ỹiỹ
T
i w + 2λw = 0 (15.36)

We can rearrange this to get:
(

∑

i

ỹiỹ
T
i

)

w = λw (15.37)

This is exactly the eigenvector equation, meaning that extrema for L occur when w is an eigenvec-

tor of the matrix
∑

i ỹiỹ
T
i , and λ is the corresponding eigenvalue. Multiplying both sides by 1/N ,

we see this matrix has the same eigenvectors as the data covariance:
(

1

N

∑

i

(yi − b)(yi − b)T

)

w =
λ

N
w (15.38)

Now we must determine which eigenvector to use. To this end, we rewrite Eqn. (15.35) as

L =
∑

i

ỹT
i ỹi −

∑

i

wT ỹiỹ
T
i w + λ(wTw − 1)

=
∑

i

ỹT
i ỹi −wT

(

∑

i

ỹiỹ
T
i

)

w + λ(wTw − 1) , (15.39)

and substitute in Eqn. (15.37):

L =
∑

i

ỹT
i ỹi − λwTw + λ(wTw − 1)

=
∑

i

ỹT
i ỹi − λ , (15.40)

again using wTw = 1. We must pick the eigenvalue λ that gives the smallest value of L. Hence,

we pick the largest eigenvalue, and set w to be the corresponding eigenvector.
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15.3 Multiple Constraints

When we wish to optimize with respect to multiple constraints {gk(x)}, i.e.,

argminx E(x) (15.41)

subject to gk(x) = 0 for k = 1...K (15.42)

Extrema occur when:

∇E +
∑

k

λk∇gk = 0 (15.43)

where we have introduced K Lagrange multipliers λk. The constraints can be combined into a

single Lagrangian:

L(x, λ1:K) = E(x) +
∑

k

λkgk(x) (15.44)

15.4 Inequality Constraints

The method can be extended to inequality constraints of the form g(x) ≥ 0. For a solution to be

valid and maximal, there two possible cases:

• The optimal solution is inside the constraint region, and, hence ∇E = 0 and g(x) > 0. In

this region, the constraint is “inactive,” meaning that λ can be set to zero.

• The optimal solution lies on the boundary g(x) = 0. In this case, the gradient ∇E must point

in the opposite direction of the gradient of g; otherwise, following the gradient of E would

cause g to become positive while also modifying E. Hence, we must have ∇E = −λ∇g for

λ ≥ 0.

Note that, in both cases, we have λg(x) = 0. Hence, we can enforce that one of these cases is

found with the following optimization problem:

max
w,λ

E(x) + λg(x) (15.45)

such that g(x) ≥ 0 (15.46)

λ ≥ 0 (15.47)

λg(x) = 0 (15.48)

These are called the Karush-Kuhn-Tucker (KKT) conditions, which generalize the Method of La-

grange Multipliers.

When minimizing, we want ∇E to point in the same direction as ∇g when on the boundary,

and so we minimize E − λg instead of E + λg.

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 101



CSCC11 Lagrange Multipliers

∇E

∇g

x1

x2

g(x) = 0
g(x) > 0

Figure 15.3: Illustration of the condition for inequality constraints: the solution may lie on the

boundary of the constraint region, or in the interior. (Figure from Pattern Recognition and Machine

Learning by Chris Bishop.)
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