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8 Information Theory

This chapter provides a brief introduction to some of the fundamental concepts in Information

Theory, as it relates to machine learning.

Aside:

The field of Information Theory was originally developed to model the capacity of a

noisy channel through which signals are coded and transmitted, but its applications

extend far beyond those origins. The landmark paper in the field, called A Mathe-

matical Theory of Communication, by Claude Shannon, was published in 1948; it is

very accessible and highly recommended.

8.1 Entropy

At the heart of information theory is the notion of entropy. For our purposes, entropy provides

a measure of uncertainty associated with a radnom variable or random process. For a discrete

random variable x ∈ {1, ..., K}, with probabilities Pi ≡ P (x = i), entropy (often denoted H) is

defined as

H =
K∑

i=1

Pi log2
1

Pi

= −
K∑

i=1

Pi log2 Pi (8.1)

We sometimes write H(x) to explicitly indicate the random variable in question. Here, with the

use of the logarithm in base 2, H is measured in bits. Often in machine learning you will see

the natural logarithm uses instead (i.e., base e) in which case H is in nats (and hence a constant

multiple of H in bits). You may recognize this notion of entropy from other fields of study, in

particular, from statistical thermodynamics.

The idea behind entropy is that rare events are more surprising – they carry more information.

Shannon suggested a quantitative measure of information (surprise), namely, log
2

1

Pi

. Intuitively,

an event with probability 1 (i.e., which occurs without fail) is not very surprising and hence carries

little information. An unexpected event, one with low probability will have a larger value of log
2

1

Pi

,

i.e., more information. Equation (8.1) can be seen as the expected information associated with an

observation of the outcome of an event, i.e., Ex[− log
2
P (x)]. One important property of entropy

is that when random variables x and y are independent, P (x, y) = P (x)P (y), then it is easy to

show that the entropy of the joint distribution is simply the sum of the entropies of x and y, as one

would hope.

It’s useful to consider a concrete example. Suppose you flip a fair coin with two equally

likely outcomes (heads and tails). In that case P1 = P2 = 1

2
, and so the entropy becomes H =

−2 1

2
log

2

1

2
= 1. So communicating the outcome of a fair coin toss conveys 1 bit of information.

If, on the other hand, the coin always lands heads side up, then P1 = 1 and H is easily shown to be

0; i.e., the outcome conveys no information since the outcome was already known with certainty. If
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one has a random variable with 8 possible outcomes, all of which are equally likely (i.e., Pi =
1

8
),

then its entropy is 3 bits, but if some outcomes are more likely that others, there is less uncertainty

about the outcome, and the entropy is lower (but bounded below by 0). As a practical matter, note

that the limit of Pi logPi is 0 as Pi → 0, so when computing the sum in (8.1) one can ignore terms

for which Pi = 0.

In the original work, the aim was to model a data source as a random process, and character-

ize the amount of information, and hence the necessary code length, in terms of the probability

distribution over the symbols in the message. Importantly, Shannon proved the seminal theorem

that established entropy as a lower bound on the expected number of bits needed to code data

from a source for which the symbols are generated (independently) with probabilities Pi. This

further showed that the code length for each should depend on its probability of occurrence, i.e.,

li = log2Pi for the ith symbol (as in Huffman codes).

8.2 Conditional and Relative Entropy

Conditional entropy is the expected entropy in one random variable x, when conditioned on a

random variable y:

H(x|y) = −
∑

i,j

P (xi, yj) log2 P (xi|yj)

= −
∑

j

P (yj)
∑

i

P (xi|yj) log2 P (xi|yj)

=
∑

j

P (yj)H(x|yj) (8.2)

This is the expectation, under the distribution P (y), of the entropy of x given the state of y. If x is

completely determined by y, i.e., If everything about x is known with certainty once we know the

value of y, then the conditional entropy is zero. One can also show that x and y are independent if

and only if the conditional entropy satisfies H(x|y) = H(x).
Relative entropy, also called the Kullback-Leibler (KL) divergence, is a measure of the dif-

ference between two distributions. It plays an essential role in many areas of machine learning,

especially in the formulation of variational methods. Given two probability distributions, Q(x) and

P (x), the KL divergence between Q and P is

DKL(Q(x) ||P (x)) =
∑

i

Q(xi) log2
Q(xi)

P (xi)

=
∑

i

Q(xi) log2 Q(xi) −
∑

i

Q(xi) log2 P (xi)

= −H(Q)− EQ[ log2 P ] . (8.3)

One can show that the KL divergence is non-negative. It is zero if and only if the two distributions

behave identically, i.e., Q(x) = P (x). Also note that it is asymmetric measure, DKL(Q ||P ) 6=
DKL(P ||Q), so it is not a similarity metric.
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In terms of coding, we wanted to transmit x to a receiver, but instead of P , we used Q to derive

the coding scheme (i.e., a code that is optimal under Q, rather than P ). Then the relative entropy is

a measure of (lower bound on) the additional information (bits) that one must transmit compared

to an optimal code based on P .

8.3 Mutual Information

Mutual information is one of the most fundamental concepts in information theory. It is a measure

of the information shared by two random variables; i.e., a measure of how much about the state

of one such variable is known when conditioned on the state of the other. It is defined in terms of

entropy and conditional entropy, i.e.,

I(x; y) = H(x)−H(x|y) = H(y)−H(y|x) . (8.4)

So, if knowing the value of y tells us everything about the value of x, then the mutual information

is equal to the entropy of x. If the two variables are independent then the mutual information is

easily shown to be 0.

When we discuss the optimization of decision trees in the next chapter of the notes, you will

recognize mutual information as a key quantity that is often used to measure the quality of different

functions that are used to split data at a given node of the tree. In particular, as a precursor to that

discussion, the goal of learning at each node of the split function is to reduce uncertainty in the

labels associated with data that is passed to the left and right children of the node in question.

If all the training data going to the left child, for example, have the same label, then we can be

reasonably sure that any other data that traverse the tree to that same node should have the same

label. The reduction in uncertainty obtained by splitting the data in a certain way is often called

information gain. It can also be seen as mutual information.

There is also a link between mutual information and the KL divergence. One can show that the

mutual information between x and y, with marginal and joint probability distributions, P (x), P (y)
and P (x, y), can be expressed in terms of the KL divergence as follows:

I(x; y) = DKL(P (x, y) ||P (x)P (y)) . (8.5)

It is easy to see here that the mutual information is therefore zero if x and y are independent. In

general I(x; y) ≥ 0. It can also be shown that mutual information satisfies

I(x; y) = Ey[DKL(P (x|y) ||P (x))] . (8.6)

Finally, we note that mutual information plays a particularly important role when working with

continuous variables (although we will not use it for this purpose in this course). With continuous

random variables it is natural to extend the definition of entropy above to the integral expressing

the expected value of the logarithm (base 2) of the density function. But there are issues due to

the fact that a continuous random variable can take on an infinite number of possible states, and

hence the entropy does not satisfy the same properties as it does in the discrete case. Mutual

information allows one to specify how much information is available about a real-valued random

variable conditioned on the existence of noise in the channel through which it is communicated.
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8.4 Cross Entropy

The cross entropy between two distributions Q and P , is given by

H = −
∑

i

Qi log2 Pi . (8.7)

It is the expected ’surprise’ of a random variable distributed according to P with expectation with

respect to Q. You might note that this quantity shows up in the definition of the KL divergence

above (8.3).

Cross entropy is particularly important in machine learning in the guise of the cross entropy

loss (also known as the log loss) in the formulation of classification problems. We saw it above

when learning the weights for logistic regression. It is also widely used for training deep neural

nets. For this problem, we can view Q as the probability distribution over class labels for a training

sample, and P as the probability distribution over labels predicted by the learned model. In the

case of a binary classification problem, the cross-entropy loss for logistic regression in the last

chapter took the form:

L(w) = −
N∑

i=1

yi logP (c1|xi) + (1− yi) log(1− P (c1|xi)) . (8.8)

where of course P is the distribution over the two classes provided by the logistic regressor, and

the distribution Q places all the probability mass on whichever the training label is, yi for the ith

sample.
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