
CSCC11 Gradient Descent

10 Gradient Descent

Many problems in machine vision entail optimization, i.e., the minimization of an objective func-

tion E(w) with respect to a parameter vector w:

w
∗ = argmin

w

E(w) . (10.1)

In machine learning, this optimization is normally a data-fitting objective function, but similar

problems arise throughout computer science, numerical analysis, physics, finance, and many other

fields.

In simple cases one can derive a closed-form expression for the solution, but in many cases no

such solution for the minimum exists. The solution we will use in this course for such problems

is called gradient descent. It works for any differentiable energy function. However, it does not

come with many guarantees – it is only guaranteed to find a local minima in the limit of infinite

computation time.

Gradient descent is iterative. We begin with an initial estimate, w1, of the unknown parameter

vector. How we obtain this vector depends on the problem. One approach is to randomly-sample

values for the parameters. Another is to find a solution to a closely related problem which does

have a closed-form solution.

From this initial estimate, given that we want to find the parameter vector that minimizes the

objtective, it is natural to adjust the parameter values so that the objective decreases. The direction

of steepest descent from w1 is given by negative gradient−∇E of the objective function evaluated

at w1. The gradient is defined as a vector of derivatives with respect to each of the parameters:

∇E ≡







dE

dw1

...
dE

dwN






(10.2)

The key point is that, if we follow the negative gradient direction for a sufficiently small distance,

the objective function is guaranteed to decrease. (This can be shown by considering a Taylor-series

approximation to the objective function about the current estimate of the parameter vector).

It is easiest to visualize this process by considering E(w) as a surface parameterized by w.

We are trying to find the deepest pit in the surface. We do so by taking a series of small downhill

steps, each time in the negative gradient direction from wherever we are on the surface. The entire

process, in its simplest form, can be summarized as follows:

pick initial value w1

i← 1
loop

wi+1 ← wi − λ∇E|
wi

i← i+ 1
end loop

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 64

CSCC11 Gradient Descent

This process depends on three key choices, namely, the initialization, the termination condition,

and the step-size λ. For the termination condition, one can run until a preset number of steps has

elapsed, or monitor convergence. For example, one can test to see how much the objective has

decreased as a consequence of the last iteration:

|E(wi+1)− E(wi)| < ǫ , (10.3)

for some preselected constant ǫ. Or one could terminate when either condition is met.

The simplest way to determine the step-size λ is to pick a single value in advance; this approach

is often taken in practice. However it is somewhat unreliable. If we choose a step-size that is too

large, then the objective function might actually get worse after some steps. If the step-size is too

small, then the algorithm will take a very long time to make significant progress.

One solution is to use line search. That is, at each step, search along a single direction for the

step-size that reduces the objective function as much as possible. A simple gradient search with

line search procedure is as follows:

pick initial value w1

i← 1
loop

∆← ∇E|
wi

λ← 1
while E(wi − λ∆) ≥ E(wi)

λ← λ/2
end while

wi+1 ← wi − λ∆
i← i+ 1

end loop

A more sophisticated approach is to reuse step-sizes between iterations:

pick initial value w1

i← 1
λ← 1
loop

∆← ∇E|
wi

λ← 2λ
while E(wi − λ∆) ≥ E(wi)

λ← λ/2
end while

wi+1 ← wi − λ∆
i← i+ 1

end loop

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 65

CSCC11 Gradient Descent

There are many, many more advanced methods for numerical optimization. For machine learn-

ing problems there are a host of methods that have been successful, including the use of gradient

momentum and approximations to the Hessian of the objective.

For unconstrained optimization, the L-BFGS-B library is very useful. It is available for down-

load on the web; it’s written in Fortran, but there are wrappers for various languages out there.

This method will be vastly superior to gradient descent for most problems.

10.1 Finite Differences

The gradient of any function can be computed approximately by numerical computations. This

is useful for debugging your gradient computations, and in situations where it’s too difficult or

tedious to implement the complete derivative. The numerical approximation follows directly from

the definition of derivative:
dE

dw

∣

∣

∣

∣

w

≈
E(w + h)− E(w)

h
, (10.4)

for some suitably small stepsize h. Computing this value for each element of the parameter vector

gives you an approximate estimate of the gradient ∇E.

It is strongly recommend that you use this method to debug your derivative computations; many

errors can be detected this way! (This test is analogous to the use of “assertions”). Automatic

differentiation is also very helpful.

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 66

