
CSCC11 Cross Validation

11 Cross Validation

Suppose we need to choose between two possible ways to fit a model to some dataset. For example,

we might want to compare the performance of different classification algorithms on a given dataset.

Or, in the case of a regression problem, we might consider different classes of basis functions (e.g.,

polynomials or RBFs).

Sometimes we want to compare the performance of two different versions of the same type of

model, but with different settings of a hyper-parameter. For example, when solving a regression

problem one might need to specify the number of RBF functions, or the the order of the polyno-

mials. In regularized regression, there is a regularization parameter that controls the weighting of

data and smoothness terms in the objective; choosing a good value of this weight is often difficult

to do a priori, but it often has a major impact on the quality of the learned model.

In classification algorithms there are a number of key parameter choices that might be essential

to training a good model. Examples include the neighborhood size for a k-NN classifier (i.e.,

k). As we discussed above, a larger value of k tends to smooth the decision boundaries, which

may yield better predictions in the face of noise in the training data. In the case of decision trees

(and decision forests), one needs to decide on the depth of the trees. Although one may apply the

recursive learning procedure down to leaves that only contain one training point, this is often prone

to small amounts of error in training data, and tends to overfit. It is therefore common to prune

the tree back from the leaves, but how far should one prune? Indeed, many algorithms have one or

more parameters like this which are necessary to specify.

What’s the right measure of performance? How should we choose between two learned mod-

els? Simply measuring how well different models (or different hyper-parameter values) fit the data

would mean that we always try to fit the data as closely as possible. The best method for fitting the

data is simply to memorize it in big look-up table. However, fitting the data is no guarantee that

we will be able to generalize to new measurements. For example, higher-order polynomials will

always fit data as well or better than low-order polynomials. Indeed, an N − 1 degree polynomial

will fit N data points exactly (to within numerical error). So just fitting the data as well as possible

usually produces models with many parameters, which do not generalize well to new inputs in

almost all cases of interest.

11.1 Hold-Out Validation

One general solution is to evaluate models by testing them on new data (the “validation set”),

distinct from the training set. This measures how predictive the model is. That is, is it useful

in new situations? More generally, we often wish to obtain empirical estimates of performance.

This can be useful for finding errors in implementation, comparing competing models and learning

algorithms, and detecting over- or under-fitting in a learned model. In particular, it is widely used

to determine model parameters that might otherwise to hard to determine, such as k in k-NN

classification, or the bandwidth σ in RBF regression.

In the simplest method, we first partition our data randomly into a “training set” and a “valida-

tion set.” Let k be the unknown model parameter. We pick a set of range of possible values for k

(e.g., k = 1, ..., 5). For each possible value of k, we learn a model with that k on the training set,

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 67

CSCC11 Cross Validation

and compute that model’s error on the validation set. For example, the validation error might be

just the squared-error,
∑

i
(yi−f(xi))

2. We then pick the k with the smallest validation error. The

same idea can be applied if we have multiple parameters (e.g., k and the σ in the k-NN weighting

function), however, the number of possible combinations of k and σ we have to try becomes large

very quickly. So this is only feasible with a relatively small number of hyper-parameters.

The other problem with this approach is that the models are fit with smaller training sets. So we

only get good results if our initial training set is rather large. If large amounts of data are expensive

or impossible to obtain this can be a serious problem. In that case one might opt to use K-fold

cross validation.

11.2 K-Fold Cross Validation

In K-fold cross-validation we randomly partition the training data into K sets of equal size and run

the learning algorithm K times. Each time, a different one of the K sets is deemed the validation

set, and is therefore held out during learning; i.e., the model is trained on the remaining K−1 sets.

The quality of the model is determined by averaging the validation errors across the K models. We

can then pick the model (or hyper-parameter values) that gave the lowest score. We then fix those

hyper-parameters, or the type of model, and fit a single model using all the data.

With small datasets, a good choice for K is N , where N is the number of points in the training

set. In other words, we learn as many models as there are data points, each time using all but one

data point. In this way we use as much data as possible to learn all the models while holding out

one point each time, which is then used to test the model predictions. This is called leave-one-out

cross-validation, abbreviated LOOCV.

The main benefit of LOOCV is that is can be used for smaller datasets, and it’s simple to

implement. The downside is that it can be extremely time consuming because one has to fit as

many models as one has datapoints. For linear regression problems, interestingly, it turns out that

one can use LOOCV by fitting just one model. Let MSEi is the squared error in the prediction of

the ith input for a model learned with all but the ith data-point. Then the LOOCV score function

measures the average error over the N models (where N is the size of the training dataset), as

CV =
1

N

N
∑

i=i1

MSEi (11.1)

For LS linear regression, or basis function regression, it can be shown that CV can be computed

from a single model that was fit using the entire dataset. In this case the LS solution has the form

w = (XTX)−1XT
y and the predicted values of the model are given by ŷ = Xw = Hy, where

H = X(XTX)−1XT . Then, the CV score can be expressed as

CV =
1

N

N
∑

i=1

(

yi − ŷi

1− hi

)

2

(11.2)

where yi and ŷi are the ground truth and predicted outputs, and hi is the ith diagonal entry of H .

Here, hi is often called the leverage of the ith point as it is related to the influence of the ith point

on the LS model fit.

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 68

CSCC11 Cross Validation

11.3 Issues with Cross Validation

Cross validation is a very simple and empirical way of comparing models. However, there are a

number of issues to keep in mind:

• The method can be very time-consuming, since many training runs may be needed. For

models with more than a few parameters, cross validation may be too inefficient to be useful.

• Because a reduced dataset is used for training, there must be sufficient training data so that

all relevant phenomena of the problem exist in both the training data and the test data.

• It is safest to use a random partition, to avoid the possibility that there are unmodeled cor-

relations in the data. For example, if the data was collected over a period of a week, it is

possible that data from the beginning of the week has a different structure than the data later

in the week.

• Because cross-validation finds a minimum of an objective function, over- and under-fitting

may still occur, although it is much less likely. For example, if the test set is very small, it

may prefer a model that fits the random pattern in the test data.

Aside:

Testing machine learning algorithms is very much like testing scientific theories:

scientific theories must be predictive, or, that is, falsifiable. Scientific theories must

also describe plausible models of reality, whereas machine learning methods need

only be useful for making decisions. However, statistical inference and learning first

arose as theories of scientific hypothesis testing, and remain closely related today.

One of the most famous examples is the case of planetary motion. Prior to Newton,

astronomers described the motion of the planets through onerous tabulation of mea-

surements — essentially, big lookup tables. These tables were not especially predic-

tive, and needed to updated constantly. Newton’s equations of motion, which could

describe the motion of the planets with only a few simple equations, were vastly

simpler and yet also more effective at predicting motion, and became the accepted

theories of motion.

However, there remained some anomolies. Two astronomers, John Couch Adams

and Urbain Le Verier, thought that these discrepancies might be due to a new, as-

yet-undiscovered planet. Using techniques similar to modern regression, but with

laborious hand-calculation, they independently deduced the position, mass, and orbit

of the new planet. By observing in the predicted directions, astronomers were in-

deed able to observe a new planet, which was later named Neptune. This provided

powerful validation for their models.

Incidentally, Adams was an undergraduate working alone when he began his investi-

gations.

Reference: http://en.wikipedia.org/wiki/Discovery of Neptune

Copyright c© 2023 Aaron Hertzmann and David J. Fleet 69

