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12 Bayesian Methods

So far, we have considered statistical methods which select a single “best” model given the data

(i.e., a so-called point estimate of model parameters). This approach can have problems, such

as over-fitting when there is not enough data to fully constrain the model fit. In contrast, in the

“pure” Bayesian approach, as much as possible we only compute distributions over unknowns; we

never maximize anything. For example, consider a model parameterized by some weight vector

w, and some training data D that comprises input-output pairs xi, yi, for i = 1...N . The posterior

probability distribution over the parameters, conditioned on the data is, using Bayes’ rule, given

by

p(w | D) =
p(D |w)p(w)

p(D)
. (12.1)

The reason we want to fit the model in the first place is to allow us to make predictions with

future test data. That is, given some future input xnew , we want to use the model to predict ynew .

To accomplish this task through estimation in previous chapters, we used optimization to find

maximum likelihood (ML) or maximum a posteriori (MAP) estimates of w, e.g., by maximizing

(12.1).

In a Bayesian approach, rather than estimation a single best value for w, we compute (or

approximate) the entire posterior distribution p(w|D). Given the entire distribution, we can still

make predictions with the following integral:

p(ynew | D, xnew ) =

∫

p(ynew ,w | D, xnew ) dw

=

∫

p(ynew |w,D, xnew ) p(w | D, xnew ) dw (12.2)

The first step in this equality follows from the Sum Rule. The second follows from the Product

Rule. Additionally, the outputs ynew and training data D are independent conditioned on w, so

p(ynew |w,D) = p(ynew |w). That is, given w, we have all available information about making

predictions that we could possibly get from the training data D (according to the model). Finally,

given D, it is safe to assume that xnew , in itself, provides no information about W. With these

assumptions we have the following expression for our predictions:

p(ynew | D, xnew ) =

∫

p(ynew |w, xnew ) p(w | D) dw (12.3)

In the case of discrete parameters w, the integral becomes a summation.

The posterior distribution p(ynew | D, xnew ) tells us everything there is to know about our be-

liefs about the prediction ynew . It does so by combining two sources of information. One is the

distribution over the target y given the weights w; e.g., where the distribution p(y|w, x), and its in-

trinsic uncertainty, is often derived from a model of the form y = f(x,w)+η, where η is a random

variable used to model measurement noise. The second source of information (and uncertainty) is

what we know about the model parameters w, characterized by the posterior distribution p(w | D).
In essence, the posterior p(ynew | D, xnew ) is a weighted average of distributions, p(y|w, x), over

all possible values of the model parameters w, weighted by how well they fit the data, i.e., p(w|D).
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And there are many things we can do with the prediction distribution in (12.3). For example,

we could pick the most likely prediction, i.e., argmaxy p(ynew | D, xnew ), or we could compute the

variance of this distribution to get a sense of how much confidence we have in the prediction. We

could sample from this distribution in order to visualize the range of models that are plausible for

this data.

The integral in (12.3) is rarely easy to compute, often involving intractable integrals or expo-

nentially large summations. Thus, Bayesian methods often rely on numerical approximations, such

as Monte Carlo sampling. MAP estimation can also be viewed as an approximation, for which the

posterior distribution is approximated by a delta function. In some cases, however, the Bayesian

computations can be done exactly, an example of which is the Bayesian approach to regression

below.

12.1 Bayesian Regression

Recall the statistical model used in basis-function regression:

y = b(x)Tw + η , η ∼ N (0, σ2) (12.4)

for a fixed set of basis functions b(x) = [b1(x), ...bM(x)]T .

To complete the model, we also need to define a “prior” distribution over the weights w (de-

noted p(w)). The prior which expresses what we believe about w in absence of any training data.

One might be tempted to assign a constant density over all possible weights. There are several

problems with this. First, the result cannot be a valid probability distribution since no choice of

the constant will give the density a finite integral. We could, instead, choose a uniform distribution

with finite bounds, however, this will make the resulting computations more complex.

More importantly, a uniform prior is often inappropriate. We often find that smoother functions

are more likely in practice (at least for functions that we have any hope in learning), and so we

should employ a prior that prefers smooth functions. A choice of prior that does so is a Gaussian

prior:

w ∼ N (0, α−1I) (12.5)

which expresses a prior belief that smooth functions are more likely.1 This prior also has the

additional benefit that it will lead to tractable integrals later on. Note that this prior depends on

a parameter α. We will see later in this chapter how this “hyper-parameter” can be determined

automatically as well.

As developed in previous chapters on regression, the data likelihood function that follows from

the above model definition (with input and output components of the training data, denoted x1:N

and y1:N ) is

p(y1:N | x1:N ,w) =
N
∏

i=1

p(yi | xi,w) , (12.6)

1Why such a prior encourages smoothness is not always obvious. But in many cases of regression, for example,

the gradient of the model is linear in the weights, so smaller weights means smaller gradients.
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and so the posterior is:

p(w | x1:N , y1:N ) =

(

∏N

i=1
p(yi | xi,w)

)

p(w)

p(y1:N |, x1:N )
. (12.7)

In the negative log-domain, using Equations (12.4) and (12.5), the model is given by

− ln p(w | x1:N , y1:N ) = −
N
∑

i=1

ln p(yi | xi,w) − ln p(w) + ln p(y1:N | x1:N )

=
1

2σ2

N
∑

i=1

(yi − f(xi))
2 +

α

2
||w||2 + constants

As in the regression chapters above, it is useful if we collect the training outputs into a single

vector, i.e., y = [y1, ..., yN ]
T , and we collect the all basis functions evaluated at each of the inputs

into a matrix B, with elements Bi,j = bj(xi). In doing so we can simplify the expression of the

log posterior as follows

− ln p(w | x1:N , y1:N ) =
1

2σ2
||y −Bw||2 +

α

2
||w||2 + constants

=
1

2σ2
(y −Bw)T (y −Bw) +

α

2
wTw + constants

=
1

2
wT

(

BTB

σ2
+ αI

)

w −
1

2

yTBw

σ2
−

1

2

wTBTy

σ2
+ constants

=
1

2
(w − w̄)TK−1(w − w̄) + constants (12.8)

where

K =

(

BTB

σ2
+ αI

)

−1

and w̄ =
KBTy

σ2
(12.9)

(The last step of the derivation uses a technique referred to as completing the square. It is easiest

to verify the last step by going backwards, that is by multiplying out (w − w̄)TK−1(w − w̄).)
The derivation above tells us that the posterior distribution over the weight vector is a multi-

dimensional Gaussian with mean w̄ and covariance matrix K, i.e.,

p(w | x1:N , y1:N ) = G(w; w̄,K) (12.10)

In other words, our belief about w once we have seen the data is specified by a Gaussian density.

We believe that w̄ is the most probable value for w, but we have uncertainty about this estimate, as

determined by the covariance K. The covariance expresses our uncertainty about these parameters.

If the covariance is very small, then we have a lot of confidence in the MAP estimate. The nature

of the posterior distribution is illustrated visually in Figure 12.1. Note that w̄ is the MAP estimate

for regression, since it maximizes the posterior.
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Figure 12.1: Iterative posterior computation for a linear regression model: y = w0x+w1. The top

row shows the prior distribution, and several fair samples from the prior distribution. The second

row shows the likelihood over w after observing a single data point (i.e., an x, y pair), along with

the resulting posterior (the normalized product of the likelihood and the prior), and then several fair

samples from the posterior. The third row shows the liklihood when a new observation is added to

the previous observation, followed by the corresponding posterior and random samples from the

posterior. The final row shows the result of 20 observations.
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Prediction. For a new data point xnew , the predictive distribution for ynew is given by:

p(ynew | xnew ,D) =

∫

p(ynew | xnew ,D,w) p(w | D) dw

= G(ynew ;b(xnew )
T w̄, σ2 + b(xnew )

TKb(xnew )) .

To show that the prediction distribution has this form requires some work, and the use of some

identities associated with Gaussian distributions. In particular, as explained at the end of Chapter

6 on the Gaussian Probability Density Function, the product of two Gaussians is Gaussian (albeit

unnormalized), and the marginalization of a multi-dimensional Gaussian is Gaussian. Further, if x

is a Gaussian random vector with mean µx and covariance Σx, and a new random vector is equal to

y = Ax for some matrix A, then one can show that y is Gaussian with mean Aµx, and covariance

matrix AΣxA
T . If y = Ax + η where η is mean-zero Gaussian with covariance Ση then y has

mean Aµx and covariance matrix Ση + AΣxA
T .

This is the Bayesian way to do regression. The predictive distribution may be viewed as a

function from xnew to a distribution over values of ynew . An example of this for an RBF model is

depicted in Figure 12.2. To predict a new value ynew for an input xnew , we don’t estimate a single

model w. Instead we average over all possible models, weighting the different models according

to their posterior probability.

12.2 Hyper-Parameters

There are often implicit parameters in our model that we hold fixed, such as the covariance con-

stants in linear regression, or the parameters that govern the prior distribution over the weights.

These are usually called “hyper-parameters.” For example, in the RBF model, the hyper-parameters

constitute the parameters α, σ2, and the parameters of the basis functions (e.g., the width of the ba-

sis functions). Thus far we have assumed that the hyper-parameters were “known” (which means

that someone must set them by hand), or estimated by cross-validation (which has a number of pit-

falls, including long computation times, especially for large numbers of hyper-parameters). Instead

of either of these approaches, we may apply the Bayesian approach in order to directly estimate

these values as well.

To find a MAP estimate for the α parameter in the above linear regression example we compute:

α∗ = argmax ln p(α | x1:N , y1:N ) , (12.11)

where

p(α | x1:N , y1:N ) =
p(y1:N | x1:N , α) p(α)

p(y1:N | x1:N )
, (12.12)

and

p(y1:N | x1:N , α) =

∫

p(y1:N ,w | x1:N , α)dw

=

∫

p(y1:N | x1:N ,w, α)p(w |α)dw

=

∫

(

∏

i

p(yi | xi,w, α)

)

p(w |α)dw
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Figure 12.2: Predictive distribution for an RBF model (with 9 basis functions), trained on noisy

sinusoidal data. The green curve is the true underlying sinusoidal function. The blue circles are

data points. The red curve is the mean prediction as a function of the input. The pink region

represents 1 standard deviation. Note how this region shrinks close to where more data points are

observed. (Figure from Pattern Recognition and Machine Learning by Chris Bishop.)
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For RBF regression, in the Gaussian case, this objective can be solved in closed-form. However,

depending on the form of the prior over the hyper-parameters, it is often necessary to use some

form of numerical optimization, such as gradient descent to find α.

12.3 Bayesian Model Selection

Cross-validation is one approach to model selection, where we measure the relative performance

of different models on data held out from training. But it can be extremely expensive, as it re-

quire fitting multiple models, often many times to different subsets of data. Unless one has has a

reasonably large dataset it can be unreliable.

Bayesian approaches offer a principled alternative, often capturing the general rule of thumb

that one should choose simple models over complex models. That is, other things being equal (like

how well they fit the data), it is hoped that simpler models are less prone to over-fitting.

By way of formulation, given data D, assume there are L candidate models {Mi}
L
i=1

, each

with a corresponding parameter vector wi. One might choose to use the model that maximizes the

model posterior, P (Mi | D), or perhaps the one with the best data likelihood p(D |Mi). Of course

these two distributions are related through Bayes’ rule:

P (Mi | D) =
p(D |Mi)P (Mi)

p(D)
.

If we assume all models are equally likely a priori, then P (Mi) is constant, and the two approaches

are essentially the same. In practice, a uniform prior over models may not be appropriate, but

the design of suitable priors in these cases will depend significantly on one’s knowledge of the

application domain. So, for our purposes in this chapter we’ll assume a uniform prior over models

and focus on p(D |Mi), often called the marginal data likelihood.

Given two models, M1 and M2, we will choose model M1 when p(D |M1) > p(D |M2).
But to understand these quantities we need to take the model parameters into account, i.e., wi

for model Mi. Again, it is important to remember that different models will often have different

numbers of parameters (e.g., polynomials of different degrees, differents numbers of basis function

etc). We include model parameters by rewriting the marginal data likelihood as follows:

p(D |Mi) =

∫

p(D,wi |Mi) dwi

=

∫

p(D |wi,Mi) p(wi |Mi) dwi . (12.13)

Equation (12.13) tells us that more probable models will have both p(wi |Mi) and p(D |wi, Mi)
large for the same weight vectors. In other words, a model is considered good if it assign high

prior probability to the same weight vectors that also fit the data well (ie yield high likelihoods).

As an aside, remember than when we first introduced regression from a probabilistic point of

view, we determined the MAP estimate of the model parameters, w, by maximizing the posterior;

i.e.,

max
w

p(w|D) = max
w

p(D |w) p(w)

p(D)
. (12.14)
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There are three important things to note here. First, although we didn’t mention it at the time, all

the quantities above in Equation (12.14) are implicitly conditioned on a particlar class of model

(eg K-th order polynomials). We didn’t mention it explicitly early on since we weren’t comparing

different classes of model. We were only lookinng for the best parameters given the model class.

Second, we ignored the denominator in this regression optimization since to find the MAP estimate

we only need to consider terms that explicitly depend on the parameters w. And third, we called

that denominator the ’evidence’ without much explanation at the time. Note that the evidence, i.e.,

p(D) or to explicitly condition on the model, p(D |M), is precisely the quantity of interest above.

That is, it is the evidence with which we select one model over another.

Returning to the issue at hand, i.e., Equation (12.13), we note that the prior p(wi |Mi) in plays

a particularly important role in model selection. One way to measure model complexity is the

effective size of the parameter space, or perhaps the entropy of the prior. For discrete parameters

we might count the number of possible parameter values. For continuous parameters we might

count the number of parameters and their ranges (up to uncertainty in parameter estimation). And

a model with a larger parameter space will assign lower prior probability to any one parameter

value. That is, the prior must integrate to one, so a complex model spreads its prior probability

mass more thinly over its parameter space. So if two models fit the data equally well for some

range of parameters, then the more complex model will have a lower marginal data likelihood

since the prior density in (12.13) will be smaller. In this way, the marginal data likelihood captures

a very natural bias toward simpler models, whose range of parameters in the prior is well matched

to the range of parameters for which the data likelihood p(D |wi,Mi) is large.

As an aid to intuition on model selection, consider a simple approximation to the marginal

data likelihood p(D |Mi) (depicted in Fig. 12.3 for a single scalar parameter w). First, as is

common for many problems of interest, let’s assume the posterior distribution over the model

parameters, p(wi | D,Mi) ∝ p(D |wi,Mi)p(wi |Mi), has a strong peak at the MAP estimate

wMAP
i . Accordingly, we can approximate the integral in Eqn. (12.13) as the height of the peak,

i.e., p(D |wMAP
i ,Mi) p(w

MAP
i |Mi), multiplied by width of the peak, ∆w

posterior
i :

∫

p(D |wi,Mi)p(wi |Mi)dwi ≈ p(D |wMAP
i ,Mi) p(w

MAP
i |,Mi)∆w

posterior
i

Then, assume that the prior over the parameter space, p(wi|Mi), is a relatively broad uniform with

width ∆w
prior
i , so p(wi) ≈

1

∆w
prior

i

. This yields a further approximation:

p(D |Mi) =

∫

p(D |wi,Mi) p(wi |Mi)dwi ≈
p(D |wMAP

i ,Mi)∆w
posterior
i

∆w
prior
i

Taking the logarithm, this becomes

ln p(D |Mi) ≈ ln p(D|wMAP
i ,Mi) + ln

∆w
posterior
i

∆w
prior
i

In most cases of interest we can assume ∆w
posterior
i < ∆w

prior
i . That is, one can usually as-

sume that the variance of the posterior is smaller than the variance of the prior. The log ratio is
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∆wposterior

∆wprior

wMAP w

Figure 12.3: A visualization of the width-based evidence approximation. (Figure from Pattern

Recognition and Machine Learning by Chris Bishop.)

maximal when the prior and posterior widths are equal. A complex model with many parameters,

or a broad prior over the parameter space will necessarily assign small probability to any single

parameter value (including those under the posterior peak). A simpler model will assign a higher

prior probability to the useful parameter range under the posterior peak. When the model is too

simple, the likelihood in the integrand tends to suffer, which lowers the marginal data likelihood.

As models become more complex the data likelihood increasingly fits the data better. But as the

models become more and more complex the log ratio ln
∆w

posterior

i

∆w
prior

i

acts as a penalty on unneces-

sarily complex models.

By selecting a model with the highest marginal data likelihood we are automatically balanc-

ing model complexity with the ability of the model to capture the data. This can be seen as the

mathematical realization of Occam’s Razor.

Model averaging. To be fully Bayesian, arguably, we shouldn’t select a single “best” model, but

instead combine estimates from all models according to their respective posterior probabilities:

p(ynew | D, xnew ) =
∑

i

p(ynew |Mi,D, xnew )P (Mi | D) (12.15)

but this is often impractical and so we resort to model selection instead.
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