
CSCC11 Introduction to Machine Learning, Winter 2024

Assignment 3

This assignment makes use of material up to week 12 of the course. Like the first and second assignments, it
comprises two parts, a written part and a coding part. The written work asks for you to derive some solutions
to problems and for you to demonstrate an understanding of certain concepts. The written and programming
parts will have different deadlines (see below). Submission instructions can be found at the end of the handout.

We remind you that the work you hand in for this assignment must be your own. Students should not make
use of large language models for programming assistants like Copilot.

Theory Questions (Due April 8, 11:59pm)

Question 1. Bias-Variance Decomposition and trade off (10 marks)

In the course for Bayesian model selection, we discussed how model selection depends on model complexity
(described in detail in the course notes in Section 12.3). We discussed how increasing model complexity results
in reducing the error as measured by the model likelihood during training, while increasing the divergence
between the posterior and prior. This phenomenon is also characterized by the so-called bias-variance trade-off
in machine learning. The bias of a model represents the average difference between the predicted values and
the true values. The variance of a model, on the other hand, measures the variability of the predicted values
around their mean. As the complexity of the model increases, the variance will tend to increase and the bias
will tend to decrease.
With this context, in terms of the mean-squared-error (MSE) for the model y = f(x) + η, for which E[η] = 0
and var(η) = σ2, answer the questions below:

a Proof that the expected MSE of the prediction of a LS regression model will be the sum of bias and
variance. Hint: You should start by expanding E[(y−f(x))2]. [You will find it helpful to familiarize yourself
with bias-variance decomposition in Section 3-2 of Bishop’s book: https://www.microsoft.com/en-us/
research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf]

b Briefly, discuss the concepts of under-fitting and over-fitting in terms of bias and variance. E.g., how do
you expect the relative magnitudes of bias and variance to coincide with underfitting and/or overfitting.

c Intuitively, discuss the relation between bias and variance with respect to data size. For example, as the
dataset size grows very large, how do you expect bias and variance to behave?

Question2. Principal Component Analysis (10 marks)

Beyond PCA’s role in dimensionality reduction and visulization, the PCA algorithm finds extensive utility across
various domains, such as image processing. For example, PCA has been employed for image rotation, where it
assists in aligning images and correcting for orientation variations. This application is particularly valuable in
fields of medical imaging where precise alignment of images is crucial for analysis and visualization purposes.

1. Figure 1 displays a magnetic resonance image (MRI) alongside its corresponding masked version. In this
context, a mask is a binary image that highlights areas of interest with white pixels, while the rest of
the image remains black. Creating such masks can be accomplished through various methods, including
manual annotation and automated segmentation techniques such as intensity thresholds, texture analysis,
machine learning algorithms, or a combination thereof. The masked image isolates regions of interest
from the background, enabling us to concentrate specifically on the relevant areas for our analysis. In this
question intuitevly discuss on employing PCA with the masked image to determine the rotation matrix
required to align the MRI image with the Y-axis.

2. Missing data refers to the absence of values in a dataset that can occur due to various reasons, such as
equipment malfunction, human error, or simply because certain information was not collected. In such
cases, PCA can help in data completion or filling the missing values.
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Figure 1: MRI image and its corresponding masked image.

To formulate this, let’s assume we have images with d pixels represented as 2D arrays. Now suppose that
we rearrange the pixels of each image image into a single column vector (e.g., by stacking the columns of
the array on top of each other). Let’s denote N such images as column vectors {yi}Ni=1, where yi ∈ Rd.
And suppose we use PCA to find a low-dimensional representation of the images, given by x = W Ty,
where the matrix W ∈ Rd×K maps an image vector y into the K-dimensional subspace, the coefficients
of which are x. As discussed in the notes, the columns of W are the K principal eigenvectors of the
covariance matrix of the image data.

Given a point x ∈ RK in the subspace, we can reconstruct the corresponding image using y = Wx.
PCA learns the mapping by trying to minimize the approximation error between the original data and
the reconstructed images. But suppose we are given just a subset of the pixels in an image. Perhaps we
only see the right half of the image, or we only see every other row of the image. It turns out that you
can still find a subspace representation for this partially observed image, and in doing so, then reconstruct
the image to fill in the missing pixels.

Your job will be to formulate this task, i.e., to formulate the task of filling in the unobserved (masked)
part of an image. To begin, let’s model the partial observation with a matrix that projects out the pixels
we do not observe. Let ỹ = Py, where ỹ only includes the observed pixels of y. Here P ∈ Rm×d is a
projection operator to a subspace of m observed pixels. You can think of P as comprising just M rows of
the d× d identity matrix, so it selects only a subset of dimensions.

Please answer the following:

(a) Assume that images are vectorized (flattened into columns) in row-major order. Then, when the
bottom half of the image is missing, show that P =

[
Im|0

]
, where Im is an identity matrix.

(b) Now, given a partially observed image ỹ, derive the optimal subspace projection of the image that
minimizes the squared reconstruction error, given by ||PWx− ỹ||2.

Question 3. Clustering (10 marks)

In lectures we discussed the use of the K-Means algorithm to cluster data into K number of groups (see Section
16.1), for which we used Euclidean distance to measure the proximity of each data point to the centroid of its
respective cluster.

1. When dealing with a dataset featuring varying scales among its features, normalization (or feature
reweighting) is critical to prevent any single feature from becoming dominant. Normalization seeks to
equalize the importance of each feature by transforming them to exhibit a distribution with a mean of
zero and a standard deviation of one. Derive a mathematical expression to incorporate feature normal-
ization into the K-Means objective function.

2. In addition to the Euclidean distance, alternative distance functions such as L1 and cosine distance can
be utilized within the K-Means objective function. L1 distance, also known as Manhattan distance, is
a measure of the distance calculated by summing the absolute differences between the coordinates of
corresponding points. In other words, it’s the sum of the absolute differences of the Cartesian coordinates.
For instance, in two dimensions, the L1 distance between points (x1, y1) and (x2, y2) is given by |x1 −
x2|+ |y1 − y2|. Cosine distance measures the angular distance between two vectors in a multidimensional
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space. It’s calculated as the cosine of the angle between the vectors. The formula for cosine similarity
between two vectors u and v is given by:

cosine similarity(u,v) =
u · v

∥u∥∥v∥

where u · v denotes the dot product of u and v, and ∥u∥ and ∥v∥ are the Euclidean norms (magnitudes)
of vectors u and v respectively.

Derive the cosine distance into the K-Means objective function.

3. Let’s suppose that numerous features within the K-Means algorithm are redundant. For instance, there
exists a significant correlation among features, potentially leading the K-Means algorithm to favor highly
correlated features. What recommendations do you propose to enhance the model’s performance?

Programming Questions (Due April 8, 11:59pm)

Question 1. Dimensionality reduction and visualization (10 marks)

For this programming section, we will use the MNIST1. As we discussed before, the dataset comprising images
of handwritten digits, centered and resized to 28 × 28 pixels. Each image has been saved as a vector with the
dimension of 784 = 28× 28, and is associated with a label, namely, digits 0 through 9. We also used previously
introduced machine learning library for python programming language, scikit-learn, often referred to as sklearn.
Please complete the code based on the text provided for each section in the Python file. The blank sections
that need completion are indicated by XXX. The completed python files do not need to be submitted.

1. As we discussed, each digit in the dataset can be represented as a 784-dimensional vector, but visualizing
data in 784 dimensions is not practically feasible. Here, we aim to reduce this to 2 dimensions for
visualization purposes. We will utilize the first section of the PCA.py script to accomplish this task.
After filling in the necessary sections of the script, you should be able to generate a 2D plot of the data.
Upon examining the plot, discuss whether we can identify distinct clusters within the data. Do you expect
differen runs of applying PCA results in the same output? Why?

2. In the second section of the PCA.py script, we will plot the cumulative variance explained by adding more
principal components. Determine the number of components needed to capture 90% of the variance in
the data.

3. In this section, we will use the third section of the PCA.py script to reconstruct input images using the
first 50,100, and 500 principal components. Visualize the output and discuss the properties of added
components?

4. As discussed in theoretical question 2, PCA can be employed to address missing data. In this section, we
introduce missing data by removing the bottom half of an image shown in Figure 2 Using the mathematics
derived from 2.b, complete the fourth section of the PCA.py script to reconstruct the input image. Visual-
ize the output and discuss how increasing the number of principal components changes the reconstructed
image

Question 2. Segmentation with Clustering (10 marks)

Image segmentation stands as a fundamental task in thecomputer vision, crucial for pinpointing objects and
delineating boundaries within images. Essentially, image segmentation is the assignment of a label to each
pixel in an image, grouping pixels with similar attributes together. This process finds extensive application in
everyday scenarios like autonomous vehicles, facial recognition and detection, video surveillance, and satellite
image analysis.
A multitude of algorithms can be enlisted to accomplish the segmentation of regions of interest within input
data. Previously, a simple approach involved leveraging clustering algorithms atop RGB images. This method
entailed grouping pixels based on their color similarity, allowing for the identification and isolation of distinct

1short for Modified National Institute of Standards and Technology
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Figure 2: Partially observed data

regions within the image. In this question, we are looking to explore how to use KMeans and GMM clustering
algorithm to segment an input image. We will use sklearn to perform clustering. Having this in mind, please
answer below questions.

1. We will use the first section in Clustering.py to explore the argument for the KMeans algorithm. We are
looking to segment an input image into 3 segments. Execute the algorithm and display the segmented
image. Report the cluster center. If we run the algorithm three times, will we obtain consistent results?
(Note: you should compare the center of the cluster). Will we consistently receive the same labels each
time we run the model? Discuss your observation.

2. We will use the second section in Clusteirng.py to explore the argument for the GMM algorithm. We
are interested to explore how full covariance shape to segment the input image into 3 segments. Show the
results of the segmentation. Report the mean and covariance of each component.

Submission Instructions

Theory Questions This part may be done with pen and paper or a text editor (eg latex). Formatted answers
are easier to read but likely require more time. In any case, your answers should be handed in electronically as
a single pdf file (for all 3 questions). The file should be called solution.pdf, and it should be submitted to
Markus. If you do work with pen and paper you could scan or take photos of your work then convert to pdf.

Programming Questions For this part, you need to answer the questions for each section and provide the
requested plot for each part. Your answers should be submitted electronically as a single PDF file (for all
sections). The file should be named solutioncoding.pdf and submitted to Markus

Note that in Markus you find separate sections dedicated to theory and programming parts of this assignment.
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