
CSCC11 Introduction to Machine Learning, Winter 2024

Assignment 2

This assignment makes use of material up to week 6 of the course. Like the first assignment, it comprises two
parts, a written part and a coding part. The written work asks for you to derive some solutions to problems and
for you to demonstrate an understanding of certain concepts. The written and programming parts will have
different deadlines (see below). Submission instructions can be found at the end of the handout.

We remind you that the work you hand in for this assignment must be your own. Students should not make
use of large language models for programming assistants like Copilot.

Theory Questions (Due Monday, March 4, 11:59pm)

Question 1. MAP and Bayes Estimates (10 marks)

In the class, we discussed parameter estimation for a Bernoulli random variable from N independent observa-
tions. In particular we estimated the probability θ that a coin toss will land heads-side up, given the outcomes
of N coin tosses. Initially, we assumed a uniform prior distribution over potential value of θ. Now, suppose we
have a non-uniform prior. For example, a commonly used prior for a probability on the unit interval [0, 1] is the
Beta distribution:

Beta(θ |α, β) =
1

B(α, β)
θα−1(1− θ)β−1 , (1)

where α and β are the two parameters of the density function, and B is a constant which ensures the density
integrates to 1. (The Beta distribution is known as a conjugate prior for the Bernoulli distribution, meaning
that its comes from the same family of distributions as a posterior for θ. Conjugate priors are widely used as
they have many convenient properties.)

a Setting α = β = 1 in the Beta distribution, what function will we obtain? How about setting α = β = 2?
For both cases, find the maximum value of the probability density function and identify the location of
this maximum.

b Suppose we observe N independent coin flips. Derive a mathematical expression for the posterior distri-
bution over θ using the Beta prior.

c Derive a mathematical expression for the MAP estimate for θ.

d In class, we showed that the Bayes estimate with a uniform prior has some appealing properties. Compare
two different estimators, namely, (i) θMAP with a Beta prior, and (ii) the Bayes estimate with a uniform
prior. How do they differ? Is it possible to obtain θ from the Bayes estimate using a Beta prior?

e Discuss the differences in estimates of θ from (i) the MAP estimate with a uniform prior, (ii) the Bayes
estimate with the uniform prior, and (iii) the MAP estimate with a Beta prior, when the number of
observed coin tosses is small, versus when the number of coin tosses tends to infinity. In a couple of
sentences, explain which one seems more useful?

Question 2. Decision Trees (10 marks)

In class we discussed how to used information gain to help determine which attribute (or feature) is the most
useful for discriminating between two classes. In this question, we are looking to construct a decision tree using
a simple example. Assume we need to suggest whether a person should to go to a Chinese restaurant or an
Italian restaurant.
Based on your observations over the last two weeks you observe people with excellent taste in restaurants having
gone to the Italian restaurant 12 times and the Chinese restaurant 18 times. During your observations, you have
also noted several factors that appear relevant to the prediction, namely, (i) whether one goes to the reastaurant
early in the week (Monday-Wednesday), later in the week (Thurs-Friday) or on the weekend, (ii) whether it is
raining, and (iii) whether one is planning to go for lunch or dinner. The table below shows our observations,
i.e., what conditions existed when people went to the two restaurants.

1



Observation Resturant Raining Day Meal
x1 Italian Y Mon-Wed Lunch
x2 Italian N Thurs-Fri Dinner
x3 Italian N Thurs-Fri Dinner
x4 Italian Y Sat-Sun Dinner
x5 Itlian N Mon-Wed Dinner
x6 Chineese Y Mon-Wed Dinner
x7 Chineese N Mon-Wed Dinner
x8 Chineese N Mon-Wed Dinner
x9 Chineese N Sat-Sun Lunch
x10 Chineese Y Sat-Sun Lunch
x11 Chineese Y Sat-Sun Lunch
x12 Chineese Y Sat-Sun Lunch
x13 Chineese Y Mon-Wed Dinner
x14 Italian Y Sat-Sun Dinner
x15 Italian N Mon-Wed Dinner
x16 Italian Y Sat-Sun Dinner
x17 Chineese Y Mon-Wed Lunxh
x18 Chineese N Mon-Wed Dinner
x19 Italian N Mon-Wed Lunch
x20 Chineese N Mon-Wed Lunch
x21 Chineese Y Mon-Wed Lunch
x22 Chineese N Mon-Wed Dinner
x23 Italian N Sat-Sun Lucnh
x24 Italian Y Mon-Wed Lunch
x25 Italian N Mon-Wed Dinner
x26 Chineese N Thurs-Fri Lunch
x27 Chineese N Thurs-Fri Lunch
x28 Chineese Y Mon-Wed Dinner
x29 Chineese Y Thurs-Fri Dinner
x30 Chineese N Mon-Wed Dinner

Table 1: Observation of 30 people (with good taste) going to restaurants.

a For the root node of the tree, compute the entropy for the distribution over our target variable (i.e.,
Restaurant) for which we aim to learn a predict tool.

b Explain why entropy (for discrete random variables) is always non-negative?

c How many different split functions are there for this data set? What are they? For each, compute the
information gain at the root node.

d What split function would you use for the root of the decision tree?

e Draw (by hand if you like) the full decision tree that you would expect to learn.

Question 3. Logistic Regression (10 marks)

The main approach to fitting a logistic regression model involves maximizing the log-likelihood of the observed
data with respect to the model parameters. This is typically achieved using optimization algorithms, such as
gradient descent or its variants, which iteratively update the model parameters to minimize the loss function
(i.e., the negative log-likelihood given in Equation (9.46) in the course notes).
As explained in Section 10 of the course notes, gradient descent works by iteratively updating the model
parameters in the direction of the steepest descent of the loss function. The Newton-Raphson algorithm is
another optimization method that can be used for logistic regression. Unlike gradient descent, which updates
the parameters based on the gradient of the loss, the Newton-Raphson algorithm also uses the second derivatives

2



(the Hessian matrix) to determine the direction and step size for parameter updates. The basic steps of the
Newton-Raphson algorithm for logistic regression are as follows:

1. Initialize parameters: Start with an initial guess for the model parameters.

2. Compute the gradient and Hessian: Calculate the gradient vector and the Hessian matrix of the negative
log-likelihood function with respect to the model parameters.

3. Update parameters: Use the Newton-Raphson update rule to iteratively update the model parameters.
The update rule is

θnew = θold − (H−1 · g)
where,

• θnew is the updated parameter vector.

• θold is the current parameter vector.

• H is the Hessian matrix.

• g is the gradient vector.

With this algorithm in mind, please answer the following questions:

a Using Equation (9.46), what is the range of negative log likelihood?

b Derive a mathematical expression for the Hessian matrix using Equation (9.46).

c Does the Hessian depend on the output (i.e., y in Equation (9.46)). If not, is it correct to claim that the
curvature of log likelihood directly or indirectly does not depend on the output?

d The Hessain matrix reflects the curvature of the log-likelihood function in logistric regression. Discuss how
adding the regulizer discussed in Section 9.6.1 (on Regularized Logistic Regression) results in a smoother
objective function (ie, lower curvature).

Programming Questions (Due Thursday, March 7, 11:59pm)

The MNIST1 dataset has been widely used in machine learning. It comprising images of handwritten digits,
centered and resized to 28 × 28 pixels. Each image has been saved as a vector with the dimension of 784 =
28× 28, and is associated with a label, namely, digits 0 through 9. MNIST has long been used to help evaluate
machine learning techniques and pattern recognition methods as the data are authentic data, yet require minimal
preprocessing. A small sample of MNIST images is shown below.2

scikit-learn, often referred to as sklearn, is a popular machine learning library for the Python programming
language. It provides simple and efficient tools for data mining and data analysis, built on other popular
scientific computing libraries such as NumPy, SciPy, and Matplotlib. For this section of the assignment you
need to install Numpy, matplotlib, and sklearn. MNIST has already been imported into sklearn.
Please complete the code based on the text provided for each section in the Python file. The blank sections
that need completion are indicated by XXX. The completed python files do not need to be submitted.

Question 1. Classification using KNN and Random Forest (20 marks)

In this question, you will use the sklearn random forest classifier and the KNN classifier to classify MNIST
images. The model will be trained using the training set, and its performance will be evaluated on previously
unseen data. The primary aim for splitting the data into a training set and a test set is to quantify the
generalization to data from the same distribution as the training data, but not seen during training. This
assumption is crucial to avoid over-fitting and to ensure the model’s predictive accuracy on unseen data. Use the
following exercises to familiarize yourself with the sklearn API, and to gain proficiency in the implementation
of training/validation splits, and tuning hyper-parameters for robustness to image noise. The exercises will
enhance your understanding of machine learning processes, and gain practical skills in training models.
In the scenario presented in the code section below, respond to the following questions. Please keep answers to
discussion questions brief, using just two or three sentences.

1short for Modified National Institute of Standards and Technology
2The entire dataset can be visualized at Tensorflow dataset website.

3

https://knowyourdata-tfds.withgoogle.com/##tab=STATS&dataset=mnist


Figure 1: MNIST dataset

a In the first scenario, we’re working with noiseless input images and labels. The aim is to explore hyper-
parameter tuning for KNN classifiers and decision trees. For weighted KNN Classification we need to
select the number of neighbors when a Euclidean distance measure. For Random Forests, our exploration
involves finding the minimum number of samples required for a leaf node for up to 100 forests. During
model training, we aim to find the hyper-parameters that deliver the best performance for both the training
and test sets. With this context, using MNISTclassification1.py, please respond to the questions below.

• For KNN with distance weighting, plot the accuracy of training and testing with respect to the
number of neighbors. Vary the number of neighbors from 1 to 100 in steps of 5 (1, 6, 11, 16 ...).
What is the best number of K? Justify your selection.

• For Random Forests, plot training and test accuracy as a function of the minimum number of samples
for a leaf node (from 5 to 50 with 5 steps). Select the best hyper-parameter, and justify your choice.

b In the second scenario, our objective is to delve into the concept of generalization. Typically, we expect a
model trained on a large training set to exhibit similar performance on a smaller test set, assuming both
are drawn from the same distribution. Practical experience often contradicts this assumption however. In
reality, the test set distribution may not align perfectly with the distribution of training data, leading to
challenges in obtaining good generalization. This underscores the importance of critically assessing model
performance in real-world scenarios where data distributions may deviate from commonplace idealized
assumptions. To mimic this behaviour, we add some noise to the test set. With this new data,please
answer these questions, using MNISTclassification2.py.

• Perform a hyper-parameter search for KNN and Random Forest and report the best hyperparameter
for each method.

• Discuss the results based on both algorithms and how noise can increase or decrease performance.

• Propose a method to enhance overall performance. Note that there is no single correct answer.

c In the third scenario, our objective is to assess the performance of the model in the context of dealing
with noisy labels. Above we assumed noiseless labels, but practical experience shows that such noise is
common in real-world datasets. This noise can stem from various sources, including human error in the
annotation process, leading to less precise labeling. The introduction of such noise into the data has the
potential to reduce a model’s ability to generalize effectively, highlighting the need for robust strategies
to handle and mitigate the impact of noise in the training and evaluation processes. To this end, we add
noise to the training labels. Using the MNISTclassification3.py, answer the following questions:

• Perform a hyper-parameter search for KNN and Random Forest and report the best performance
achieved by each method.

4



• Discuss how the optimal parameters for KNN change between Scenario 1 above and Scenario 3 here.

Submission Instructions

Theory Questions (Due Monday, March 4, 11:59pm) This part may be done with pen and paper or a
text editor (eg latex). Formatted answers are easier to read but likely require more time. In any case, your
answers should be handed in electronically as a single pdf file (for all 3 questions). The file should be called
solution.pdf, and it should be submitted to Markus. If you do work with pen and paper you could scan or
take photos of your work then convert to pdf.

Programming Questions (Due Thursday, March 7, 11:59pm) For this part, you need to answer the
questions for each section and provide the requested plot for each part. Your answers should be submitted elec-
tronically as a single PDF file (for all sections). The file should be named solutioncoding.pdf and submitted
to Markus

Note that in Markus you find separate sections dedicated to theory and programming parts of this assignment.

5


