
CSCC11 Introduction to Machine Learning, Winter 2024

Assignment 1

This assignment makes use of material from the first 3 weeks of the lectures and tutorials, but some of it can be
completed after week 1, and much of it can be completed after week 2 (see Chapters 1-7 of the course notes).

The assignment comprises two parts, a written part and a coding part. The written work asks for you to derive
some solutions to problems, and for you to demonstrate an understanding of certain concepts. The written and
programming parts will have different deadlines (see below).

Submission instructions can be found at the end of the handout.

We remind you that the work you hand in for the this assignment must be your own. Students should not make
use of large language models for programming assistants like Copilot.

Theory Questions (Due Thursday, Feb. 1, 11:59pm)

Question 1. Least Squares Model Fitting (3 marks)

Weighted Least Squares is a variant of Least Squares in which importance factors increase or decrease the
influence of individual training data points in the objective function. Essentially, it treats each observation
as being more or less informative about the underlying relation between inputs and outputs. More important
points should have higher importance factors. This is particularly useful when you know, for example, that
certain data points are noisier than others, or that some are more important to the model a priori. In the case
of N training pairs, with D-dimensional inputs and scalar outputs, the weighted least-squares objective function
may be expressed as

E(w̃) =

N∑
i=1

βi(yi − w̃T x̃i)
2, βi > 0 (1)

where βi is the non-negative importance factor associated with the ith training point. Using this formulation
for weighted least-squares, answer the questions below.

a Modify the objective function in matrix form in Equation (2.13) of the course notes to incorporate im-
portance factors for the data points. What are the properties of the weighting matrix? What can you say
about its structure?

b Derive the mathematical form of the weighted LS solution, again in matrix form. To this end, set the
gradient of the objective to 0 to obtain the normal equations and then solve them to find the optimal
model parameters for this weight LS formulation. Povide a step-by-step derivation to obtain the solution.

Question 2. Regularized Least Squares (3 marks)

As explained in the course notes (Section 3.2), regularized LS regression incorporates an L2 penalty on the
magnitudes of the weights (i.e., parameters) of the model. The goal is to help avoid over-fitting by encouraging
models to be smooth. This method is sometimes referred to as ridge regression. In Deep Learning, an L2
penalty on weights is referred to as weight decay. As explained in Section 3.2, the form of the objective function
for regularized basis function regression is (see Equation (3.11) of the course notes):

E(w) = ∥y −Bw∥2 + λ∥w∥2 . (2)

Here, λ > 0 is often referred to as a regularization parameter; it determines the amount of regularization.

a The regularized LS estimate for w is given by

w∗ = (BTB+ λI)−1 BTy . (3)

Using a simple numerical example with a 2 × 2 matrix B, show that for λ = 0, the solution may be
extremely sensitive to noise because (BTB)−1 can be ill-conditioned or not even exist. Using the example,
discuss whether the problem remains ill-conditioned or unsolvable when λ ̸= 0.. Are the issues resolved
and why (or why not)?

1

b When the input is orthonormal (i.e., when BTB = I), determine the mathematical relation between the
weights computed from regularized LS (ie Equation (3.14) in the course notes) and the LS optimal weights
(ie Equation (2.16), without regularization).

c The impact of the regularization term (the second term on the right hand side of (2) above) will also
depend on the magnitude of the inputs and basis functions. For example, using Equation (3.14), and
assuming orthonormal input matrix, suppose we multiply matrix B by a scalar value (e.g., 2). How would
you need to scale the regularization parameter such that the optimal weights are identical to those you
obtain without that scalar factor? Derive the solution with the scalar factor to prove the equivalence.

Question 3. K-Nearest Neighbour Regression (3 marks)

KNN regression relies on identifying training data points that are similar to a test point. The concept of
similarity assumes a critical role, the most widely used metric for which is Euclidean distance between input
features. Specifically, the distance between input features a = (a1, ...aD)T and b = (b1, ...bD)T is

d(a,b) =

√√√√ D∑
i=1

(ai − bi)2 . (4)

a Re-write Equation (4) above in matrix-vector form.

b In many circumstances, different features (i.e., elements of the input vector) may have very different
influence on the distance calculation. For example, some features may be measured in meters while others
are in millimetres. As such, the distance measure may be dominated by features measured in millimetres
since all those numbers will be larger. To mitigate this issue with KNN algorithms, we sometimes weight
different dimensions of the input differently. To this end, suppose you wanted to modify Equation 3 to
incorporating some form of feature weighting (ie by normalizing the different feature dimensions), so all
dimensions exert similar influence on the distance calculation over the entire training set. There may be
many ways to do this. Your task is to suggest one approach, write it in matrix form, and explain (in 3 or
4 sentences) why the approach will be effective.

c In K-NN regression, the value of K can be important. In a few sentences, discuss how too small a value
of K can lead to over-fitting, while too large a value of K can lead to under-fitting.

Programming Questions (Due Thursday, Feb. 8, 11:59pm)

To begin the coding exercises, download A1-Programming.zip from the calendar page on the course website.
When you unzip the file a directory A1-Programming is created. Please do not change the directory structure,
nor the headers of the Python functions contained therein.
Inside A1-Programming, there are two directories q1 and q2 corresponding to the first and second coding
questions. Next these, you find a text file requirements.txt in which all necessary python packages are listed.
We strongly encourage you to use environment manager tools (such as Anaconda or Virtualenv) to create a
python version 3.8 environment and install packages listed in requirements.txt. We provide an example
on how to setup an new environment and install dependencies in the course website. This section also includes
python notebooks that you run locally on the jupyter notebook or import them on Google Colab 1 (with other
starter codes uploaded). During tutorial, you see a brief introduction to Google Colab.
Instructions for electronic submission are included below.

Question 1. Polynomial Regression (9 marks)

In this question, you are going to implement 1D polynomial regression model and solve for its parameters for
multiple different datasets. Recall that in 1D polynomial regression, the scalar output is expressed as:

ŷ = f(x) = b+

K∑
i=1

wix
i, (5)

1https://colab.google/

2

https://colab.google/

where K is the order of the polynomial, wk is the k-th weight and b is the bias. Given a set of training
input/output pairs {(xi, yi)}Ni=1, one can solve for the the parameters using least squares objective (LS) as
discussed in the lecture. With the additional regularization term ||w||2, we obtain regularized LS solution.
Here, the main goal is to explore effects of different factors such as dataset size, order of the polynomial and
regularization parameter.

The starter code for this question is divided into the python script poly regression.py which implements
the polynomial regression model, and the python notebook poly notebook.ipynb that runs the experiments
with the regression model. The script poly regression.py contains the class of PolynomialRegression with
five methods:

1. init (self, K, l2 coeff): This is the constructor of the class. K and l2 coeff specify the degree of
the polynomial and regularization coefficient λ, respectively.

2. predict(self, X): This method predicts the output for a given input, using the model parameters. X is
a vector of inputs. The method outputs a vector of predicted outputs.

3. fit(self, train X, train Y): This method find the LS solution, given training data inputs train X

and outputs train Y.

4. fit with l2 regularization(self, train X, train Y): Similar to the previous method, but finds reg-
ularized LS solution considering l2 coeff as the regularization coefficient λ.

5. compute mse(self, X, observed Y): This method computes the mean squared error between predictions
over the input data X and observed outputs observed Y.

You need to complete the body of four methods: predict, fit, fit with l2 regularization and compute mse.
The constructor creates the column vector self.parameters of size K + 1 to store the bias b and parame-
ters wi. Please note that the bias b is the first element in the vector. Both model fitting methods (fit,
fit with l2 regularization) update this parameter while predict uses it for prediction. Once you complete
the methods, you can run poly regression.py to call basic tests to verify your implementation. Passing test
does not guarantee the correctness of your implementation, so you can design your own test for further evaluation.

Once you are confident with your code, start running the python notebook poly notebook.ipynb. This note-
book is divided into three section, and you explore the following:

1. Dataset size: We have provided few benchmarks, each comprises of one test dataset and three training
datasets with various sizes of small, medium, and large. For each benchmark, the underlying ground-truth
function and data distribution is the same. In the first part, notebook uses the implemented regression
model to solve for its parameters (not regularized) on three training datasets and then computes and
visualizes the mean squared error on test data as well as the corresponding training data. Based on the
visualization, discuss the effect of dataset size on both train and test errors and justify your answer.

2. Polynomial order: This factor determines the complexity of the model. In the second part, for the first the
benchmark, the notebook fits polynomial models of different orders (ranging from 1 to 10) to training data
of different sizes. Similarly, the mean squared error for both train and test data are visualized. Discuss
how increasing the order (or complexity) influences the train and test errors. How does the effect of model
complexity change when training on datasets of different sizes? Justify our answers.

3. Regularization coefficient: Finally, you fit the polynomial model using regularized least squares with
various regularization coefficients for the second benchmark. As before, the mean squared error for both
train and test data are visualized. Discuss how the errors change when increasing the regularization
coefficient. Also describe if the trends are consistent across datasets of different size. Justifications are
required.

Please use the markdown to provide your answers in the corresponding sections in the notebook. For this ques-
tion, you should submit two files: poly regression.py and poly notebook.ipynb. For poly regression.py,
the body of aforementioned methods must be completed. Make sure that visualizations are included in
poly notebook.ipynb and it runs without any error.

3

Question 2. Image Denoising with RBF Regression (9 marks)

Figure 1: (left) Greyscale image. (right) Depiction of image as a height map where brighter pixels are higher.

Background An image is typically expressed as a 2D array of pixels. For greyscale images (e.g. left of Fig 1),
each pixel is a scalar representing the brightness level, so they image can be viewed as a function that takes 2D
position and outputs a greyscale value. Color images have three values per pixel, namely red, green and blue
components, but for now let’s focus on greyscale ones. One can model an image as a function I(x) mapping
from position x ∈ R2 to the brightness level. Pixel values are normalized between 0 (black) and 1 (white).
The function I(x) can be represented using basis functions. Since natural images are smooth and correlated
in local regions, we use radial basis functions (RBFs) that enables the brightness level to be localized in each
region. Let’s formalize this as follows:

I(x) = b+

K∑
i=1

wkbk(x), (6)

where b is the bias term and bk(x) is k-th basis function, a smooth bump centered at location ck ∈ R2 with
width σ,

bk(x) = exp(−||x− ck||2/2σ2). (7)

Figure 2: (left) An RBF model with all weight wk = 1. (middle) A model with 3× 3 RBFs with LS regression
weights. (right) A model with 8× 8 RBFs with LS regression weights.

For example, to model the greyscale image in Fig. 1, let’s assume the basis functions are evenly spaced on a
square grid, all with the same width. Using the regularized least squares regression, one can find the parameters
wk and b. For a 3×3 grid of RBFs, with all weights equal to 1, the model output look as in Figure 2 left. If we
fit RBF weights using least squares, we obtain a better approximation to our image patch (Fig. 2 middle). We
get an even better approximation if we use more RBFs, e.g. an 8×8 grid as in Fig. 2 right. For colored images,
separate RBFs is dedicated to each color channel.

Image Denoising is a long-standing problem in areas of signal processing and computer vision. The mea-
surements in physical processes are typically noisy and noise removal is a crucial step to obtain the underlying
ground-truth signal. In this question, we aim to deal with the salt-and-pepper noise that is synthetically added
to a clean image of lighthouse (Fig. 3 left). This noise appears as sparsely occurring white and black pixels in
the acquired image (Fig. 3 middle). To denoise an image I, we first divide it into square patches and model each
patch Ii,j as a separate 2D function fi,j(x). Following the discussion in the background, each image patch is
particularly represented by RBFs with centers evenly spaced on the patch grid. The widths are also the same.
The clean pixels are used as input data to fit the RBF model using regularized least squares and then the fitted
RBF can be evaluated at corrupted pixels to reconstruct the missing values. The values at clean pixels are kept

4

Figure 3: (left) The noiseless image of the lighthouse. (middle) The noisy image corrupted with the salt-and-
pepper noise. (right) The output of RBF regression model that performs denoising.

the same. An example denoise image is shown in the right hand side of Fig. 3.

The starter code for this question includes the script rbf regression.py which implement the RBF regression
model and the python notebook image denoising.ipynb that runs image denoising experiments. The script
rbf regression.py contains the class of RBFRegression with four methods:

1. init (self, centers, widths): This is the constructor of the class. centers is a K × 2 matrix
storing coordinates of center of 2D radial basis functions (bumps), and widths specifies a vector of K
corresponding widths.

2. rbf 2d(self, X, i): This method computes the output of the i-th 2D radial basis function given the
inputs.

3. predict(self, X): This method predicts the output for the given inputs X, using the model parameters.

4. fit with l2 regularization(self, train X, train Y, l2 coeff): This method fits the parameters
to the training input/output pairs train X, train Y using regularized LS with regularization coefficient
l2 coeff.

You need to complete the body of three methods: rbf 2d, predict, and fit with l2 regularization. The
constructor creates the column vector self.parameters of size K + 1 to store the bias b and parameters
wi. Please note that the bias b is the first element in the vector. Within rbf regression.py, a few basic
tests are also provided to verify your implementation. Passing test does not guarantee the correctness of your
implementation, so you can design your own test for further evaluation. When you are confident with your
implementation, start running the python notebook image denoising.ipynb which uses the RBF regression
for image denoising. This notebook is divided into three section, and you explore the following:

1. Denoised image: For the input image (Fig. 3 left), run the denoising with default setting. The notebook
visualizes the clean image, noisy image and the denoised one, respectively. Does the denoiser perform
well? Do you see any artifacts in the denoised image?

2. Width: Given a certain spacing, the notebook runs denoising with various widths for the RBFs and
computes the mean squared error between denoised and clean image. The error is visualized as a function
of the width size. How does the error change when increasing the width? Justify our answer.

3. Spacing: Finally, the notebooks runs an experiment that explores the effect of the spacing between basis
functions. As before, the mean squared error is computed and visualized. Discuss how the error changes
when increasing the spacing. Justifications are required.

5

Please use the markdown to provide your answers in the corresponding sections in the notebook. For this ques-
tion, you should submit two files: rbf regression.py and image denoising.ipynb. For rbf regression.p,
the body of aforementioned methods must be completed. Make sure that visualizations are included in
image denoising.ipynb and it runs without any error.

Submission Instructions

Theory Questions (Due Thursday, Feb. 1, 11:59pm) This part may be done with pen and paper or a
text editor (eg latex). Formatted answers are easier to read but likely require more time. In any case, your
answers should be handed in electronically as a single pdf file (for all 3 questions). The file should be called
solution.pdf, and it should be submitted to Markus. If you do work with pen and paper you could scan or
take photos of your work then convert to pdf.

Programming Questions (Due Thursday, Feb. 8, 11:59pm) For this part, you will submit four files in to-
tal. There should be two files for the first question (Q1), namely, poly regression.py and poly notebook.ipynb.
And there are two files for the second question (Q2), namely, rbf regression.py and image denoising.ipynb.
The body of incomplete methods in python scripts poly regression.py and rbf regression.py should be
completed by you in the submitted files of course. The two notebooks files, i.e., poly regression.py and
image denoising.ipynb should contain the visualizations and answers to questions in the markdown.

Note that in Markus you find separate sections dedicated to theory and programming parts of this assignment.

6

