Tracking

Goal: Fundamentals of model-based tracking with emphasis on
probabilistic formulations. Examples include the Kalmdtefifor
linear-Gaussian problems, and maximum likelihood andigartil-

ters for nonlinear/nonGaussian problems.

Outline

e Introduction

e Bayesian Filtering / Smoothing

e Likelihood Functions and Dynamical Models
e Kalman Filter

e Nonlinear/NonGaussian Processes

¢ Hill Climbing (Eigen-Tracking)

e Particle Filters

Readings: Chapter 17 of Forsyth and Ponce.
Matlab Tutorials: motionTutorial.m

2503: Tracking ©D.J. Fleet & A.D. Jepson, 2009 Page: 1



Challenges in Tracking

Tracking is the inference object shape, appearance, andnmax a
function of time.

Malin players:

e what to model or estimate: shape (2D/3D), appearance, dggaam

e what to measure: color histograms, edges, feature poiows, .fl

Some of the main challenges:
e objects with many degrees of freedom,
affecting shape, appearance, and motion;
e impoverished information due to occlusion or scale;

e multiple objects and background clutter



ey

space / aerospace

sports / kinesioloy

I

biology (animal/cell/molecular)
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Probability and Random Variables

A few basic properties of probability distributions will nsed often:

e Conditioning (factorization):
p(a,b) = p(alb) p(b) = p(bla) p(a)

e Bayes’rule:

_ p(bla) pla)

plaly) = 2208

¢ Independence: andb are independent if and only if
pla,b) = p(a) p(b)

e Marginalization:
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Probabilistic Formulation

We assume a state space representation in which time igtirsd,
and astatevector comprises all variables one wishes to estimate.

State: denotedk; at timet, with the state histork,.; = (X, ..., X¢)
— continuous variables (position, velocity, shape, sizg, ..
— discrete variables (number of objects, gender, activiby, .

Observations: the data measurements (images) with which we con-
strain state estimates, based on observation equatiery (x;).
The observations history is denoted = (z, ..., z;)

Posterior Distribution: the conditional probability distribution over
states specifies all we can possibly know (according to thaetho
about the state sequence from the observations.

p(xl:t ‘ Zl:t) (1)

Filtering Distribution: often we only really want the marginal pos-
terior distribution over the state at the current time gitles ob-
servation history. This is called the filtering distributio

Xt\th / / X1t|th (2)
X1 Xi—1

Likelihood and Prior: using Bayes’ rule we write the posterior in
terms of dikelihood, p(z; ;| X1.+), and aprior, p(Xy.;):
p<zl:t ‘ Xl:t) p(xl:t)
p(zl:t)
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Model Simplifications

The distributionp(x;.;), called aprior distribution, represents our
prior beliefs about which state sequences (e.g., motiaed)kely.

First-order Markov modetor temporal dependence (dynamics):

P(X¢ | Xi:—1) = p(Xe | Xe—1) (3)

The order of a Markov model is the required duration of terapor
support (a first-order model requires just one previoug ktat

With a first-order Markov model one can write the distribataver
the state history as a product of transitions from one tintbéamext:

p(X1:) = p(Xe | Xe—1) p(X1:-1)

= p(x1) HP(Xj | Xj-1) (4)

The likelihood p(z,;|X14), is the probability (density) that the ob-
served data were generated by the states.

Conditional independena® observations:

p(let | X1;t) = p(Zt \ Xt)p(21;t—1 \X1:t—1)
t

= Hp(ZT | Xr) (5)

7=1

This assumes the observations at different times are imdiepe when
we know the true underlying states (or causes).
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Filtering and Prediction Distributions

Using the Markov model and the conditional independenckebb-
servations, one can express the posterior distributiamseely:

p(xlzt ‘ Zl:t) X (th ‘ X1:t) p(X1 t)

= sz %) p(X:) Hp X; | Xj-1)

X (Zt ‘ Xt) (Xt ‘ Xt—l) p(xl:t—l ‘ Zl:t—l) (6)

Thefiltering distributioncan also be written recursively:

p(Xt|214) = / / p(X1:t | Z14)
Xi Xi—1

= Cp Zt|xt Xt|th 1) (7)

with a prediction distributiondefined as

p(Xt \ Zl:t—l) = /X p<xt ‘ Xt—l)Z?(Xt—l ‘ Zl:t—l) (8)

Recursion is important:

e it allows us to express the filtering distribution at timia terms
of the filtering distribution at timeé—1 and the evidence at tinte

¢ all useful information from the past is captured by the prasi
posterior (and hence by the prediction distribution).

Without recursion one may have to store all previous imagesin-
pute the the filtering distribution at tinte
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Derivation of Filtering and Prediction Distributions

Filtering Distribution:  Given the model assumptions in Equations (4) and (5), aldtiyBayes’
rule, we can derive Equation (7) as follows:

(x| 21)) = / / p(Xue | 21)
X1 Xi—1

Batch Filter-Smoother (Forward-Backward Belief Propagation):

_ @ /X . /X P21 | X1) pX0)
= c/. . / P(Ze | %) P(Z1.01 | X1.01) P(Xe | Xe1) P(Xq.61)
Xy Xi-1

= cp(z| %) / : / p(Xe | Xe—1) p(X1:4-1, Z1:0-1)
Xy X1

= cp(z| %) / P(Xe | Xe—1) / / P(X1:4—1, Z1:4-1)
Xe—1 X1 Xe—2

= cp(z| %) / P(Xe | Xe—1) p(Xe—1, Z1:4-1)
t—1

= cp(Zie—1) p(Ze | %) / P(Xe | Xe—1) P(Xe—1 | Z1:—1)

t—1

= C,p(zt | Xe) (Xt | Z1:t-1) -

We can derive the filter-

smoother equation (9), fdr< 7 < ¢, as follows:

p(XT | Zl:t) -
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1
/ / P(Xlzt) p(zlzt | Xl:t)
p<zl:t> X1:7'71 XT+1:t

C / / p(XI:T) p(XT+1:t | XT) p(ZI:T—l | Xl:T—l) p(ZT | XT) p(ZT+1:t | XT—‘rth)
Xlzrfl XT+1:t

Cp(ZT | X’T) / p(xlzT) p(zlzT—l | Xl:T—l) / p(XT—i-l:t | X’T) p(ZT—i-l:t | XT+1:t)

Xlszl XT+1:t

p(ZT-i-l:t)
p<XT+1:t)

P(Xr1:
Cp(zr | XT) p(XT ‘ Zl:T—l) / p(XT ‘ XT+1:t> (p():_1>t) p(XT+1:t | ZT+1Zt)

XT+1:t

Zri1:
Cp(Z’r | X’T) p(XT | Zl:’T—l) p< = t> / p(X’T | XT+1:t) p(XT+1:t | ZT—I—l:t)
p(X-)  Jx

T+1:t

Cl

p(Xr)

p(Z’T | X’T) p(XT | 21:7—1) p(xr | Z’7’+1:t) .

Notes: 8



Filtering and Smoothing

One can also perform recursive inference backwards in time:
p(X | Zry) = cp(zr[X;) / P(Xr | Xrp1) P(Xrg1 | Zrg1)
XT—H
- Cp(ZT ‘ XT) p(XT ‘ Z7‘+1:t)

That is, the distributiom(x- | z,;) depends on the likelihood of the
current data, and the prediction based on the future dataygh the
(backward) filtering distribution at time+1.

Smoothing distributiofforward-backward belief propagation):

p(XT | Zl:t) - p()c( ) p(ZT | XT) p(XT ‘ Zl:T—l) p(XT ‘ ZT+1:t) (9)

The smoothing distribution combines information from pasésent,
and future data.

Batch Algorithms: Estimation of state sequences using the entire
observation sequence (i.e., using all past, present &dutata):

e the filter-smoother algorithm is efficient, when applicable

e storage/delays make this unsuitable for many tracking dmma

Online Algorithms: Recursive inference (7) is causal. Estimation
of X; occurs as soon as observations at tinage available, thereby
using present and past data only.
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Likelihood Functions

There are myriad ways in which image measurements have Iseen u
for tracking. Some of the most common include:

e Feature points: E.g., Gaussian noise in the measured feature
point locations. The points might be specifeedriori, or learned
when the object is first imaged at time O.

e Image templates:E.g., subspace models learned prior to track-
ing, or brightness constancy as used in flow estimation.

e Color histograms E.g., mean-shift to track modes of local color
distribution, for robustness to deformations.

e Gradient histogramsE.g., histograms of oriented gradients (HOG)
in local patches to capture image orientation structurefasa
tion of spatial position over target.

e Image curves (or edgesit.g., with Gaussian noise in measured
location normal to the contour.
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Temporal Dynamics

We often assume a combination of deterministic and stoichdgt
namics. Common linear models include:

e Random walk with zero velocity and 11D Gaussiamcess noise

Xp = X1+, 12 ~ N, C)
e Random walk with zero acceleration and Gausgi@tess noise
X 1 1\ [X_ 7.
_}t _ _}t 1 n U
Vi 01 Vi gd
wherej; ~ N (0, C,) and€; ~ N(0, C,).

e For higher-order models we define an augmented state vaaotbr,
then use a first-order formulation. E.g., for a second-omttztel:

X; = AXi—1 + BXp—o + 14

. Xt
Yy =
Xt—1

for which the equivalent first-order augmented-state mdel

. A B\ 1d
= 1+
N4 (1 O) Yi-1 <O>

Typical observation modek, = f( |1 0] - ¥;) plus Gaussian noise.

one can define
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Dynamical Models

There are many other useful dynamical models. For examateydnic oscillation can be expressed
as

o
dt?

= -
or as a first order system with

dd 0 1Y\, . x
— = u , Wwhere u=
dt -1 0 v

A first-order approximation yields:

du n
Ui; = U At —
Uy u;_; + dt + (e)

= u1 +
At 1 €

In many cases it is useful to learn a suitable model of stateuiycs. There are well-know algo-
rithms for learning linear auto-regressive models of \@garder.
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Kalman Filter

Assume a linear dynamical model with Gausgiamcess noiseand
a linear observation model with Gaussi@rservation noise

Xy = Axt—l + ﬁd ) ﬁd ~ N(()) Cd) . (10)
Zi = MXi+1m,  Tm ~ N(0, Cp) (11)

Thetransition densitys therefore Gaussian, centred at meex_,
with covariance’; :

pXe [ Xe-1) = G(%; AX-1, Cy) - (12)
Theobservation densitis also Gaussian:

p(Zt ‘ Xt) = G(Zt; Mxt, Cm) . (13)

Because the product of Gaussians is Gaussian, and the alargira
Gaussian are Gaussian, it is straightforward (but tedimus)ow that
the prediction and filtering distributions are both Gaussia

P(Xe | Z11) = /p(xt | Xe1) p(Xer | Z1ea) = G(Xe; X, Cp ) (14)

Xt
p(Xe |Z14) = ep(Ze | X)) p(Xe | Z1a) = G(Xe X?; Cf) (15)

with closed-form expressions for the meaqs x;” and covariances
Cc,CF.
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Kalman Filter

Depiction of Kalman updates:

determ|n|st|c drift

postenor at t- 1

stochastic
diffusion
data ¢ incorporate data
— /\
posterior at ¢ prediction at ¢
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Kalman Filter (details)

To begin, suppose we know that A/(0, C'), and lety = Ax. Sincex is zero-mean, it is clear that
y will also be zero-mean. Further, the covariance o given by

Elyy'] = E[Axx"AT] = AE[xx"]AT = ACAT (16)

Now, let’s use this to derive the form of the prediction dimition. Let’s say that we know the
filtering distribution from the previous time instant; 1, and let’s say it is Gaussian with megh ,
with covariance”;" ;.

pXeo1]Zi1) = GXe1; X2, Cfy) 17)
And, as above, we assume a linear-Gaussian dynamical model,
Xy = AXt_l —|—’f7d , ﬁd ~ N(O, Cd) . (18)

From above we know that x;_; is Gaussian. And we’ll assume that the Gaussian processjois
is independent of the previous posterior distribution. 18as the sum of two independent Gaussian
random variable, and hence the corresponding density ighaesconvolution of their individual
densities. Remember that the convolution of two Gaussiathsoavarianceg’; andC;, is Gaussian
with covarianceC; + C,. With this, it follows from (17) and (18) that the predictiomean and
covariance op(X; | z;..1) in (14) are given by

X, = Axt, ., C; = ACH AT +Cy.
This gives us the form of the prediction density.

Now, let’s turn to the filtering distribution. That is, we Wi$o combine the prediction distribution
with the observation density for the current observatimnin order to form the filtering distribution
at timet. In particular, using (15), with (13) and the results abatis, straightforward to see that

p(Xe|Z1) o< p(Ze | %) p(Xe | Z1iea) (19)
= G(z; Mxy, Cp) G(X¢; X, CF) . (20)

Of course the product of two Gaussians is Gaussian; and dirsmo work out expressions for its
mean and covariance. This requires somewhat tedious aigebanipulation.



While there are many ways to express the posterior mean asadiance, the conventional solution
defines an intermediate quantity called Kedman Gain K, given by

K, = Co MT (MC MT +C,) 7"
Using the Kalman gain, one can express the posterior meaveaiashce x;” andC;', as follows:

xf = Xy + K, (z— Mx;) |
¢ = I-KM)Cy
= (I-K)C,(I-K)"+ K,C,K}

The Kalman filter began to appear in computer vision papetisanate 1980s. The first two main
applications were for (1) automated road following whereelanarkers on the highway were track-
ing to keep a car on the road; and (2) the estimation of the B2tsdhn and motion of a rigid object
(or scene) with respect to a camera, given a sequences dftgaaks through time.

Dickmanns & Graefe, “Dynamic monocular machine visioM&chine Vision and Appl1988.

Broida, Chandrashekhar & Chellappa, “Rigid structure ffeature tracks under perspective pro-
jection.” IEEE Trans. Aerosp. & Elec. Sy4.990.

R.E. Kalmank
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Non-linear / Non-Gaussian Systems

Tracking problems are rarely linear+Gaussian, hence tls¢epor
and filtering distrbutions are often nonGaussian and nmudtdal.

Reasons for this include, among other things,

e scene clutter and occlusion, where many parts of the sceye ma
appear similar to parts of the object being tracking

e image observation models are often nonlinear with heaNseta
noise so that we can cope with outliers, complex appeardraees,
and the nonlinearity of perspective projection.

e temporal dynamics are often nonlinear (e.g., human motion)

For example:

Background clutter and distractors. Nonlinear dynamics.
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Extended and Unscented Kalman Filters

Extended Kalman Filter (EKF): For nonlinear dynamical models one can linearize the dyosmi
at current state; that is,

X, = f(X)+ 70 = AX 1+ 14,

where A = Vf(X) |z=z,_, andj; ~ N(0,Cy). One can also iterate the approximation to obtain
the Iterated Extended Kalman Filter (IEKF)n practice the EKF and IEKF have problems unless
the dynamics are close to linear.

Unscented Kalman Filter (UKF): Estimate posterior mean and variance to second-order with a
bitrary dynamicgJulier & Uhlmann, 2004] Rather than linearize the dynamics to ensure Gaussian
predictions, use exadt’ and2"? moments of the prediction density under the nonlinear dyosim

e Choosesigma pointx; whose sample mean and covariance equal the mean and vasfance
the Gaussian posterior at

e Apply nonlinear dynamics to each sigma poipt, = f(x;), and then compute the sample
mean and covariances of tiig

Monte Carlo Linear Approx Unscented
sampling (EKF) Transform
sigma points ~—
covariance i o)
(o]
(0]
mean e
| |
‘ y = f(x) Y =£(2)
_ T
y = f(x) Py =A"P;A weighted sample mean
l l and covariance
f(x) J' transformed
true mean / o gi%ﬂ?a%@iﬁts
true covariance 9\ - ' /
- \) UT mean = © /
ATP, A © /

UT covariance é
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Hill-Climbing

Rather than approximating the posterior or filtering disttions (fully),
just find local maxima of the filtering distribution at eacimé step.
By also computing the curvature of the log filtering disttiba at the
maxima, one obtains local Gaussian approximations.

E.g., Eigen-TrackingBlack & Jepson, '96]
e Assume we have learned (offline) a subspace appearance model
for an object under varying pose, articulation, and ligitin

B(x,¢) = Y ¢ Bi(X)

k
e During tracking, we seek the image warp paramesggrat each
time ¢, and the subspace coefficiesisuch that the warped im-
age isexplainedoy the subspace; i.e.,

e A robust objective function helps cope with modeling errocs
clusions and other outliers:

E<at7 Ct) = Zp< I<W(X7 at)v t) - B<X7 Ct))
X

e Initialize the estimation at timewith ML estimate from time—1.
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Eigen-Tracking

Image sequence Training
eigen- training
images images

-M

Test Results:

Figures show superimposed tracking region (top), the leestistructed

pose (bottom left), and the closest training image (bottigmt).
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Sequential Monte Carlo

For many problems ambiguity is sufficiently problematidtva must
maintain a better representation of the filtering distiidnut

Approximate the filtering distributionp(x; | z;.1), using a weighted
sample setS = {x), w”}; i.e., with a collection of point proba-
bility masses at locations’’ with weightsw’ = w(x\)) for some

weight functionuw(x).

RV VA

@) amo Qo ©

Let's consider this in more detail below.

Monte Carlo: We can approximate the filtering distributidhwith
samples drawn from it§ = {x/}?.,. Then, use sample statistics to
approximate expectations undey i.e., for functionsf (x),

Bs[50] = 50 = [fgPax = En (500

But, we don’t know how to draw samples from our distributigr; | z;.;) .
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Particle Filter
Importance Sampling: If one draws samples') from aproposal
distribution, Q(x), with weightsw!) = w(x\7)), then

N
Bs[f(x)] = Y wf(x) =5 Eolw(x) f(x)]

If w(x) = P(x)/Q(x), then the weighted sample statistics approxi-
mate the desired expectations un@k); i.e.,

Eolw(x) f(x)] = / w(x) (x) Q(x) dx
— [ 0P ix
Ep[ f(X)]

Sequential Monte Carla The weighted samples are updated each
time instant, incorporating new data, and possibly re-ssgphe
set of state samplesg’). Key idea: exploit the form of the filtering
distribution for importance sampling,

p(Xi|Z14) = cp(zi | Xe) p(Xe | Z14—1)

and the facts that (1) it is often easy to evaluate the likeld) and (2)
one can usually draw samples from the prediction distraduti

Simple Particle Filter: If we sample from the prediction distribution

Q = p(X¢|Zi4-1)

then the weights must be(x) = c¢p(z; | X;), with ¢ = 1/p(z; | Z1.4-1).
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Simple Particle Filter

Step 1:Sample the approximate filtering distributignix; 1 | 2.+ 1),
given the weighted sampleS,, ; = {xﬁ@l, wt@l}. To do this, treat the
N weights as probabilities and sample from the cumulativegintei
distribution; i.e., draw sample ~ U/(0, 1) to sample an indek

>
'

0 l

N

Step 2: With samplexf_)l, the dynamics provides a distribution over
states at time, i.e., p(X; | x@l). A fair sample from the dynamics,

Xij) ~ p<xt‘xz§l—)1)

is then a fair sample from the prediction distributip(x; | z;.;_1).

Step 3:To complete one iteration to find the new filtering distrilout;
given the samples”’, we compute the weights” = ¢ p(z, | x\)):

e p(z ]| xij)) s the data likelihood that we know how to evaluate.

e Using Bayes’ rule one can show thadatisfies

1
- = P(Zt \ Zy41) = /p<zt \ X¢) (Xt \ Zy41)OX; = ZP Z; \ Xt

C
Using the approximation, the weights become normallzeﬂlhbods
(so they sumto 1).
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Particle Filter Remarks

One can think of a sampled approximation as a sum of Dirae @iehictions. A weighted sample set
Si_1 = {x%,, w1, is just a weighted set of delta functions::

N
pP(Xi—1 | Z141) = Zw(j) O(Xe—1 — XEJ_) )

j=1
Sometimes people smooth the delta functions to create $rd@tpproximations (called Parzen
window density estimates).
If one considers the prediction distribution, and uses ttopgrties of delta functions under inte-
gration, then one obtains a mixture model for the predictistribution. That is, given a weighted
sample sef;_; as above the prediction distribution in (8) is a linear migtmodel

N

pXe | Ziee1) = Y w9 p(x | x))
j=1

The sampling method on the previous page is just a fair sagpiiethod for linear mixture models.

For more background on particle filters see papers by Gortlah(#998), Isard and Blake (1JCV,
1998), and by Fearnhead (Phd) and Liu and Chen (JASA, 1998).
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Particle Filter Steps

Summary of main steps in basic particle filter:

sample sample normalize

(Xt | Z1e1) — p(Xe|Xea) — p(ze| %) — p(Xe|Z14)

filtering temporal likelihood filtering
distribution dynamics evaluation distribution

Depiction of the patrticle filter process (affésard and Blake, '98]:

weighted
sample set

re-sample
and drift

diffuse and
re-sample

_ compute
L~ - N —— — >« _ likelihoods

—

weighted

Ay @ sample set
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Particle Filter Example

State: 6 DOF affine motion

Measurement: edge locations
normal to contour

Dynamics: second-order Markov

Computation: 1000 particles
with re-sampling every frame

[Isard and Blake, '98]

Depiction of the filtering distribution evolving throughnie.

Time

{idiii
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Particle Explosion in High Dimensions

The number of sampled required by our simple particle filter de-
pends on the effective volumes (entropies) of the prediciad pos-
terior distributions.

With random sampling from the prediction density,must grow ex-
ponentially in state dimensiah if we expect enough samples to fall
on states with high posterior probability.

Prediction

Posterior

E.g., for D-dimensional spheres, with radiiandr, N > (%)D
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Example: 3D People Tracking

top of

Goal: Estimate human pose and fight  heag

ear

right

motion from monocular video. shoulder

left ear

left
shoulder

Model State:3D kinematic tree
with 6 global degrees of freedom
and 22 joint angles

Likelihood & Dynamics: \L“./

Given the states, and camera model, markers at 3D positiofis

project onto the 2D image plane to locations
dj(s) = T(X;:s).

Observation model:

A

di =d;+n, n ~ N0 o L).
Likelihood of observed 2D locationE) = {d;}:
p(DIS) o expl(—5r S I1d; ~di(s) )
e
Smooth dynamics:

S = S + €.

wheree; is isotropic Gaussian for translational and angular véemb
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Example: 3D People Tracking (cont)

Estimator Variance:expected squared error (from posterior mean),
computed over multiple runs with independent noise. WitHair
posterior samples the estimator variance will decreasd )il .

Full Body Tracker —6— Hybrid Monte Carlo
.| (right hip) -~ Particle Filter

10

Var[ mean right hip, B ]

10° 10° 10
Computation Time (particle filter samples)

The estimator variance does not decrease anything Jike Better

samplers are necessary.

E.g.,Hybrid Monte Carlo Filter [Choo & Fleet 01]: A particle filter
with Markov chain Monte Carlo updates is more efficient.

Particle Filter HMC Filter
(black: ground truth; red: mean states from 6 trials)
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Effective Sample Size

If we drew NV fair samples from the posterior, thestimator variance
decreases liké/N.

We can approximate the number of “independent” sampleke(ttie
effective sample size) as follows:
1

In the worst case, when only one weight is significantly nerez/V,

N, =~

IS close to one. In the best case, withfair samples, all weights are
1/NsoN.,=N.

In practice,

e whenN, is large (e.g.>> 100, but this depends on the task), one
should not necessarily re-sample the posterior. Insteadcgo
propagate each sample forward by sampling from the transiti
density.

e whenN, is small (e.g.< 10), you likely have an unreliable pos-
terior approximation, and you may lose track of the targetu Y
need more or better samples!
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Residual Sampling

Given N samples{x; }1_, with weights{wy}+_,, where}", w;, = 1, and assume that we wish to
draw N new samples (with replacement).

Rather than treating the weights are probabilities of aimambial distribution and drawingy inde-
pendent samples, one can greatly reduce sampling vatydiyliusingresidual sampling

e The expected number of times we expect to draws n, = Nwy,.

e So first place|n;| copies ofx; in the new sample set, and let thesidual weightdbe a;, =

ne — |_nkJ

e Then, drawN — >, |n,| samples (with replacement) according to the probabiljties=

ak/ Zk Qg
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Use the Current Observation to Improve Proposals

The proposal distributio@ should be as close as possible to the filtering distribuBldhat we wish
to approximate. Otherwise,

e many particles will have weights near zero, contributingy\itle to the approximation to the
filtering disitribution;

e we may even fail to sample significant regions of the stateespso the normalization constant
¢ can be wildly wrong.

For visual tracking, the prediction distributiad = p(x, | z;.,_1) often yields very poor proposals,
because dynamics are often very uncertain, and likelihaoglsften very peaked by comparison.

One way to greatly improve proposals is to use the currergrobtion. For example, imagine that
you are tracking faces and you have a low-level face detector

e LetD(x,) be a continuous distribution obtained from some low-lewtedtor which indicates
where faces might be (e.g., Gaussian modes at locationagdifier hits).

e Then, just modify the proposal density and importance wsigh

cp(zi | Xe)

QW) = D) P |Zia)  with w() = =775
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Explain All Observations

Don’t compare different states based on different sets séntations.

¢ If one hypothesizes two target locatiorss,ands,, and extracts target-sized image regions
centered at both locations, andl,, it makes no sense to sayis more likely if p(1; | s) >

p(I2] ).

e Rather, use(/ |s;) andp(I |s;) wherel is the entire image.

Explain the entire image, or use likelihood ratios (for edfincy).
E.g., assume that pixelgy), given the state, are independent, so

p(I]x) = pr y)|s) Hpb
yEDy YEDy,

where Dy and D, are disjoint sets of foreground and background pixels, gndnd p, are the
respective likelihood functions.

Divide p(I | s) by the background likelihood of all pixels (i.e., as if noger is present):

[yep, Y [9) Tyep, Po(I(Y))
[T pe(1(y))

[yen, 2rIY)19) Tlyep, Pe(1(Y))
[yen, oY) |8) Tlyep, Po(1(Y))

B prL(y) %)
= 1l pe(1(y))

yGDf

p(I|s)
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Conditional Observation Independence

What about independence of measurements?

Pixels have correlated (dependent) noise because of ttadms:

e models are wrong (most noise is model error)
e failures in feature tracking are not independent for défarfeatures.

e overlapping windows are often used to extract measurements

Consequence: Likelihood functions are often more sharghked than they ought to be.
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Summary and Further Remarks on Filtering

e posteriors must be sufficiently constrained, with some daatb
tions of posterior factorization, dynamics, measurements

e proposal distributions should be non-zero wherever théepios
distribution is non-zero (usually heavy-tailed)

e proposals should exploit current observations in addittopre-
diction distribution

e likelihoods should be compared against the same obsengatio
e sampling variability can be a problem
— must have enough samples in regions of high probability for

normalization to be useful

— too many samples needed for high dimensional problems (esp.
when samples drawn independently from prediction dist)

— samples tend to migrate to a single mode (don’t design a par-
ticle filter to track multiple objects with a state that resgats
only one such object)

— sample deterministically where possible

— exploit diagnostics to monitor effective numbers of saraple
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