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Abstract. This paper presents a method for extracting distinctive invariant features from images that can be used
to perform reliable matching between different views of an object or scene. The features are invariant to image scale
and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in
3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a
single feature can be correctly matched with high probability against a large database of features from many images.
This paper also describes an approach to using these features for object recognition. The recognition proceeds by
matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm,
followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification
through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify
objects among clutter and occlusion while achieving near real-time performance.
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1. Introduction

Image matching is a fundamental aspect of many prob-
lems in computer vision, including object or scene
recognition, solving for 3D structure from multiple im-
ages, stereo correspondence, and motion tracking. This
paper describes image features that have many prop-
erties that make them suitable for matching differing
images of an object or scene. The features are invariant
to image scaling and rotation, and partially invariant to
change in illumination and 3D camera viewpoint. They
are well localized in both the spatial and frequency do-
mains, reducing the probability of disruption by occlu-
sion, clutter, or noise. Large numbers of features can be
extracted from typical images with efficient algorithms.
In addition, the features are highly distinctive, which
allows a single feature to be correctly matched with
high probability against a large database of features,
providing a basis for object and scene recognition.

The cost of extracting these features is minimized by
taking a cascade filtering approach, in which the more

expensive operations are applied only at locations that
pass an initial test. Following are the major stages of
computation used to generate the set of image features:

1. Scale-space extrema detection: The first stage of
computation searches over all scales and image lo-
cations. It is implemented efficiently by using a
difference-of-Gaussian function to identify poten-
tial interest points that are invariant to scale and
orientation.

2. Keypoint localization: At each candidate location, a
detailed model is fit to determine location and scale.
Keypoints are selected based on measures of their
stability.

3. Orientation assignment: One or more orientations
are assigned to each keypoint location based on local
image gradient directions. All future operations are
performed on image data that has been transformed
relative to the assigned orientation, scale, and loca-
tion for each feature, thereby providing invariance
to these transformations.
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4. Keypoint descriptor: The local image gradients are
measured at the selected scale in the region around
each keypoint. These are transformed into a repre-
sentation that allows for significant levels of local
shape distortion and change in illumination.

This approach has been named the Scale Invariant Fea-
ture Transform (SIFT), as it transforms image data into
scale-invariant coordinates relative to local features.

An important aspect of this approach is that it gen-
erates large numbers of features that densely cover the
image over the full range of scales and locations. A typ-
ical image of size 500×500 pixels will give rise to about
2000 stable features (although this number depends on
both image content and choices for various parame-
ters). The quantity of features is particularly important
for object recognition, where the ability to detect small
objects in cluttered backgrounds requires that at least
3 features be correctly matched from each object for
reliable identification.

For image matching and recognition, SIFT features
are first extracted from a set of reference images and
stored in a database. A new image is matched by indi-
vidually comparing each feature from the new image to
this previous database and finding candidate matching
features based on Euclidean distance of their feature
vectors. This paper will discuss fast nearest-neighbor
algorithms that can perform this computation rapidly
against large databases.

The keypoint descriptors are highly distinctive,
which allows a single feature to find its correct match
with good probability in a large database of features.
However, in a cluttered image, many features from
the background will not have any correct match in
the database, giving rise to many false matches in ad-
dition to the correct ones. The correct matches can
be filtered from the full set of matches by identify-
ing subsets of keypoints that agree on the object and
its location, scale, and orientation in the new image.
The probability that several features will agree on
these parameters by chance is much lower than the
probability that any individual feature match will be
in error. The determination of these consistent clus-
ters can be performed rapidly by using an efficient
hash table implementation of the generalized Hough
transform.

Each cluster of 3 or more features that agree on an
object and its pose is then subject to further detailed
verification. First, a least-squared estimate is made for
an affine approximation to the object pose. Any other

image features consistent with this pose are identified,
and outliers are discarded. Finally, a detailed compu-
tation is made of the probability that a particular set of
features indicates the presence of an object, given the
accuracy of fit and number of probable false matches.
Object matches that pass all these tests can be identified
as correct with high confidence.

2. Related Research

The development of image matching by using a set of
local interest points can be traced back to the work of
Moravec (1981) on stereo matching using a corner de-
tector. The Moravec detector was improved by Harris
and Stephens (1988) to make it more repeatable un-
der small image variations and near edges. Harris also
showed its value for efficient motion tracking and 3D
structure from motion recovery (Harris, 1992), and the
Harris corner detector has since been widely used for
many other image matching tasks. While these feature
detectors are usually called corner detectors, they are
not selecting just corners, but rather any image location
that has large gradients in all directions at a predeter-
mined scale.

The initial applications were to stereo and short-
range motion tracking, but the approach was later ex-
tended to more difficult problems. Zhang et al. (1995)
showed that it was possible to match Harris corners
over a large image range by using a correlation window
around each corner to select likely matches. Outliers
were then removed by solving for a fundamental ma-
trix describing the geometric constraints between the
two views of rigid scene and removing matches that did
not agree with the majority solution. At the same time,
a similar approach was developed by Torr (1995) for
long-range motion matching, in which geometric con-
straints were used to remove outliers for rigid objects
moving within an image.

The ground-breaking work of Schmid and Mohr
(1997) showed that invariant local feature matching
could be extended to general image recognition prob-
lems in which a feature was matched against a large
database of images. They also used Harris corners to
select interest points, but rather than matching with
a correlation window, they used a rotationally in-
variant descriptor of the local image region. This al-
lowed features to be matched under arbitrary orien-
tation change between the two images. Furthermore,
they demonstrated that multiple feature matches could
accomplish general recognition under occlusion and
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clutter by identifying consistent clusters of matched
features.

The Harris corner detector is very sensitive to
changes in image scale, so it does not provide a good ba-
sis for matching images of different sizes. Earlier work
by the author (Lowe, 1999) extended the local feature
approach to achieve scale invariance. This work also
described a new local descriptor that provided more
distinctive features while being less sensitive to local
image distortions such as 3D viewpoint change. This
current paper provides a more in-depth development
and analysis of this earlier work, while also present-
ing a number of improvements in stability and feature
invariance.

There is a considerable body of previous research on
identifying representations that are stable under scale
change. Some of the first work in this area was by
Crowley and Parker (1984), who developed a repre-
sentation that identified peaks and ridges in scale space
and linked these into a tree structure. The tree structure
could then be matched between images with arbitrary
scale change. More recent work on graph-based match-
ing by Shokoufandeh et al. (1999) provides more dis-
tinctive feature descriptors using wavelet coefficients.
The problem of identifying an appropriate and con-
sistent scale for feature detection has been studied in
depth by Lindeberg (1993, 1994). He describes this as
a problem of scale selection, and we make use of his
results below.

Recently, there has been an impressive body of
work on extending local features to be invariant to
full affine transformations (Baumberg, 2000; Tuyte-
laars and Van Gool, 2000; Mikolajczyk and Schmid,
2002; Schaffalitzky and Zisserman, 2002; Brown and
Lowe, 2002). This allows for invariant matching to fea-
tures on a planar surface under changes in orthographic
3D projection, in most cases by resampling the image in
a local affine frame. However, none of these approaches
are yet fully affine invariant, as they start with initial
feature scales and locations selected in a non-affine-
invariant manner due to the prohibitive cost of explor-
ing the full affine space. The affine frames are are also
more sensitive to noise than those of the scale-invariant
features, so in practice the affine features have lower
repeatability than the scale-invariant features unless the
affine distortion is greater than about a 40 degree tilt of
a planar surface (Mikolajczyk, 2002). Wider affine in-
variance may not be important for many applications,
as training views are best taken at least every 30 de-
grees rotation in viewpoint (meaning that recognition

is within 15 degrees of the closest training view) in or-
der to capture non-planar changes and occlusion effects
for 3D objects.

While the method to be presented in this paper is not
fully affine invariant, a different approach is used in
which the local descriptor allows relative feature posi-
tions to shift significantly with only small changes in
the descriptor. This approach not only allows the de-
scriptors to be reliably matched across a considerable
range of affine distortion, but it also makes the features
more robust against changes in 3D viewpoint for non-
planar surfaces. Other advantages include much more
efficient feature extraction and the ability to identify
larger numbers of features. On the other hand, affine
invariance is a valuable property for matching planar
surfaces under very large view changes, and further
research should be performed on the best ways to com-
bine this with non-planar 3D viewpoint invariance in
an efficient and stable manner.

Many other feature types have been proposed for use
in recognition, some of which could be used in addition
to the features described in this paper to provide fur-
ther matches under differing circumstances. One class
of features are those that make use of image contours
or region boundaries, which should make them less
likely to be disrupted by cluttered backgrounds near
object boundaries. Matas et al. (2002) have shown that
their maximally-stable extremal regions can produce
large numbers of matching features with good stabil-
ity. Mikolajczyk et al. (2003) have developed a new
descriptor that uses local edges while ignoring unre-
lated nearby edges, providing the ability to find stable
features even near the boundaries of narrow shapes su-
perimposed on background clutter. Nelson and Selinger
(1998) have shown good results with local features
based on groupings of image contours. Similarly, Pope
and Lowe (2000) used features based on the hierarchi-
cal grouping of image contours, which are particularly
useful for objects lacking detailed texture.

The history of research on visual recognition con-
tains work on a diverse set of other image properties
that can be used as feature measurements. Carneiro and
Jepson (2002) describe phase-based local features that
represent the phase rather than the magnitude of local
spatial frequencies, which is likely to provide improved
invariance to illumination. Schiele and Crowley (2000)
have proposed the use of multidimensional histograms
summarizing the distribution of measurements within
image regions. This type of feature may be particu-
larly useful for recognition of textured objects with
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deformable shapes. Basri and Jacobs (1997) have
demonstrated the value of extracting local region
boundaries for recognition. Other useful properties to
incorporate include color, motion, figure-ground dis-
crimination, region shape descriptors, and stereo depth
cues. The local feature approach can easily incorporate
novel feature types because extra features contribute
to robustness when they provide correct matches, but
otherwise do little harm other than their cost of compu-
tation. Therefore, future systems are likely to combine
many feature types.

3. Detection of Scale-Space Extrema

As described in the introduction, we will detect key-
points using a cascade filtering approach that uses effi-
cient algorithms to identify candidate locations that are
then examined in further detail. The first stage of key-
point detection is to identify locations and scales that
can be repeatably assigned under differing views of
the same object. Detecting locations that are invariant
to scale change of the image can be accomplished by
searching for stable features across all possible scales,
using a continuous function of scale known as scale
space (Witkin, 1983).

It has been shown by Koenderink (1984) and
Lindeberg (1994) that under a variety of reasonable
assumptions the only possible scale-space kernel is
the Gaussian function. Therefore, the scale space of
an image is defined as a function, L(x, y, σ ), that
is produced from the convolution of a variable-scale
Gaussian, G(x, y, σ ), with an input image, I (x, y):

L(x, y, σ ) = G(x, y, σ ) ∗ I (x, y),

where ∗ is the convolution operation in x and y,
and

G(x, y, σ ) = 1

2πσ 2
e−(x2+y2)/2σ 2

.

To efficiently detect stable keypoint locations in scale
space, we have proposed (Lowe, 1999) using scale-
space extrema in the difference-of-Gaussian function
convolved with the image, D(x, y, σ ), which can be
computed from the difference of two nearby scales sep-
arated by a constant multiplicative factor k:

D(x, y, σ ) = (G(x, y, kσ ) − G(x, y, σ )) ∗ I (x, y)

= L(x, y, kσ ) − L(x, y, σ ). (1)

There are a number of reasons for choosing this
function. First, it is a particularly efficient function to
compute, as the smoothed images, L , need to be com-
puted in any case for scale space feature description,
and D can therefore be computed by simple image
subtraction.

In addition, the difference-of-Gaussian function pro-
vides a close approximation to the scale-normalized
Laplacian of Gaussian, σ 2∇2G, as studied by
Lindeberg (1994). Lindeberg showed that the normal-
ization of the Laplacian with the factor σ 2 is required
for true scale invariance. In detailed experimental com-
parisons, Mikolajczyk (2002) found that the maxima
and minima of σ 2∇2G produce the most stable image
features compared to a range of other possible image
functions, such as the gradient, Hessian, or Harris cor-
ner function.

The relationship between D and σ 2∇2G can be un-
derstood from the heat diffusion equation (parameter-
ized in terms of σ rather than the more usual t = σ 2):

∂G

∂σ
= σ∇2G.

From this, we see that ∇2G can be computed from the
finite difference approximation to ∂G/∂σ , using the
difference of nearby scales at kσ and σ :

σ∇2G = ∂G

∂σ
≈ G(x, y, kσ ) − G(x, y, σ )

kσ − σ

and therefore,

G(x, y, kσ ) − G(x, y, σ ) ≈ (k − 1)σ 2∇2G.

This shows that when the difference-of-Gaussian func-
tion has scales differing by a constant factor it already
incorporates the σ 2 scale normalization required for
the scale-invariant Laplacian. The factor (k − 1) in the
equation is a constant over all scales and therefore does
not influence extrema location. The approximation er-
ror will go to zero as k goes to 1, but in practice we have
found that the approximation has almost no impact on
the stability of extrema detection or localization for
even significant differences in scale, such as k = √

2.
An efficient approach to construction of D(x, y, σ )

is shown in Fig. 1. The initial image is incrementally
convolved with Gaussians to produce images separated
by a constant factor k in scale space, shown stacked in
the left column. We choose to divide each octave of
scale space (i.e., doubling of σ ) into an integer num-
ber, s, of intervals, so k = 21/s . We must produce s +3



Distinctive Image Features from Scale-Invariant Keypoints 95

Figure 1. For each octave of scale space, the initial image is repeatedly convolved with Gaussians to produce the set of scale space images
shown on the left. Adjacent Gaussian images are subtracted to produce the difference-of-Gaussian images on the right. After each octave, the
Gaussian image is down-sampled by a factor of 2, and the process repeated.

images in the stack of blurred images for each octave,
so that final extrema detection covers a complete oc-
tave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right.
Once a complete octave has been processed, we resam-
ple the Gaussian image that has twice the initial value
of σ (it will be 2 images from the top of the stack) by
taking every second pixel in each row and column. The
accuracy of sampling relative to σ is no different than
for the start of the previous octave, while computation
is greatly reduced.

3.1. Local Extrema Detection

In order to detect the local maxima and minima of
D(x, y, σ ), each sample point is compared to its eight
neighbors in the current image and nine neighbors in
the scale above and below (see Fig. 2). It is selected
only if it is larger than all of these neighbors or smaller
than all of them. The cost of this check is reasonably
low due to the fact that most sample points will be
eliminated following the first few checks.

An important issue is to determine the frequency
of sampling in the image and scale domains that is
needed to reliably detect the extrema. Unfortunately,
it turns out that there is no minimum spacing of sam-

Figure 2. Maxima and minima of the difference-of-Gaussian im-
ages are detected by comparing a pixel (marked with X) to its 26
neighbors in 3 × 3 regions at the current and adjacent scales (marked
with circles).

ples that will detect all extrema, as the extrema can be
arbitrarily close together. This can be seen by consid-
ering a white circle on a black background, which will
have a single scale space maximum where the circular
positive central region of the difference-of-Gaussian
function matches the size and location of the circle.
For a very elongated ellipse, there will be two max-
ima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for
some ellipse with intermediate elongation there will
be a transition from a single maximum to two, with
the maxima arbitrarily close to each other near the
transition.
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Figure 3. The top line of the first graph shows the percent of keypoints that are repeatably detected at the same location and scale in a
transformed image as a function of the number of scales sampled per octave. The lower line shows the percent of keypoints that have their
descriptors correctly matched to a large database. The second graph shows the total number of keypoints detected in a typical image as a function
of the number of scale samples.

Therefore, we must settle for a solution that trades
off efficiency with completeness. In fact, as might be
expected and is confirmed by our experiments, extrema
that are close together are quite unstable to small per-
turbations of the image. We can determine the best
choices experimentally by studying a range of sampling
frequencies and using those that provide the most reli-
able results under a realistic simulation of the matching
task.

3.2. Frequency of Sampling in Scale

The experimental determination of sampling frequency
that maximizes extrema stability is shown in Figs. 3 and
4. These figures (and most other simulations in this pa-
per) are based on a matching task using a collection of
32 real images drawn from a diverse range, including
outdoor scenes, human faces, aerial photographs, and
industrial images (the image domain was found to have
almost no influence on any of the results). Each image
was then subject to a range of transformations, includ-
ing rotation, scaling, affine stretch, change in brightness
and contrast, and addition of image noise. Because the
changes were synthetic, it was possible to precisely
predict where each feature in an original image should
appear in the transformed image, allowing for measure-
ment of correct repeatability and positional accuracy
for each feature.

Figure 3 shows these simulation results used to ex-
amine the effect of varying the number of scales per
octave at which the image function is sampled prior to

Figure 4. The top line in the graph shows the percent of keypoint
locations that are repeatably detected in a transformed image as a
function of the prior image smoothing for the first level of each
octave. The lower line shows the percent of descriptors correctly
matched against a large database.

extrema detection. In this case, each image was resam-
pled following rotation by a random angle and scaling
by a random amount between 0.2 of 0.9 times the orig-
inal size. Keypoints from the reduced resolution image
were matched against those from the original image so
that the scales for all keypoints would be be present in
the matched image. In addition, 1% image noise was
added, meaning that each pixel had a random number
added from the uniform interval [−0.01, 0.01] where
pixel values are in the range [0, 1] (equivalent to pro-
viding slightly less than 6 bits of accuracy for image
pixels).
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The top line in the first graph of Fig. 3 shows the
percent of keypoints that are detected at a matching
location and scale in the transformed image. For all
examples in this paper, we define a matching scale as
being within a factor of

√
2 of the correct scale, and

a matching location as being within σ pixels, where
σ is the scale of the keypoint (defined from Eq. (1) as
the standard deviation of the smallest Gaussian used
in the difference-of-Gaussian function). The lower line
on this graph shows the number of keypoints that are
correctly matched to a database of 40,000 keypoints
using the nearest-neighbor matching procedure to be
described in Section 6 (this shows that once the key-
point is repeatably located, it is likely to be useful for
recognition and matching tasks). As this graph shows,
the highest repeatability is obtained when sampling
3 scales per octave, and this is the number of scale
samples used for all other experiments throughout this
paper.

It might seem surprising that the repeatability does
not continue to improve as more scales are sampled.
The reason is that this results in many more local ex-
trema being detected, but these extrema are on average
less stable and therefore are less likely to be detected
in the transformed image. This is shown by the second
graph in Fig. 3, which shows the average number of
keypoints detected and correctly matched in each im-
age. The number of keypoints rises with increased sam-
pling of scales and the total number of correct matches
also rises. Since the success of object recognition often
depends more on the quantity of correctly matched key-
points, as opposed to their percentage correct match-
ing, for many applications it will be optimal to use a
larger number of scale samples. However, the cost of
computation also rises with this number, so for the ex-
periments in this paper we have chosen to use just 3
scale samples per octave.

To summarize, these experiments show that the
scale-space difference-of-Gaussian function has a large
number of extrema and that it would be very expensive
to detect them all. Fortunately, we can detect the most
stable and useful subset even with a coarse sampling
of scales.

3.3. Frequency of Sampling in the Spatial Domain

Just as we determined the frequency of sampling per oc-
tave of scale space, so we must determine the frequency
of sampling in the image domain relative to the scale of
smoothing. Given that extrema can be arbitrarily close

together, there will be a similar trade-off between sam-
pling frequency and rate of detection. Figure 4 shows
an experimental determination of the amount of prior
smoothing, σ , that is applied to each image level before
building the scale space representation for an octave.
Again, the top line is the repeatability of keypoint de-
tection, and the results show that the repeatability con-
tinues to increase with σ . However, there is a cost to
using a large σ in terms of efficiency, so we have cho-
sen to use σ = 1.6, which provides close to optimal
repeatability. This value is used throughout this paper
and was used for the results in Fig. 3.

Of course, if we pre-smooth the image before ex-
trema detection, we are effectively discarding the high-
est spatial frequencies. Therefore, to make full use of
the input, the image can be expanded to create more
sample points than were present in the original. We
double the size of the input image using linear inter-
polation prior to building the first level of the pyra-
mid. While the equivalent operation could effectively
have been performed by using sets of subpixel-offset
filters on the original image, the image doubling leads
to a more efficient implementation. We assume that the
original image has a blur of at least σ = 0.5 (the min-
imum needed to prevent significant aliasing), and that
therefore the doubled image has σ = 1.0 relative to
its new pixel spacing. This means that little additional
smoothing is needed prior to creation of the first oc-
tave of scale space. The image doubling increases the
number of stable keypoints by almost a factor of 4, but
no significant further improvements were found with a
larger expansion factor.

4. Accurate Keypoint Localization

Once a keypoint candidate has been found by com-
paring a pixel to its neighbors, the next step is to per-
form a detailed fit to the nearby data for location, scale,
and ratio of principal curvatures. This information al-
lows points to be rejected that have low contrast (and
are therefore sensitive to noise) or are poorly localized
along an edge.

The initial implementation of this approach (Lowe,
1999) simply located keypoints at the location and scale
of the central sample point. However, recently Brown
has developed a method (Brown and Lowe, 2002) for
fitting a 3D quadratic function to the local sample points
to determine the interpolated location of the maximum,
and his experiments showed that this provides a sub-
stantial improvement to matching and stability. His
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approach uses the Taylor expansion (up to the quadratic
terms) of the scale-space function, D(x, y, σ ), shifted
so that the origin is at the sample point:

D(x) = D + ∂ D

∂x

T

x + 1

2
xT ∂2 D

∂x2
x (2)

where D and its derivatives are evaluated at the sample
point and x = (x, y, σ )T is the offset from this point.
The location of the extremum, x̂, is determined by tak-
ing the derivative of this function with respect to x and
setting it to zero, giving

x̂ = −∂2 D

∂x2

−1
∂ D

∂x
. (3)

As suggested by Brown, the Hessian and derivative
of D are approximated by using differences of neigh-
boring sample points. The resulting 3×3 linear system
can be solved with minimal cost. If the offset x̂ is larger
than 0.5 in any dimension, then it means that the ex-
tremum lies closer to a different sample point. In this

Figure 5. This figure shows the stages of keypoint selection. (a) The 233 × 189 pixel original image. (b) The initial 832 keypoints locations
at maxima and minima of the difference-of-Gaussian function. Keypoints are displayed as vectors indicating scale, orientation, and location.
(c) After applying a threshold on minimum contrast, 729 keypoints remain. (d) The final 536 keypoints that remain following an additional
threshold on ratio of principal curvatures.

case, the sample point is changed and the interpolation
performed instead about that point. The final offset x̂
is added to the location of its sample point to get the
interpolated estimate for the location of the extremum.

The function value at the extremum, D(x̂), is useful
for rejecting unstable extrema with low contrast. This
can be obtained by substituting Eqs (3) into (2), giving

D(x̂) = D + 1

2

∂ D

∂x

T

x̂.

For the experiments in this paper, all extrema with
a value of D(x̂) less than 0.03 were discarded (as
before, we assume image pixel values in the range
[0, 1]).

Figure 5 shows the effects of keypoint selection on
a natural image. In order to avoid too much clutter, a
low-resolution 233 by 189 pixel image is used and key-
points are shown as vectors giving the location, scale,
and orientation of each keypoint (orientation assign-
ment is described below). Figure 5(a) shows the origi-
nal image, which is shown at reduced contrast behind
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the subsequent figures. Figure 5(b) shows the 832
keypoints at all detected maxima and minima of the
difference-of-Gaussian function, while (c) shows the
729 keypoints that remain following removal of those
with a value of D(x̂) less than 0.03. Part (d) will be
explained in the following section.

4.1. Eliminating Edge Responses

For stability, it is not sufficient to reject keypoints with
low contrast. The difference-of-Gaussian function will
have a strong response along edges, even if the loca-
tion along the edge is poorly determined and therefore
unstable to small amounts of noise.

A poorly defined peak in the difference-of-Gaussian
function will have a large principal curvature across
the edge but a small one in the perpendicular direction.
The principal curvatures can be computed from a 2×2
Hessian matrix, H, computed at the location and scale
of the keypoint:

H =
[

Dxx Dxy

Dxy Dyy

]
(4)

The derivatives are estimated by taking differences of
neighboring sample points.

The eigenvalues of H are proportional to the princi-
pal curvatures of D. Borrowing from the approach used
by Harris and Stephens (1988), we can avoid explicitly
computing the eigenvalues, as we are only concerned
with their ratio. Let α be the eigenvalue with the largest
magnitude and β be the smaller one. Then, we can com-
pute the sum of the eigenvalues from the trace of H and
their product from the determinant:

Tr(H) = Dxx + Dyy = α + β,

Det(H) = Dxx Dyy − (Dxy)2 = αβ.

In the unlikely event that the determinant is negative,
the curvatures have different signs so the point is dis-
carded as not being an extremum. Let r be the ratio be-
tween the largest magnitude eigenvalue and the smaller

m(x, y) =
√

(L(x + 1, y) − L(x − 1, y))2 + (L(x, y + 1) − L(x, y − 1))2

θ (x, y) = tan−1((L(x, y + 1) − L(x, y − 1))/(L(x + 1, y) − L(x − 1, y)))

one, so that α = rβ. Then,

Tr(H)2

Det(H)
= (α + β)2

αβ
= (rβ + β)2

rβ2
= (r + 1)2

r
,

which depends only on the ratio of the eigenval-
ues rather than their individual values. The quantity
(r + 1)2/r is at a minimum when the two eigenvalues
are equal and it increases with r . Therefore, to check
that the ratio of principal curvatures is below some
threshold, r , we only need to check

Tr(H)2

Det(H)
<

(r + 1)2

r
.

This is very efficient to compute, with less than 20
floating point operations required to test each keypoint.
The experiments in this paper use a value of r = 10,
which eliminates keypoints that have a ratio between
the principal curvatures greater than 10. The transi-
tion from Fig. 5(c) to (d) shows the effects of this
operation.

5. Orientation Assignment

By assigning a consistent orientation to each keypoint
based on local image properties, the keypoint descrip-
tor can be represented relative to this orientation and
therefore achieve invariance to image rotation. This ap-
proach contrasts with the orientation invariant descrip-
tors of Schmid and Mohr (1997), in which each image
property is based on a rotationally invariant measure.
The disadvantage of that approach is that it limits the
descriptors that can be used and discards image infor-
mation by not requiring all measures to be based on a
consistent rotation.

Following experimentation with a number of ap-
proaches to assigning a local orientation, the follow-
ing approach was found to give the most stable results.
The scale of the keypoint is used to select the Gaussian
smoothed image, L , with the closest scale, so that all
computations are performed in a scale-invariant man-
ner. For each image sample, L(x, y), at this scale, the
gradient magnitude, m(x, y), and orientation, θ (x, y),
is precomputed using pixel differences:
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An orientation histogram is formed from the gradient
orientations of sample points within a region around the
keypoint. The orientation histogram has 36 bins cov-
ering the 360 degree range of orientations. Each sam-
ple added to the histogram is weighted by its gradient
magnitude and by a Gaussian-weighted circular win-
dow with a σ that is 1.5 times that of the scale of the
keypoint.

Peaks in the orientation histogram correspond to
dominant directions of local gradients. The highest
peak in the histogram is detected, and then any other lo-
cal peak that is within 80% of the highest peak is used to
also create a keypoint with that orientation. Therefore,
for locations with multiple peaks of similar magnitude,
there will be multiple keypoints created at the same lo-
cation and scale but different orientations. Only about
15% of points are assigned multiple orientations, but
these contribute significantly to the stability of match-
ing. Finally, a parabola is fit to the 3 histogram values
closest to each peak to interpolate the peak position for
better accuracy.

Figure 6 shows the experimental stability of loca-
tion, scale, and orientation assignment under differ-
ing amounts of image noise. As before the images are
rotated and scaled by random amounts. The top line
shows the stability of keypoint location and scale as-
signment. The second line shows the stability of match-
ing when the orientation assignment is also required to
be within 15 degrees. As shown by the gap between
the top two lines, the orientation assignment remains
accurate 95% of the time even after addition of ±10%

Figure 6. The top line in the graph shows the percent of keypoint
locations and scales that are repeatably detected as a function of pixel
noise. The second line shows the repeatability after also requiring
agreement in orientation. The bottom line shows the final percent of
descriptors correctly matched to a large database.

pixel noise (equivalent to a camera providing less than
3 bits of precision). The measured variance of orienta-
tion for the correct matches is about 2.5 degrees, rising
to 3.9 degrees for 10% noise. The bottom line in Fig. 6
shows the final accuracy of correctly matching a key-
point descriptor to a database of 40,000 keypoints (to
be discussed below). As this graph shows, the SIFT fea-
tures are resistant to even large amounts of pixel noise,
and the major cause of error is the initial location and
scale detection.

6. The Local Image Descriptor

The previous operations have assigned an image lo-
cation, scale, and orientation to each keypoint. These
parameters impose a repeatable local 2D coordinate
system in which to describe the local image region,
and therefore provide invariance to these parameters.
The next step is to compute a descriptor for the local
image region that is highly distinctive yet is as invariant
as possible to remaining variations, such as change in
illumination or 3D viewpoint.

One obvious approach would be to sample the local
image intensities around the keypoint at the appropriate
scale, and to match these using a normalized correla-
tion measure. However, simple correlation of image
patches is highly sensitive to changes that cause mis-
registration of samples, such as affine or 3D viewpoint
change or non-rigid deformations. A better approach
has been demonstrated by Edelman et al. (1997). Their
proposed representation was based upon a model of
biological vision, in particular of complex neurons in
primary visual cortex. These complex neurons respond
to a gradient at a particular orientation and spatial fre-
quency, but the location of the gradient on the retina
is allowed to shift over a small receptive field rather
than being precisely localized. Edelman et al. hypoth-
esized that the function of these complex neurons was
to allow for matching and recognition of 3D objects
from a range of viewpoints. They have performed de-
tailed experiments using 3D computer models of object
and animal shapes which show that matching gradi-
ents while allowing for shifts in their position results
in much better classification under 3D rotation. For ex-
ample, recognition accuracy for 3D objects rotated in
depth by 20 degrees increased from 35% for correlation
of gradients to 94% using the complex cell model. Our
implementation described below was inspired by this
idea, but allows for positional shift using a different
computational mechanism.
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Figure 7. A keypoint descriptor is created by first computing the gradient magnitude and orientation at each image sample point in a region
around the keypoint location, as shown on the left. These are weighted by a Gaussian window, indicated by the overlaid circle. These samples
are then accumulated into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with the length of each
arrow corresponding to the sum of the gradient magnitudes near that direction within the region. This figure shows a 2 × 2 descriptor array
computed from an 8 × 8 set of samples, whereas the experiments in this paper use 4 × 4 descriptors computed from a 16 × 16 sample array.

6.1. Descriptor Representation

Figure 7 illustrates the computation of the keypoint de-
scriptor. First the image gradient magnitudes and ori-
entations are sampled around the keypoint location,
using the scale of the keypoint to select the level of
Gaussian blur for the image. In order to achieve ori-
entation invariance, the coordinates of the descriptor
and the gradient orientations are rotated relative to
the keypoint orientation. For efficiency, the gradients
are precomputed for all levels of the pyramid as de-
scribed in Section 5. These are illustrated with small
arrows at each sample location on the left side of
Fig. 7.

A Gaussian weighting function with σ equal to one
half the width of the descriptor window is used to as-
sign a weight to the magnitude of each sample point.
This is illustrated with a circular window on the left
side of Fig. 7, although, of course, the weight falls
off smoothly. The purpose of this Gaussian window is
to avoid sudden changes in the descriptor with small
changes in the position of the window, and to give less
emphasis to gradients that are far from the center of the
descriptor, as these are most affected by misregistration
errors.

The keypoint descriptor is shown on the right side
of Fig. 7. It allows for significant shift in gradient po-
sitions by creating orientation histograms over 4 × 4
sample regions. The figure shows eight directions for
each orientation histogram, with the length of each ar-
row corresponding to the magnitude of that histogram
entry. A gradient sample on the left can shift up to 4
sample positions while still contributing to the same

histogram on the right, thereby achieving the objective
of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which
the descriptor abruptly changes as a sample shifts
smoothly from being within one histogram to another
or from one orientation to another. Therefore, trilin-
ear interpolation is used to distribute the value of each
gradient sample into adjacent histogram bins. In other
words, each entry into a bin is multiplied by a weight of
1−d for each dimension, where d is the distance of the
sample from the central value of the bin as measured
in units of the histogram bin spacing.

The descriptor is formed from a vector containing
the values of all the orientation histogram entries, cor-
responding to the lengths of the arrows on the right side
of Fig. 7. The figure shows a 2 × 2 array of orienta-
tion histograms, whereas our experiments below show
that the best results are achieved with a 4 × 4 array of
histograms with 8 orientation bins in each. Therefore,
the experiments in this paper use a 4 × 4 × 8 = 128
element feature vector for each keypoint.

Finally, the feature vector is modified to reduce the
effects of illumination change. First, the vector is nor-
malized to unit length. A change in image contrast in
which each pixel value is multiplied by a constant will
multiply gradients by the same constant, so this contrast
change will be canceled by vector normalization. A
brightness change in which a constant is added to each
image pixel will not affect the gradient values, as they
are computed from pixel differences. Therefore, the de-
scriptor is invariant to affine changes in illumination.
However, non-linear illumination changes can also oc-
cur due to camera saturation or due to illumination
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changes that affect 3D surfaces with differing orienta-
tions by different amounts. These effects can cause a
large change in relative magnitudes for some gradients,
but are less likely to affect the gradient orientations.
Therefore, we reduce the influence of large gradient
magnitudes by thresholding the values in the unit fea-
ture vector to each be no larger than 0.2, and then renor-
malizing to unit length. This means that matching the
magnitudes for large gradients is no longer as impor-
tant, and that the distribution of orientations has greater
emphasis. The value of 0.2 was determined experimen-
tally using images containing differing illuminations
for the same 3D objects.

6.2. Descriptor Testing

There are two parameters that can be used to vary the
complexity of the descriptor: the number of orienta-
tions, r , in the histograms, and the width, n, of the
n × n array of orientation histograms. The size of the
resulting descriptor vector is rn2. As the complexity of
the descriptor grows, it will be able to discriminate bet-
ter in a large database, but it will also be more sensitive
to shape distortions and occlusion.

Figure 8 shows experimental results in which the
number of orientations and size of the descriptor were
varied. The graph was generated for a viewpoint trans-
formation in which a planar surface is tilted by 50 de-
grees away from the viewer and 4% image noise is
added. This is near the limits of reliable matching, as

Figure 8. This graph shows the percent of keypoints giving the
correct match to a database of 40,000 keypoints as a function of width
of the n×n keypoint descriptor and the number of orientations in each
histogram. The graph is computed for images with affine viewpoint
change of 50 degrees and addition of 4% noise.

it is in these more difficult cases that descriptor perfor-
mance is most important. The results show the percent
of keypoints that find a correct match to the single clos-
est neighbor among a database of 40,000 keypoints.
The graph shows that a single orientation histogram
(n = 1) is very poor at discriminating, but the results
continue to improve up to a 4 × 4 array of histograms
with 8 orientations. After that, adding more orienta-
tions or a larger descriptor can actually hurt matching
by making the descriptor more sensitive to distortion.
These results were broadly similar for other degrees
of viewpoint change and noise, although in some sim-
pler cases discrimination continued to improve (from
already high levels) with 5 × 5 and higher descriptor
sizes. Throughout this paper we use a 4 × 4 descriptor
with 8 orientations, resulting in feature vectors with 128
dimensions. While the dimensionality of the descriptor
may seem high, we have found that it consistently per-
forms better than lower-dimensional descriptors on a
range of matching tasks and that the computational cost
of matching remains low when using the approximate
nearest-neighbor methods described below.

6.3. Sensitivity to Affine Change

The sensitivity of the descriptor to affine change is ex-
amined in Fig. 9. The graph shows the reliability of
keypoint location and scale selection, orientation as-
signment, and nearest-neighbor matching to a database
as a function of rotation in depth of a plane away from

Figure 9. This graph shows the stability of detection for keypoint
location, orientation, and final matching to a database as a function of
affine distortion. The degree of affine distortion is expressed in terms
of the equivalent viewpoint rotation in depth for a planar surface.
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a viewer. It can be seen that each stage of computation
has reduced repeatability with increasing affine distor-
tion, but that the final matching accuracy remains above
50% out to a 50 degree change in viewpoint.

To achieve reliable matching over a wider viewpoint
angle, one of the affine-invariant detectors could be
used to select and resample image regions, as discussed
in Section 2. As mentioned there, none of these ap-
proaches is truly affine-invariant, as they all start from
initial feature locations determined in a non-affine-
invariant manner. In what appears to be the most affine-
invariant method, Mikolajczyk (2002) has proposed
and run detailed experiments with the Harris-affine de-
tector. He found that its keypoint repeatability is below
that given here out to about a 50 degree viewpoint an-
gle, but that it then retains close to 40% repeatability
out to an angle of 70 degrees, which provides better
performance for extreme affine changes. The disadvan-
tages are a much higher computational cost, a reduc-
tion in the number of keypoints, and poorer stability for
small affine changes due to errors in assigning a consis-
tent affine frame under noise. In practice, the allowable
range of rotation for 3D objects is considerably less
than for planar surfaces, so affine invariance is usually
not the limiting factor in the ability to match across
viewpoint change. If a wide range of affine invariance
is desired, such as for a surface that is known to be pla-
nar, then a simple solution is to adopt the approach of
Pritchard and Heidrich (2003) in which additional SIFT
features are generated from 4 affine-transformed ver-
sions of the training image corresponding to 60 degree
viewpoint changes. This allows for the use of standard
SIFT features with no additional cost when process-
ing the image to be recognized, but results in an in-
crease in the size of the feature database by a factor
of 3.

6.4. Matching to Large Databases

An important remaining issue for measuring the dis-
tinctiveness of features is how the reliability of match-
ing varies as a function of the number of features in
the database being matched. Most of the examples in
this paper are generated using a database of 32 im-
ages with about 40,000 keypoints. Figure 10 shows
how the matching reliability varies as a function of
database size. This figure was generated using a larger
database of 112 images, with a viewpoint depth rota-
tion of 30 degrees and 2% image noise in addition to
the usual random image rotation and scale change.

Figure 10. The dashed line shows the percent of keypoints cor-
rectly matched to a database as a function of database size (using
a logarithmic scale). The solid line shows the percent of keypoints
assigned the correct location, scale, and orientation. Images had ran-
dom scale and rotation changes, an affine transform of 30 degrees,
and image noise of 2% added prior to matching.

The dashed line shows the portion of image features
for which the nearest neighbor in the database was the
correct match, as a function of database size shown
on a logarithmic scale. The leftmost point is matching
against features from only a single image while the
rightmost point is selecting matches from a database
of all features from the 112 images. It can be seen that
matching reliability does decrease as a function of the
number of distractors, yet all indications are that many
correct matches will continue to be found out to very
large database sizes.

The solid line is the percentage of keypoints that
were identified at the correct matching location and
orientation in the transformed image, so it is only these
points that have any chance of having matching de-
scriptors in the database. The reason this line is flat
is that the test was run over the full database for each
value, while only varying the portion of the database
used for distractors. It is of interest that the gap be-
tween the two lines is small, indicating that matching
failures are due more to issues with initial feature lo-
calization and orientation assignment than to problems
with feature distinctiveness, even out to large database
sizes.

7. Application to Object Recognition

The major topic of this paper is the derivation of dis-
tinctive invariant keypoints, as described above. To
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demonstrate their application, we will now give a brief
description of their use for object recognition in the
presence of clutter and occlusion. More details on ap-
plications of these features to recognition are available
in other papers (Lowe, 1999, 2001; Se et al., 2002).

Object recognition is performed by first matching
each keypoint independently to the database of key-
points extracted from training images. Many of these
initial matches will be incorrect due to ambiguous fea-
tures or features that arise from background clutter.
Therefore, clusters of at least 3 features are first identi-
fied that agree on an object and its pose, as these clusters
have a much higher probability of being correct than in-
dividual feature matches. Then, each cluster is checked
by performing a detailed geometric fit to the model, and
the result is used to accept or reject the interpretation.

7.1. Keypoint Matching

The best candidate match for each keypoint is found
by identifying its nearest neighbor in the database of
keypoints from training images. The nearest neighbor
is defined as the keypoint with minimum Euclidean
distance for the invariant descriptor vector as was de-
scribed in Section 6.

However, many features from an image will not have
any correct match in the training database because they
arise from background clutter or were not detected in
the training images. Therefore, it would be useful to
have a way to discard features that do not have any
good match to the database. A global threshold on dis-
tance to the closest feature does not perform well, as
some descriptors are much more discriminative than
others. A more effective measure is obtained by com-
paring the distance of the closest neighbor to that of the
second-closest neighbor. If there are multiple training
images of the same object, then we define the second-
closest neighbor as being the closest neighbor that is
known to come from a different object than the first,
such as by only using images known to contain different
objects. This measure performs well because correct
matches need to have the closest neighbor significantly
closer than the closest incorrect match to achieve reli-
able matching. For false matches, there will likely be a
number of other false matches within similar distances
due to the high dimensionality of the feature space.
We can think of the second-closest match as provid-
ing an estimate of the density of false matches within
this portion of the feature space and at the same time
identifying specific instances of feature ambiguity.

Figure 11. The probability that a match is correct can be deter-
mined by taking the ratio of distance from the closest neighbor to the
distance of the second closest. Using a database of 40,000 keypoints,
the solid line shows the PDF of this ratio for correct matches, while
the dotted line is for matches that were incorrect.

Figure 11 shows the value of this measure for real
image data. The probability density functions for cor-
rect and incorrect matches are shown in terms of the
ratio of closest to second-closest neighbors of each key-
point. Matches for which the nearest neighbor was a
correct match have a PDF that is centered at a much
lower ratio than that for incorrect matches. For our ob-
ject recognition implementation, we reject all matches
in which the distance ratio is greater than 0.8, which
eliminates 90% of the false matches while discarding
less than 5% of the correct matches. This figure was
generated by matching images following random scale
and orientation change, a depth rotation of 30 degrees,
and addition of 2% image noise, against a database of
40,000 keypoints.

7.2. Efficient Nearest Neighbor Indexing

No algorithms are known that can identify the exact
nearest neighbors of points in high dimensional spaces
that are any more efficient than exhaustive search.
Our keypoint descriptor has a 128-dimensional feature
vector, and the best algorithms, such as the k-d tree
(Friedman et al., 1977) provide no speedup over ex-
haustive search for more than about 10 dimensional
spaces. Therefore, we have used an approximate algo-
rithm, called the Best-Bin-First (BBF) algorithm (Beis
and Lowe, 1997). This is approximate in the sense that
it returns the closest neighbor with high probability.
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The BBF algorithm uses a modified search ordering
for the k-d tree algorithm so that bins in feature space
are searched in the order of their closest distance from
the query location. This priority search order was first
examined by Arya and Mount (1993), and they pro-
vide further study of its computational properties in
Arya et al. (1998). This search order requires the use
of a heap-based priority queue for efficient determina-
tion of the search order. An approximate answer can
be returned with low cost by cutting off further search
after a specific number of the nearest bins have been
explored. In our implementation, we cut off search af-
ter checking the first 200 nearest-neighbor candidates.
For a database of 100,000 keypoints, this provides a
speedup over exact nearest neighbor search by about
2 orders of magnitude yet results in less than a 5%
loss in the number of correct matches. One reason the
BBF algorithm works particularly well for this prob-
lem is that we only consider matches in which the near-
est neighbor is less than 0.8 times the distance to the
second-nearest neighbor (as described in the previous
section), and therefore there is no need to exactly solve
the most difficult cases in which many neighbors are at
very similar distances.

7.3. Clustering with the Hough Transform

To maximize the performance of object recognition for
small or highly occluded objects, we wish to iden-
tify objects with the fewest possible number of fea-
ture matches. We have found that reliable recognition
is possible with as few as 3 features. A typical im-
age contains 2,000 or more features which may come
from many different objects as well as background clut-
ter. While the distance ratio test described in Section
7.1 will allow us to discard many of the false matches
arising from background clutter, this does not remove
matches from other valid objects, and we often still
need to identify correct subsets of matches contain-
ing less than 1% inliers among 99% outliers. Many
well-known robust fitting methods, such as RANSAC
or Least Median of Squares, perform poorly when the
percent of inliers falls much below 50%. Fortunately,
much better performance can be obtained by cluster-
ing features in pose space using the Hough transform
(Hough, 1962; Ballard, 1981; Grimson, 1990).

The Hough transform identifies clusters of features
with a consistent interpretation by using each feature to
vote for all object poses that are consistent with the fea-
ture. When clusters of features are found to vote for the

same pose of an object, the probability of the interpre-
tation being correct is much higher than for any single
feature. Each of our keypoints specifies 4 parameters:
2D location, scale, and orientation, and each matched
keypoint in the database has a record of the keypoint’s
parameters relative to the training image in which it
was found. Therefore, we can create a Hough trans-
form entry predicting the model location, orientation,
and scale from the match hypothesis. This prediction
has large error bounds, as the similarity transform im-
plied by these 4 parameters is only an approximation to
the full 6 degree-of-freedom pose space for a 3D object
and also does not account for any non-rigid deforma-
tions. Therefore, we use broad bin sizes of 30 degrees
for orientation, a factor of 2 for scale, and 0.25 times the
maximum projected training image dimension (using
the predicted scale) for location. To avoid the problem
of boundary effects in bin assignment, each keypoint
match votes for the 2 closest bins in each dimension,
giving a total of 16 entries for each hypothesis and fur-
ther broadening the pose range.

In most implementations of the Hough transform, a
multi-dimensional array is used to represent the bins.
However, many of the potential bins will remain empty,
and it is difficult to compute the range of possible bin
values due to their mutual dependence (for example,
the dependency of location discretization on the se-
lected scale). These problems can be avoided by using
a pseudo-random hash function of the bin values to in-
sert votes into a one-dimensional hash table, in which
collisions are easily detected.

7.4. Solution for Affine Parameters

The Hough transform is used to identify all clusters
with at least 3 entries in a bin. Each such cluster is then
subject to a geometric verification procedure in which
a least-squares solution is performed for the best affine
projection parameters relating the training image to the
new image.

An affine transformation correctly accounts for 3D
rotation of a planar surface under orthographic projec-
tion, but the approximation can be poor for 3D rotation
of non-planar objects. A more general solution would
be to solve for the fundamental matrix (Luong and
Faugeras, 1996; Hartley and Zisserman, 2000). How-
ever, a fundamental matrix solution requires at least 7
point matches as compared to only 3 for the affine so-
lution and in practice requires even more matches for
good stability. We would like to perform recognition
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with as few as 3 feature matches, so the affine solution
provides a better starting point and we can account
for errors in the affine approximation by allowing for
large residual errors. If we imagine placing a sphere
around an object, then rotation of the sphere by 30 de-
grees will move no point within the sphere by more
than 0.25 times the projected diameter of the sphere.
For the examples of typical 3D objects used in this pa-
per, an affine solution works well given that we allow
residual errors up to 0.25 times the maximum projected
dimension of the object. A more general approach is
given in Brown and Lowe (2002), in which the initial
solution is based on a similarity transform, which then
progresses to solution for the fundamental matrix in
those cases in which a sufficient number of matches
are found.

The affine transformation of a model point [x y]T to
an image point [u v]T can be written as

[
u

v

]
=

[
m1 m2

m3 m4

][
x

y

]
+

[
tx

ty

]

where the model translation is [tx ty]T and the affine
rotation, scale, and stretch are represented by the mi

parameters.
We wish to solve for the transformation parameters,

so the equation above can be rewritten to gather the
unknowns into a column vector:
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This equation shows a single match, but any number
of further matches can be added, with each match con-
tributing two more rows to the first and last matrix. At
least 3 matches are needed to provide a solution.

We can write this linear system as

Ax = b

The least-squares solution for the parameters x can
be determined by solving the corresponding normal
equations,

x = [ATA]−1ATb,

which minimizes the sum of the squares of the distances
from the projected model locations to the correspond-
ing image locations. This least-squares approach could
readily be extended to solving for 3D pose and internal
parameters of articulated and flexible objects (Lowe,
1991).

Outliers can now be removed by checking for agree-
ment between each image feature and the model. Given
the more accurate least-squares solution, we now re-
quire each match to agree within half the error range
that was used for the parameters in the Hough trans-
form bins. If fewer than 3 points remain after discarding
outliers, then the match is rejected. As outliers are dis-
carded, the least-squares solution is re-solved with the
remaining points, and the process iterated. In addition,
a top-down matching phase is used to add any further
matches that agree with the projected model position.
These may have been missed from the Hough trans-
form bin due to the similarity transform approximation
or other errors.

The final decision to accept or reject a model hypoth-
esis is based on a detailed probabilistic model given
in a previous paper (Lowe, 2001). This method first
computes the expected number of false matches to the
model pose, given the projected size of the model, the
number of features within the region, and the accuracy
of the fit. A Bayesian analysis then gives the probabil-
ity that the object is present based on the actual number
of matching features found. We accept a model if the
final probability for a correct interpretation is greater
than 0.98. For objects that project to small regions of an
image, 3 features may be sufficient for reliable recog-
nition. For large objects covering most of a heavily
textured image, the expected number of false matches
is higher, and as many as 10 feature matches may be
necessary.

8. Recognition Examples

Figure 12 shows an example of object recognition for
a cluttered and occluded image containing 3D objects.
The training images of a toy train and a frog are shown
on the left. The middle image (of size 600 × 480 pix-
els) contains instances of these objects hidden behind
others and with extensive background clutter so that
detection of the objects may not be immediate even for
human vision. The image on the right shows the final
correct identification superimposed on a reduced con-
trast version of the image. The keypoints that were used
for recognition are shown as squares with an extra line
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Figure 12. The training images for two objects are shown on the left. These can be recognized in a cluttered image with extensive occlusion,
shown in the middle. The results of recognition are shown on the right. A parallelogram is drawn around each recognized object showing the
boundaries of the original training image under the affine transformation solved for during recognition. Smaller squares indicate the keypoints
that were used for recognition.

Figure 13. This example shows location recognition within a complex scene. The training images for locations are shown at the upper left and
the 640 × 315 pixel test image taken from a different viewpoint is on the upper right. The recognized regions are shown on the lower image,
with keypoints shown as squares and an outer parallelogram showing the boundaries of the training images under the affine transform used for
recognition.
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to indicate orientation. The sizes of the squares corre-
spond to the image regions used to construct the de-
scriptor. An outer parallelogram is also drawn around
each instance of recognition, with its sides correspond-
ing to the boundaries of the training images projected
under the final affine transformation determined during
recognition.

Another potential application of the approach is to
place recognition, in which a mobile device or vehicle
could identify its location by recognizing familiar lo-
cations. Figure 13 gives an example of this application,
in which training images are taken of a number of loca-
tions. As shown on the upper left, these can even be of
such seemingly non-distinctive items as a wooden wall
or a tree with trash bins. The test image (of size 640 by
315 pixels) on the upper right was taken from a view-
point rotated about 30 degrees around the scene from
the original positions, yet the training image locations
are easily recognized.

All steps of the recognition process can be imple-
mented efficiently, so the total time to recognize all
objects in Figs. 12 or 13 is less than 0.3 seconds on
a 2 GHz Pentium 4 processor. We have implemented
these algorithms on a laptop computer with attached
video camera, and have tested them extensively over
a wide range of conditions. In general, textured planar
surfaces can be identified reliably over a rotation in
depth of up to 50 degrees in any direction and under
almost any illumination conditions that provide suf-
ficient light and do not produce excessive glare. For
3D objects, the range of rotation in depth for reliable
recognition is only about 30 degrees in any direction
and illumination change is more disruptive. For these
reasons, 3D object recognition is best performed by
integrating features from multiple views, such as with
local feature view clustering (Lowe, 2001).

These keypoints have also been applied to the prob-
lem of robot localization and mapping, which has been
presented in detail in other papers (Se et al., 2001). In
this application, a trinocular stereo system is used to de-
termine 3D estimates for keypoint locations. Keypoints
are used only when they appear in all 3 images with con-
sistent disparities, resulting in very few outliers. As the
robot moves, it localizes itself using feature matches
to the existing 3D map, and then incrementally adds
features to the map while updating their 3D positions
using a Kalman filter. This provides a robust and ac-
curate solution to the problem of robot localization in
unknown environments. This work has also addressed
the problem of place recognition, in which a robot can

be switched on and recognize its location anywhere
within a large map (Se et al., 2002), which is equiva-
lent to a 3D implementation of object recognition.

9. Conclusions

The SIFT keypoints described in this paper are par-
ticularly useful due to their distinctiveness, which en-
ables the correct match for a keypoint to be selected
from a large database of other keypoints. This distinc-
tiveness is achieved by assembling a high-dimensional
vector representing the image gradients within a local
region of the image. The keypoints have been shown
to be invariant to image rotation and scale and robust
across a substantial range of affine distortion, addition
of noise, and change in illumination. Large numbers of
keypoints can be extracted from typical images, which
leads to robustness in extracting small objects among
clutter. The fact that keypoints are detected over a com-
plete range of scales means that small local features are
available for matching small and highly occluded ob-
jects, while large keypoints perform well for images
subject to noise and blur. Their computation is effi-
cient, so that several thousand keypoints can be ex-
tracted from a typical image with near real-time per-
formance on standard PC hardware.

This paper has also presented methods for using the
keypoints for object recognition. The approach we have
described uses approximate nearest-neighbor lookup, a
Hough transform for identifying clusters that agree on
object pose, least-squares pose determination, and final
verification. Other potential applications include view
matching for 3D reconstruction, motion tracking and
segmentation, robot localization, image panorama as-
sembly, epipolar calibration, and any others that require
identification of matching locations between images.

There are many directions for further research in
deriving invariant and distinctive image features. Sys-
tematic testing is needed on data sets with full 3D view-
point and illumination changes. The features described
in this paper use only a monochrome intensity image,
so further distinctiveness could be derived from includ-
ing illumination-invariant color descriptors (Funt and
Finlayson, 1995; Brown and Lowe, 2002). Similarly,
local texture measures appear to play an important role
in human vision and could be incorporated into fea-
ture descriptors in a more general form than the single
spatial frequency used by the current descriptors. An
attractive aspect of the invariant local feature approach
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to matching is that there is no need to select just one
feature type, and the best results are likely to be ob-
tained by using many different features, all of which
can contribute useful matches and improve overall
robustness.

Another direction for future research will be to in-
dividually learn features that are suited to recognizing
particular objects categories. This will be particularly
important for generic object classes that must cover a
broad range of possible appearances. The research of
Weber et al. (2000) and Fergus et al. (2003) has shown
the potential of this approach by learning small sets
of local features that are suited to recognizing generic
classes of objects. In the long term, feature sets are
likely to contain both prior and learned features that
will be used according to the amount of training data
that has been available for various object classes.
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