Image Segmentation

Introduction. The goal of image segmentation is to cluster pixels into
salientimage regions, i.e., regions corresponding to indalislurfaces,
objects, or natural parts of objects.

A segmentation could be used for object recognition, occiusaund-
ary estimation within motion or stereo systems, image comjamess
image editing, or image database look-up.

We considebottom-up image segmentation That is, we ignore (top-
down) contributions from object recognition in the segmenitapoo-
cess.

For input we primarily consider image brightness here, althaingin
lar technigues can be used with colour, motion, and/or stdisga@rity
information.

Readings: See Chapter 14 of Forsyth and Ponce.
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Example Segmentations: Simple Scenes

Segmentations of simple gray-level images can provide usefoi-in
mation about the surfaces in the scene.

Original Image Segmentation (by SMC)

Note, unlike edge images, these boundaries delimit disjoiage re-
gions (i.e. they arelosed. Do they correspond to surfaces?
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Siren Song of Segmentation

Why would a good segmentation be useful? Imagine...

Parent to baby: “Look, there is a baby horse with its mommy!”
Baby:
Reasonlng Image

Follow pointing gesture.
Acquire image.

horse is an animal

animal ~» quadruped

baby horse ~» small horse

arwbdpE

Visual Task: Seek correlates
of two similar quadrupeds in image,
one smaller than the other.

Bottom-Up Segmentation Parse of Two Quadrupeds

Baby: “Gaaa.” (Translation: “Eureka, | can see!”)
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Key Questions

1. How well can we expect to segment images without recognizin
objects (i.e. bottom-up segmentation)?

2. What determines a segment?
How can we pose the problem mathematically?

3. How do we solve the specified problem(s)?

4. How can we evaluate the results?
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Example Segmentations: Horses Image

Original Image

Which is the best segmentation? Why?
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Example Segmentations: Tiger Image

Original Image

p———

Group these intd( categories based on qualitys (= 27?)
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Observations on Example Segmentations

The previous segmentations were done by

LV: local variation algorithm [8],

SMC: spectral min-cut [7],

H: human [10, 9],

ED: edge-augmented mean-shift [5, 4],
NC: normalized cut [12, 6].

Remarks:

e The quality of the segmentation depends on the image. Siyooth
shaded surfaces with clear gray-level steps between different su
faces are ideal for the above algorithms.

e For simple images (p. 2) itis plausible that machine segnienta
like those above are useful for visual tasks, e.g., object retogn

e For more complex images (pp. 5, 6), machine segmentations pro-
vide a less reliable indicator for surface boundaries, and thiéty
for subsequent processing is questionable.

e While many algorithms work well with simple images, they break
down with clutter and camouflage. The assessment of segmenta
tion algorithms therefore needs to be done on standardized tfatase

e Humans probably use object recognition in conjunction witl se
mentation, while the machine algorithms above do not.
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Current Goals

e Provide a brief introduction to the current image segmentatten li
erature, including:

— Feature space clustering approaches.
x EDISON
— Graph-based approaches.

x Total Variation
* Ncut

x Spectral Min Cut

e Discuss the inherent assumptions different approaches make abo
what constitutes a good segment.

e Emphasize general mathematical tools that are promising.

e Discuss metrics for evaluating the results.
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Clustering in Feature Space

Given an imagéd (Z), consider feature vecto#s(z) of the form

E(a?) is a vector of local image features, perhaps bandpass filter re-
sponses. For colour imagds(z) would also include information about
the colour at pixel.

To segment the image we might seek a clustering of the featutersec
ﬁ(f) observed in that image. A compact region of the image having a
distinct gray-level or colour will correspond to a region in thethea
space with a relatively high density of sampled feature vectors.
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Mixture of Gaussians Model

A natural approach is then to model the observed feature vector dis
bution using a mixture of Gaussians (MoG) modé)

K
p(FIM) = ) m, G(F | 1, 5.
k=1

Here,r; > 0 are the mixing coefficients, with_,_, m, = 1. Further,
my. andX; are the means and covariances of the component Gaussians.

e For agivenk, the parameters of the MoG modgtr, 17y, 3r) 1,

can be fit to the feature§F(z)}zcx using maximum-likelihood
(X denotes the set of all pixels).

e Penalized likelihood (aka minimum description length (MDL)hca
be used to select the number of componeAats,
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Maximum Ownership Labelling

The segment label ) = & for a pixel ¥ is thek which maximizes the
ownership ofF(Z) in the MoG model\/. That is,

c(¥) = Arg Max

Above right: result for K = 3.
The max-ownership image was post-
processed using connected components
Small regions were discarded (gray).
Rightimage: average colour for each re-
maining component. The width of the

segment boundaries is due to the use of
a spatial texture feature. From Blobworld [3].

Variations: The MoG model can be replaced by K-means (see text),

or restricted to use low-dimensional parameterizationsfdeg. block
diagonal).
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Assumptions Come Home to Roost

The quality of the resulting segmentation depends on the degre
which the given image matches the (implicit) assumptions egah
with (and which led to the ML formulation); that is,

1. Different segments form compact, well-separated clustefs in

2. Gaussian componentsid correspond to salient regions.

From Blobworld [3].

Nevertheless, this feature space clustering can be useful focenga
rough summaries of image content suitable for image retrieval [3].
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Mean-Shift Segmentation

The mean-shift segmentation algorithm [5] also considers theapibb
ity density of feature vectorB/(Z) obtained from a given image. How-
ever, anon-parametric density model is used instead of an MoG.

Given features’; = F(i;), the kernel-density estimate is

X
— 1 — — —
pr(F) = X Y K(F;—F), with F € RV,
J=1

where X is the set of all pixels in the imageX| is the number of
pixels, andK (¢) is a kernel (which integrates to unity).

Common choices fok(€) are functions of a (covariance) matnix
and the squared deviatienz ¢”~~'¢ > 0. That s,

K(e) = k(e's7'e), (1)
wherek(s) is a concave decreasing functionsofFor example,

k(s) = ce /2, for a Gaussian kernel (2)

k(s) = c|l —s],, for an Epanechnikov kernel (3)

Here,c = ¢(X) is a normalizing constant, and |, denotes positive
rectification, i.e.|z|, = max(z,0).

We show an example next.

2503: Segmentation Page: 13



Example Feature Density

From Comaniciu and Meer [5].
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The kernel density estimate using the Epanechnikov kerneher2d
feature points (top right). The covariance paramétasf the kernel
K (¢) determines the smoothness of the density estimaté’). The
trade-off is between sampling artifacts (kernel too narrow) versss |
of resolution inpx (F) (kernel too broad).
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Mean-Shift Iterations

We will use the modes (i.e. peaks)mf(ﬁ) to be segmentation labels,
replacing the use of the component labels in the previous MoGeimo
That is, we wish to locally solve
F, = argmax pi(F) .

a
This is similar to robust M-estimation, but here we are maxingzhe
objective functionp (£), not minimizing it. A similar derivation to
the one for M-estimation shows, must satisfy

P ij(ﬁjj_ _)*)F;
Z]’ w(F; — F)
wherew(e) = —k'(€771€) andk'(s) = 2(s). In words, . must be

the weighted mean df; using the weights(F, — F.) centered orf-,.

The analogue of the iterative reweighting idea used in M-estimas
to solve forF. here by iterating thmean—shiftequation

Z w( )

Note F("*1) is just the weighted mean of the feature poihfswith the

(4)

weightsw(F, — F(")) centered on the previous gues$).
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Details of Mean-Shift Iterations

Let F; = F(&;) be the feature vector at pixé). We define a kernel density estimate for the distribution
of the image features as follows:

p(F) = x| > k(si(F)) (5)

where|X| is the number of pixels in the imagg,be a non-negative kernel function, and, given a
positive definite matrixC,

s;(F) = (F = F)TC™\(F ~ F)) (6)
measures the scaled deviation betwéeand F;. We further assume that the kernel integrates to one
in order for (5) to be a valid density function. And lefs) = %(s) = k'(s) be the kernel derivative.

The goal of the mean-shift iterations is to find a traject@ryocal maxima ofp(ﬁ), beginning at an
arbitrary point in the feature space. A necessary condibbora local maxima of the kernel density
estimate is that the gradient be zero. That is,Aorto be a critical point it must satisfy

8pk — —
8F( ) (7)

Thus, to find critical points let’s look at the form of the detive of the feature distribution:

8pk = 1 ok =
—2(F) = o > —=(s(F))
OF [ X| = oF
1 61{: Sj
| X ; 0s ls=s; OF
1 — — —
= s [20—1F—20-1Fj] (8)

With some algebraic simplification, we find that that theicait points satisfy

[zw@j(ﬁ*»

J

F* =Y w(s;(F) F; . (9)

J

To find a critical point, given an initial guesﬁ,@, we compute the weights usin@(t). Then, holding
the weights fixed we solve for the next point on the trajectovyard the critical point; i.e.,

[Z w(s;(FY))

J

FUY =N (s, (F9)) F, (10)

J

from which we obtain (4).
2503: Segmentation Notes: 16



Watersheds of Mean-Shift

The label at pixel, is defined to be the mode to which mean shift iter-
ations (4) converge when started/@t) = F'(7;). That s, thesegments
are thedomains of convergencdaka watersheds) of the mean-shift
iterations (right plot).
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Properties:

1. Convergence:Mean-shift iterations converge to a stationary point
of p(F) (see [5]).

2. Anti-edge Detection: The mean-shift iterations are repelled from
local maxima of the norm of the gradient (viitof £ 7(Z)S L F(z).
This occurs, for example, at strong edges in the imége.

3. Fragmentation of Constant Gradient Regions:The densit;pK(ﬁ)
IS constant (up to discretization artifacts) where the gradiént o
FT(7)S1F(Z) is constant. Wher&/I(Z) is constant, points of
pK(ﬁ) are stationary and mean-shift iterations stall (see left fig).
Postprocessing is used to select salient local maxima (see [5]).
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Example Mean-Shift Segmentations

Segmentations from the basic mean-shift algorithm:

The scale of the mean-shift kernel (controlled®tjyroughly determines
the size and shape of the extracted regions. There is a tradetwéfdre
maintaining the salient boundaries but sufferingr-segmentation, ver-
sus missing some of the important boundaries amér-segmenting
the image. The segmentations above illustrate a typical comige.

An enhanced system (EDISON [4]) combines the mean-shift algorithm
with image edge information. An edge-saliency measure is used to
modify the weight function used in the mean-shift equation (4).sThi
eases the above trade-off, allowing weak boundaries to be ke in
segmentation without incurring as much over-segmentation. géma
segmentation results using the EDISON system are shown on pp. 5-
6 (labelled ED). The use of salient-edge information signifigaimti-
proves the results.
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Similarity Graph Based Methods
Graph-based methods provide an alternative to feature spacerigst

A weighted undirected grapd = (V, F) is formed, with the set of
verticesV corresponding to the pixelgin the image. Edge#’ in the
graph occur between any two pixefsandz; within a small distance
of each other.

The edge weightv(z;, ;) > 0 reflects the dissimilarity (alternatively,
the similarity) between the two image neighbourhoods centanguix-
elsz; andz;. Acommon form of the weight function is to us€x;, ¥;) =
1 — a(;, ©;) where the affinityu(7;, 7;) is given by

1

ol ) = oo (~3(F(8) — F@)"S (@) - F@))

As above F'(7) is a feature vector associated with pixefor example:

1. ﬁ(f) = I(Z), so the affinity is determined only by the grey-level
difference between neighbouring pixels,

2. F(Z) = I(¥), the RGB values for a colour image, or some mapping
of the RGB values to a more uniform colour space (eg. L*u*v*).

3. F(Z) includes texture primitives, such as local filter responses,
along with the brightness and/or colour at pixel
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Connected Components (Not Robust)

A simple approach is to delete all edges between dissimikai$(i.e.,
with weightsw(%;,Z;) > 7), and then seek connected components
(CCs) in the remaining graph.

An efficient way to do CC clustering, with a variahteis to first build
a minimal spanning tree (MST) of the gragfruskal’s Algorithm is
a greedy approach that is guaranteed to give an optimal MST:

e Begin with the completely disconnected graph.

e Add edges one at a time in increasing order of their weights, so
long as adding an edge does not introduce cycles in the sub-graph

The CCs of the decimated graph (with edges having;, ©;) >
removed) are then efficiently computed by deleting these salgese
from the MST. The trees in the resulting forest provide the desired CCs

Note that a single edge with(Z;, ;) < 7 would be sufficient to cause

two desired regions to be merged. Therefore CCs are not robust to stray
links (aka “leaks”) between regions. The consequence is lieag tis

often no suitable value af that gives a useful segmentation.

A modified version of Kruskal’s algorithm is considered next.
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Local Variation Method

Felzenszwalb and Huttenlocher [8] introduce a simple but &¥kec
modification of Kruskal's algorithm. As in Kruskal’s algorithm,

e it begins with the completely disconnected graph,
e edges are added one at a time in increasing order of their weights

e it maintains a forest of MSTSs for its current components.

During processing, each MST; is associated with a threshold

k
Ci|

wherew(C;) is the maximum weight in the spanning trég(i.e. the

(11)

local variation of C;). Also k > 0 is a constant, anf”;| is the number
of pixels inC;.

Suppose the edde;;, 7)) is to be processed next, and its two endpoints
are in two separate MSTs; andC’;. Then these MSTs are merged by
adding the edgér;, 7;) only if

w(@, @) < min(T(Cy), T(C))). (12)

As the size ofC; increases, (11) and (12) dictate an increasingly tight
upper bound’(C;) (compared to the largest weightC;) in C;) for the
acceptable affinity of an edge mergiagwith another region.
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Examples of Local Variation Segmentation

Sorting the edges according to weight causes the algorithm @ gro
relatively homogeneous regions first.

Parametek in (11) roughly controls the size of the regions in the seg-
mentation. Largek yields a looser constraint (12), and more merging.

Merging is sensitive to the local variation within regions. ebio the
increasingly tight bound (11), a large homogeneous reglois only
merged using edges with weights at most fractionally larganii{ C; ),
the largest affinity in the MST;. The bound is looser for small re-
gions, encouraging their growth, thereby avoiding many tinyores)

The approach has a tendency to produce narrow regions along ‘true’
segment boundaries (see examples above).

The approach is very efficient computationally, requiriig: log(e))
operations where = | E| is the number of edges.

The weak link: But two very different regions can be merged if there
IS even one edge with a small weight that joins them.

2503: Segmentation Page: 22



Graph Cuts

Graph partitioning formulations are intended to be more robust &dlsm
leaks, since the objective criteria naturally take into acttlm entire
boundary of a hypothetical segment.

Suppose we want to partition (i.e., cut) the graph into two partsnd

G =V — F. Further, we only want to cut edges with small affinities
(ie keep similar nodes together in the same partition). Thus haight
measure the cost of the cut using

LIF.G)= )  al@ i), (13)

T, €F, ijG

wherea(-, -) is the affinity function described above.

Problem: Optimal cuts often result i’ (or G) containing one node.

Solution: Formulate more suitable objective functions or graph con-
structions to place constraints éhandd.
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Normalized Cut

The normalized cut approach of Shi and Malik [12] avoided tripii-
titions of the affinity weighted graph with the use of tie malized cut
criterion. They proposed that the optimal partition of the graph into
andG = V — F should minimize

N(F,G) = L(F,G) (L(;,V)+L(C¥1,V))’ (14)

whereL is the linkage defined in (13); i.eL(A, B) is the sum of the
affinities for all edges having one end.hand the other iB.

Properties:

e The cut cost decreases when edges connecting nodeamd G
have small affinities (i.e., for small(F, G)).

e L(F,V)is sum of affinities on edges withifi, and those connect-
ing I’ to the rest of the graph. And similarly far(G, V).

e Other things being equal, the cut cost decreases when thigiedfin
on edges withirf’ andG are larger (i.e., fonomogeneousregions).

Problem: Unfortunately, the resulting graph partitioning problem,

F:arg%ncigN(F,V—F), (15)

is computationally intractable [12]. Therefore we must seek algyms
that provide approximate solutions of (15).
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Normalized Cut (cont)

Shi and Malik [12] prove that (15) is equivalent to the discreté&-op
mization problem, for labelling = (yi, ..., yx)! with N = |X

arg min y_’T(D —A)y
i §'Dy

, Subjecttoy; € {1, —0b} andd "7 =0. (16)
Here,

e AistheN x N symmetric matrix of affinitiesq(z;, z;), arranged
(say) according to the raster ordering of the pixels;

e d = AT, wherel is the N-vector comprisingV ones;

e D is the diagonal matrix wittD, ; = d; ;

o b > 0.

Given a solutiony of (16), the corresponding solution for partitidh

of (15) is then obtained by setting = {%; | v; > 0} . And, vice versa,
given F' we sety;, = 1 for eachx; € F', and set the other elements:pf
to —b, whereb > ( is chosen such that! 7 = 0.

Shi and Malik [12] proposed to relax the discrete problem. They first
find a real-valued solution to (16), for which they ignore the binary
constraint thay; € {1, —b}. Then they threshold the result to produce

a discrete (approximate) solution.
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Rayleigh Quotient

Equation (16) is a discrete version of a standard eigenvéartmulation, namely the Rayleigh quotient.

By way of background, the matrik — A is known as the Laplacian matrix. Among its generalized
eigenvectorsy, satisfying
(D—-A)y = nDy, a7)

the eigenvector corresponding to the smallest eigenveckorown to be the solution to the following

problem:
arg min w .
gy Dy
It is well-known that becaus® — A is symmetric, real, positive semidefinite, that (2)— A has
orthogonal eigenvectors, and (2) that the associatedvagess must be greater than or equal to zero.

More specifically the vector of all ondsis known to be an eigenvector &f — A, with eigenvalud.

(18)

Now consider the relaxation of (16), in which we ignore thasteaint that;; € {1, —b}, and therefore
treaty as real-valued. Further consider the transformagien D—'/2%, for which the relaxed problem
becomes

a?(I — B)d

argmin — ———— , subjecttod "/*i =0, (19)
71 u-u

for symmetric matrixB = D~/2AD~'/2, and real-valued. This is a standard eigenvalue problem in
linear algebra. In particular, it can be shown that

e i =dY?isan eigenvector oB with eigenvaluel, so it must also be an eigenvectoriof B
with eigenvalue);

e sinceD — A is symmetric positive semidefinite, sofis- B, and therefore all the eigenvalues
associated witd — B are greater than or equal to zero, and the correspondingweigers are
orthogonal;

e all the eigenvalues of — B are in the intervalo, 2].

Hence, from (19) it follows that the linear constraint@simply says thafi must be orthogonal to the

eigenvector of — B having the smallest eigenvalue. Accordingly, the vectarimizing the Rayleigh
Quotient and orthogonal ©0'/2is simply the eigenvector df— B with thesecond smallest eigenvalue.
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Spectral Approximation for Normalized Cut

The relaxed version of (16), ignoring the binary constraird {1, —b},
and takingy to be real-valued, is a standard problem in linear algebra
known as the Rayleigh Quotient.

e The solutiony is the generalized eigenvector of the Laplacian ma-
trix, D — A, with the second smallest eigenvalue

(D—A)j = uD7. (20)

To obtain a discrete (approximate) solution to (16), Shi and Malik
thresholdy. They consider several thresholdsand choose the one
with the lowest value of the Ncut objective function (14). RegaF
andG = V — F, are recursively partitioned using the same method,
until a user-specified number of segments are found. (see pp.5-6.)

image eig 1

eig 2 eig 3
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Remarks on Ncuts

The step of thresholding the second largest eigenvector wadar@
partitioning proposal is a key limitation. In practice, the apqmation

only appears to be consistently reliable when there is just ¢aea C
way to partition the data. Yu and Shi [13] attempt to allevidies t
problem by extracting< segments from the subspace spanned by the
K eigenvectors of — B with the smallest eigenvalues.

Ncuts can be very slow for large images since the matrix beconoes p
hibitively large. Efficient approximations to the eigenwacproblem
have also been proposed.

A common use of Ncuts is for the computation of significantlgmev
segmented images (called superpixels), to propose atomici§iindia)

regions as a basis for subsequent processing.

For further information, see the reading list in the CVPR 2004, lgrap
based segmentation tutorial [11].
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Source-Sink Minimum Cut

An alternative graph-based approach makes use of efficieni@wdut
of the max-flow/min-cut problem between source and sink nodes in
directed graphs.

From Boykov and Kolmogorov [2].

S-T Min-Cut Problem. An S-T graph is a weighted directed graph
with two identified nodes, the soureeand the sink. We seek a mini-
mum cut separating andt¢. That is, we seek a partioning of the graph
into FandG =V — F, s € I, andt € G, that minimizes the linkage
LF.G) = Y  ali, ). (21)

TR, 7;€G
Efficient algorithms exist to solve the S-T min-cut problem (see [2]).

The S-T min-cut problem is computationally simpler than theegeh
graph partitioning problem (to find a non-empty partitiod” andG

that minimizes(F, G), i.e., without constraints like € F'andt € ().
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Source-Sink Minimum Cut (Cont.)

To take advantage of efficient solutions to the S-T min-cut obhle
first need to construct an S-T graph.

Given two disjoint sets of pixel§ and7’, we form a weighted directed
graph as follows:

e For each edgéxr;, ¥;) in the previous undirected graphs, we in-
clude two directed edgeg;, ;) and(Z;, ¥;). Both are weighted
by the affinitya(z;, 7).

e Two additional nodes andt are created, namely the source and
sink nodes, respectively.

e Infinitely weighted directed linkss, z;) and (z;,t) are included
for eachz; € S andz; € T. This ensures that nodes thand T’
can never be cut fromandz.

The resulting S-T min-cut then provides tgmbally, minimum-cost
cut between the sets of pixelsandT'.
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Seed Regions for S-T Min Cut

SetsS and7' (nodes connected to source and sink) should satisfy:

1. EachS andT generated must be sufficiently large (otherwise the
minimum cut is eithelS andV — S, orT" andV — 7)),

2. EachS andT should be contained within different ‘true’ segments
(due to the infinite weights, neithéfror 7" will be partitioned),

3. Enough pairss and7" should be generated to identify most of the
salient segments in the image.

Interactive Min-Cut:

Spectral Min-Cut: One suitable generation process is discussed in
Estrada et al. [7]. It is based on spectral properties of a matrix repre-
senting the affinities. Sample results are given by3pectral Min-

Cut technique (SMC on pp. 5,6). The process is much more compu-
tationally intensive than the previous ones. Several hundreedcat
problems are typically solved for differeft 7.
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Berkeley Segmentation Database

The Berkeley Segmentation Dataset [9, 10] provides image sggme
tions done by humans. As stated on the dataset’s webpage:

The goal of this work is to provide an empirical and scientific
basis for research on image segmentation and boundary detec-
tion.

The public portion of this dataset consists of the segmaemtsanf 300
images by roughly 5 humans each, done separately for greylegtel an
colour versions of the images. Three examples from one image are
shown below:

Note these segmentations appear to be consistent, extfeptii sub-
jects have decided to resolve particular regions into more sidetail.
This variability should be taken into account in a quantf&tompari-
son of two segmentations.
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Benchmarking Segmentation

Segmentation algorithms have been benchmarked on syntheatic fra
tal images. The precision-recall curves for the detection of segm
boundary points were computed (Estrada and Jepson, 2004).
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Precision-Recall on Fractal Images

Tuning Curves for all Algorithms
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Precision-Recall on Berkeley Dataset

Tuning Curves for all Algorithms

1 —
09 o . ..“.....: -.:::::1
0.8' '...: .'.:.:‘:::::.. N
. . -‘:E.' s .
0.7t MR
0.6r
G
15} 05_
o
0.4r
0.3H —e— SE Min—Cut
—u— Mean Shift
0.2 H —e— Local Variation
—+— Normalized Cuts
0.1 -+ Human
B Human Median
O 1 1 1 1 J
0 0.2 0.4 0.6 0.8 1

Precision

2503: Segmentation Page: 35



Precision-Recall on Berkeley Dataset
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@ [F=0.58] Av. Diss. - Bertelli, Sumengen. Manjunath, Gibou (2008) : :
I s [F = 0.56] SWA - Sharon, Galun, Sharon, Basri, Brandt (2006) e 0.2
' @® [F = 0.55] ChanVese - Bertelli, Sumengen, Manjunath, Gibou (2008) : :
@ [F = 0.55] Donoser, Urschler, Hirzer, Bischof (2009)
[F = 0.53] Yang, Wright, Ma, Sastry (2007) I i
0 I I I I I I I | |
0 0.1 0.2 0.3 04 0.5 06 0.7 0.8 0.9 1

Recall

Here theF'-score is the maximum of the harmonic mean of precision
and recall

2 precision - recall
- — | = max
_|_

precision recall

F = max

precision + recall |

More recent segmentation methods make use of trained imageltoun
ary detectors which incorporate both colour and texture informatio
See Arbéhez et al. [1]. (Note the Precision-Recall axes above have
been swapped to the standard arrangement.)
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Pascal VOC Challenge

Training examples for the 2009 segmentation/labelling engk, each
with (1) training image; (2) object segmentation (colors specift,fi
second, third object etc.); and (3) class segmentation (col@afgp
class: 1=aeroplane, 2=bicycle, 3=bird, 4=boat, 5=bottibuss...).
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