
Image Segmentation

Introduction. The goal of image segmentation is to cluster pixels into

salient image regions, i.e., regions corresponding to individual surfaces,

objects, or natural parts of objects.

A segmentation could be used for object recognition, occlusion bound-

ary estimation within motion or stereo systems, image compression,

image editing, or image database look-up.

We considerbottom-up image segmentation. That is, we ignore (top-

down) contributions from object recognition in the segmentation pro-

cess.

For input we primarily consider image brightness here, althoughsimi-

lar techniques can be used with colour, motion, and/or stereodisparity

information.

Readings: See Chapter 14 of Forsyth and Ponce.
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Example Segmentations: Simple Scenes

Segmentations of simple gray-level images can provide useful infor-

mation about the surfaces in the scene.

Original Image Segmentation (by SMC)

Note, unlike edge images, these boundaries delimit disjointimage re-

gions (i.e. they areclosed). Do they correspond to surfaces?
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Siren Song of Segmentation

Why would a good segmentation be useful? Imagine...

Parent to baby: “Look, there is a baby horse with its mommy!”

Baby:

Reasoning
1. Follow pointing gesture.
2. Acquire image.
3. horse is an animal
4. animal ; quadruped
5. baby horse ; small horse

Visual Task: Seek correlates
of two similar quadrupeds in image,
one smaller than the other.

Image

Bottom-Up Segmentation Parse of Two Quadrupeds

Baby: “Gaaa.” (Translation: “Eureka, I can see!”)
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Key Questions

1. How well can we expect to segment images without recognizing

objects (i.e. bottom-up segmentation)?

2. What determines a segment?

How can we pose the problem mathematically?

3. How do we solve the specified problem(s)?

4. How can we evaluate the results?
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Example Segmentations: Horses Image

Original Image LV

SMC H

ED NC

Which is the best segmentation? Why?
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Example Segmentations: Tiger Image

Original Image LV

SMC H

ED NC

Group these intoK categories based on quality. (K = 2?)
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Observations on Example Segmentations

The previous segmentations were done by

LV: local variation algorithm [8],

SMC: spectral min-cut [7],

H: human [10, 9],

ED: edge-augmented mean-shift [5, 4],

NC: normalized cut [12, 6].

Remarks:

• The quality of the segmentation depends on the image. Smoothly

shaded surfaces with clear gray-level steps between different sur-

faces are ideal for the above algorithms.

• For simple images (p. 2) it is plausible that machine segmentations

like those above are useful for visual tasks, e.g., object recognition.

• For more complex images (pp. 5, 6), machine segmentations pro-

vide a less reliable indicator for surface boundaries, and theirutility

for subsequent processing is questionable.

• While many algorithms work well with simple images, they break

down with clutter and camouflage. The assessment of segmenta-

tion algorithms therefore needs to be done on standardized datasets.

• Humans probably use object recognition in conjunction with seg-

mentation, while the machine algorithms above do not.
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Current Goals

• Provide a brief introduction to the current image segmentation lit-

erature, including:

– Feature space clustering approaches.

∗ EDISON

– Graph-based approaches.

∗ Total Variation

∗ Ncut

∗ Spectral Min Cut

• Discuss the inherent assumptions different approaches make about

what constitutes a good segment.

• Emphasize general mathematical tools that are promising.

• Discuss metrics for evaluating the results.
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Clustering in Feature Space

Given an imageI(~x), consider feature vectors~F (~x) of the form

~F (~x) =









~x

I(~x)

~L(~x)









.

~L(~x) is a vector of local image features, perhaps bandpass filter re-

sponses. For colour images,~F (~x) would also include information about

the colour at pixel~x.

To segment the image we might seek a clustering of the feature vectors
~F (~x) observed in that image. A compact region of the image having a

distinct gray-level or colour will correspond to a region in the feature

space with a relatively high density of sampled feature vectors.
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Mixture of Gaussians Model

A natural approach is then to model the observed feature vector distri-

bution using a mixture of Gaussians (MoG) modelM ,

p(~F |M) =

K
∑

k=1

πk G(~F | ~mk, Σk).

Here,πk ≥ 0 are the mixing coefficients, with
∑K

k=1 πk = 1. Further,

~mk andΣk are the means and covariances of the component Gaussians.

• For a givenK, the parameters of the MoG model{(πk, ~mk, Σk)}
K
k=1

can be fit to the features{~F (~x)}~x∈X using maximum-likelihood

(X denotes the set of all pixels).

• Penalized likelihood (aka minimum description length (MDL)) can

be used to select the number of components,K.
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Maximum Ownership Labelling

The segment labelc(~x) = k for a pixel~x is thek which maximizes the

ownership of~F (~x) in the MoG modelM . That is,

c(~x) = arg max
k

[

πk G(~F (~x) | ~mk, Σk)

p(~F (~x) | M)

]

.

Above right: result for K = 3.

The max-ownership image was post-

processed using connected components.

Small regions were discarded (gray).

Right image: average colour for each re-

maining component. The width of the

segment boundaries is due to the use of

a spatial texture feature. From Blobworld [3].

Variations: The MoG model can be replaced by K-means (see text),

or restricted to use low-dimensional parameterizations forΣk (eg. block

diagonal).
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Assumptions Come Home to Roost

The quality of the resulting segmentation depends on the degree to

which the given image matches the (implicit) assumptions we began

with (and which led to the ML formulation); that is,

1. Different segments form compact, well-separated clusters in~F .

2. Gaussian components inM correspond to salient regions.

From Blobworld [3].

Nevertheless, this feature space clustering can be useful for extracting

rough summaries of image content suitable for image retrieval [3].
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Mean-Shift Segmentation

The mean-shift segmentation algorithm [5] also considers the probabil-

ity density of feature vectors~F (~x) obtained from a given image. How-

ever, anon-parametric density model is used instead of an MoG.

Given features~Fj ≡ ~F (~xj), the kernel-density estimate is

pK(~F ) ≡
1

|X|

|X|
∑

j=1

K(~Fj − ~F ) , with ~F ∈ RD ,

whereX is the set of all pixels in the image,|X| is the number of

pixels, andK(~e) is a kernel (which integrates to unity).

Common choices forK(~e) are functions of a (covariance) matrixΣ

and the squared deviations ≡ ~e TΣ−1~e ≥ 0. That is,

K(~e) = k(~e TΣ−1~e) , (1)

wherek(s) is a concave decreasing function ofs. For example,

k(s) = ce−s/2 , for a Gaussian kernel, (2)

k(s) = cb1 − sc+ , for an Epanechnikov kernel. (3)

Here,c = c(Σ) is a normalizing constant, andbzc+ denotes positive

rectification, i.e.bzc+ ≡ max(z, 0) .

We show an example next.
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Example Feature Density

From Comaniciu and Meer [5].

Image Scatter plot (2D L*u*)

Mean Shift Trajectories Mean Shift Clusters

The kernel density estimate using the Epanechnikov kernel on the 2d

feature points (top right). The covariance parameterΣ of the kernel

K(~e) determines the smoothness of the density estimatepK(~F ). The

trade-off is between sampling artifacts (kernel too narrow) versus loss

of resolution inpK(~F ) (kernel too broad).
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Mean-Shift Iterations

We will use the modes (i.e. peaks) ofpK(~F ) to be segmentation labels,

replacing the use of the component labels in the previous MoG model.

That is, we wish to locally solve

~F∗ = arg max
~F

pK(~F ) .

This is similar to robust M-estimation, but here we are maximizing the

objective functionpK(~F ), not minimizing it. A similar derivation to

the one for M-estimation shows~F∗ must satisfy

~F∗ =

∑

j w(~Fj − ~F∗) ~Fj
∑

j w(~Fj − ~F∗)
,

wherew(~e) = −k′(~e TΣ−1~e) andk′(s) = dk
ds(s). In words, ~F∗ must be

the weighted mean of~Fj using the weightsw(~Fj− ~F∗) centered on~F∗.

The analogue of the iterative reweighting idea used in M-estimation is

to solve for~F∗ here by iterating themean-shiftequation

~F (t+1) =

∑

j w(~Fj − ~F (t)) ~Fj
∑

j w(~Fj − ~F (t))
. (4)

Note ~F (t+1) is just the weighted mean of the feature points~Fj, with the

weightsw(~Fj− ~F (t)) centered on the previous guess~F (t).
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Details of Mean-Shift Iterations

Let ~Fj ≡ ~F (~xj) be the feature vector at pixel~xj. We define a kernel density estimate for the distribution

of the image features~F as follows:

p(~F ) =
1

|X|

|X|
∑

j=1

k(sj(~F )) , (5)

where|X| is the number of pixels in the image,k be a non-negative kernel function, and, given a

positive definite matrixC,

sj(~F ) ≡ (~F − ~Fj)
T C−1(~F − ~Fj) (6)

measures the scaled deviation between~F and ~Fj. We further assume that the kernel integrates to one

in order for (5) to be a valid density function. And letw(s) = dk
ds

(s) ≡ k′(s) be the kernel derivative.

The goal of the mean-shift iterations is to find a trajectory to local maxima ofp(~F ), beginning at an

arbitrary point in the feature space. A necessary conditionfor a local maxima of the kernel density

estimate is that the gradient be zero. That is, for~F ∗ to be a critical point it must satisfy

∂pk

∂ ~F
(~F ∗) = ~0 . (7)

Thus, to find critical points let’s look at the form of the derivative of the feature distribution:

∂pk

∂ ~F
(~F ) =

1

|X|

∑

j

∂k

∂ ~F
(sj(~F ))

=
1

|X|

∑

j

∂k

∂s

∣

∣

∣

s=sj

∂sj

∂ ~F

=
1

|X|

∑

j

w(sj(~F ))
[

2C−1 ~F − 2C−1 ~Fj

]

(8)

With some algebraic simplification, we find that that the critical points satisfy
[

∑

j

w(sj(~F ∗))

]

~F ∗ =
∑

j

w(sj(~F ∗)) ~Fj . (9)

To find a critical point, given an initial guess,~F (t), we compute the weights using~F (t). Then, holding

the weights fixed we solve for the next point on the trajectorytoward the critical point; i.e.,
[

∑

j

w(sj(~F (t)))

]

~F (t+1) =
∑

j

w(sj(~F (t))) ~Fj, (10)

from which we obtain (4).
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Watersheds of Mean-Shift

The label at pixel~x0 is defined to be the mode to which mean shift iter-

ations (4) converge when started at~F (0) = ~F (~x0). That is, thesegments

are thedomains of convergence(aka watersheds) of the mean-shift

iterations (right plot).

Mean Shift Trajectories Mean Shift Clusters

Properties:

1. Convergence:Mean-shift iterations converge to a stationary point

of pK(~F ) (see [5]).

2. Anti-edge Detection:The mean-shift iterations are repelled from

local maxima of the norm of the gradient (wrt~x) of ~F T (~x)Σ−1 ~F (~x).

This occurs, for example, at strong edges in the imageI(~x).

3. Fragmentation of Constant Gradient Regions:The densitypK(~F )

is constant (up to discretization artifacts) where the gradient of
~F T (~x)Σ−1 ~F (~x) is constant. Where~∇I(~x) is constant, points of

pK(~F ) are stationary and mean-shift iterations stall (see left fig).

Postprocessing is used to select salient local maxima (see [5]).
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Example Mean-Shift Segmentations

Segmentations from the basic mean-shift algorithm:

The scale of the mean-shift kernel (controlled byΣ) roughly determines

the size and shape of the extracted regions. There is a trade-off between

maintaining the salient boundaries but sufferingover-segmentation, ver-

sus missing some of the important boundaries andunder-segmenting

the image. The segmentations above illustrate a typical compromise.

An enhanced system (EDISON [4]) combines the mean-shift algorithm

with image edge information. An edge-saliency measure is used to

modify the weight function used in the mean-shift equation (4). This

eases the above trade-off, allowing weak boundaries to be kept inthe

segmentation without incurring as much over-segmentation. Image

segmentation results using the EDISON system are shown on pp. 5-

6 (labelled ED). The use of salient-edge information significantly im-

proves the results.
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Similarity Graph Based Methods

Graph-based methods provide an alternative to feature space clustering.

A weighted undirected graphG = (V, E) is formed, with the set of

verticesV corresponding to the pixels~x in the image. EdgesE in the

graph occur between any two pixels~xi and~xj within a small distance

of each other.

The edge weightw(~xi, ~xj) ≥ 0 reflects the dissimilarity (alternatively,

the similarity) between the two image neighbourhoods centeredon pix-

els~xi and~xj. A common form of the weight function is to usew(~xi, ~xj) =

1 − a(~xi, ~xj) where the affinitya(~xi, ~xj) is given by

a(~xi, ~xj) ≡ exp

(

−
1

2
(~F (~xi) − ~F (~xj))

TΣ−1(~F (~xi) − ~F (~xj))

)

.

As above,~F (~x) is a feature vector associated with pixel~x, for example:

1. ~F (~x) = I(~x), so the affinity is determined only by the grey-level

difference between neighbouring pixels,

2. ~F (~x) = ~I(~x), the RGB values for a colour image, or some mapping

of the RGB values to a more uniform colour space (eg. L*u*v*).

3. ~F (~x) includes texture primitives, such as local filter responses,

along with the brightness and/or colour at pixel~x.
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Connected Components (Not Robust)

A simple approach is to delete all edges between dissimilar pixels (i.e.,

with weightsw(~xi, ~xj) > τ ), and then seek connected components

(CCs) in the remaining graph.

An efficient way to do CC clustering, with a variableτ , is to first build

a minimal spanning tree (MST) of the graph.Kruskal’s Algorithm is

a greedy approach that is guaranteed to give an optimal MST:

• Begin with the completely disconnected graph.

• Add edges one at a time in increasing order of their weights, so

long as adding an edge does not introduce cycles in the sub-graph.

The CCs of the decimated graph (with edges havingw(~xi, ~xj) > τ

removed) are then efficiently computed by deleting these same edges

from the MST. The trees in the resulting forest provide the desired CCs.

Note that a single edge withw(~xi, ~xj) ≤ τ would be sufficient to cause

two desired regions to be merged. Therefore CCs are not robust to stray

links (aka “leaks”) between regions. The consequence is that there is

often no suitable value ofτ that gives a useful segmentation.

A modified version of Kruskal’s algorithm is considered next.

2503: Segmentation Page: 20



Local Variation Method

Felzenszwalb and Huttenlocher [8] introduce a simple but effective

modification of Kruskal’s algorithm. As in Kruskal’s algorithm,

• it begins with the completely disconnected graph,

• edges are added one at a time in increasing order of their weights,

• it maintains a forest of MSTs for its current components.

During processing, each MSTCi is associated with a threshold

T (Ci) = w(Ci) +
k

|Ci|
, (11)

wherew(Ci) is the maximum weight in the spanning treeCi (i.e. the

local variation of Ci). Also k > 0 is a constant, and|Ci| is the number

of pixels inCi.

Suppose the edge(~xk, ~xl) is to be processed next, and its two endpoints

are in two separate MSTsCi andCj. Then these MSTs are merged by

adding the edge(~xk, ~xl) only if

w(~xk, ~xl) ≤ min(T (Ci), T (Cj)) . (12)

As the size ofCi increases, (11) and (12) dictate an increasingly tight

upper boundT (Ci) (compared to the largest weightw(Ci) in Ci) for the

acceptable affinity of an edge mergingCi with another region.
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Examples of Local Variation Segmentation

Sorting the edges according to weight causes the algorithm to grow

relatively homogeneous regions first.

Parameterk in (11) roughly controls the size of the regions in the seg-

mentation. Largerk yields a looser constraint (12), and more merging.

k = 50 k = 150 k = 250

Merging is sensitive to the local variation within regions. Due to the

increasingly tight bound (11), a large homogeneous regionCi is only

merged using edges with weights at most fractionally larger thanw(Ci),

the largest affinity in the MSTCi. The bound is looser for small re-

gions, encouraging their growth, thereby avoiding many tiny regions.

The approach has a tendency to produce narrow regions along ‘true’

segment boundaries (see examples above).

The approach is very efficient computationally, requiringO(e log(e))

operations wheree = |E| is the number of edges.

The weak link: But two very different regions can be merged if there

is even one edge with a small weight that joins them.
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Graph Cuts

Graph partitioning formulations are intended to be more robust to small

leaks, since the objective criteria naturally take into account the entire

boundary of a hypothetical segment.

Suppose we want to partition (i.e., cut) the graph into two parts,F and

G = V − F . Further, we only want to cut edges with small affinities

(ie keep similar nodes together in the same partition). Thus, one might

measure the cost of the cut using

L(F, G) =
∑

~xi∈F, ~xj∈G

a(~xi, ~xj) , (13)

wherea(·, ·) is the affinity function described above.

Problem: Optimal cuts often result inF (or G) containing one node.

Solution: Formulate more suitable objective functions or graph con-

structions to place constraints onF andG.
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Normalized Cut

The normalized cut approach of Shi and Malik [12] avoided trivialpar-

titions of the affinity weighted graph with the use of thenormalized cut

criterion. They proposed that the optimal partition of the graph intoF

andG = V − F should minimize

N(F, G) ≡ L(F, G)

(

1

L(F, V )
+

1

L(G, V )

)

, (14)

whereL is the linkage defined in (13); i.e.,L(A, B) is the sum of the

affinities for all edges having one end inA and the other inB.

Properties:

• The cut cost decreases when edges connecting nodes inF andG

have small affinities (i.e., for smallL(F, G)).

• L(F, V ) is sum of affinities on edges withinF , and those connect-

ing F to the rest of the graph. And similarly forL(G, V ).

• Other things being equal, the cut cost decreases when the affinities

on edges withinF andG are larger (i.e., forhomogeneous regions).

Problem: Unfortunately, the resulting graph partitioning problem,

F = arg min
F⊂V

N(F, V − F ), (15)

is computationally intractable [12]. Therefore we must seek algorithms

that provide approximate solutions of (15).
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Normalized Cut (cont)

Shi and Malik [12] prove that (15) is equivalent to the discrete opti-

mization problem, for labelling~y = (y1, ..., yN)T with N = |X| ,

arg min
~y

~y T (D − A)~y

~y TD~y
, subject toyi ∈ {1,−b} and ~d T~y = 0 . (16)

Here,

• A is theN×N symmetric matrix of affinities,a(~xi, ~xj), arranged

(say) according to the raster ordering of the pixels;

• ~d = A~1, where~1 is theN -vector comprisingN ones;

• D is the diagonal matrix withDi,i = di ;

• b > 0.

Given a solution~y of (16), the corresponding solution for partitionF

of (15) is then obtained by settingF = {~xi | yi > 0} . And, vice versa,

givenF we setyi = 1 for each~xi ∈ F , and set the other elements of~y

to−b, whereb > 0 is chosen such that~d T~y = 0.

Shi and Malik [12] proposed to relax the discrete problem. They first

find a real-valued solution to (16), for which they ignore the binary

constraint thatyi ∈ {1,−b}. Then they threshold the result to produce

a discrete (approximate) solution.

2503: Segmentation Page: 25



Rayleigh Quotient

Equation (16) is a discrete version of a standard eigenvector formulation, namely the Rayleigh quotient.

By way of background, the matrixD − A is known as the Laplacian matrix. Among its generalized

eigenvectors,~y, satisfying

(D − A) ~y = µ D ~y , (17)

the eigenvector corresponding to the smallest eigenvectoris known to be the solution to the following

problem:

arg min
~y

~y T (D − A)~y

~y T D~y
. (18)

It is well-known that becauseD − A is symmetric, real, positive semidefinite, that (1)D − A has

orthogonal eigenvectors, and (2) that the associated eigenvalues must be greater than or equal to zero.

More specifically the vector of all ones~1 is known to be an eigenvector ofD − A, with eigenvalue0.

Now consider the relaxation of (16), in which we ignore the constraint thatyi ∈ {1,−b}, and therefore

treat~y as real-valued. Further consider the transformation~y = D−1/2~u, for which the relaxed problem

becomes

arg min
~u

~u T (I − B)~u

~u T~u
, subject to~d T/2~u = 0 , (19)

for symmetric matrixB = D−1/2AD−1/2, and real-valued~u. This is a standard eigenvalue problem in

linear algebra. In particular, it can be shown that

• ~u = ~d 1/2 is an eigenvector ofB with eigenvalue1, so it must also be an eigenvector ofI − B

with eigenvalue0;

• sinceD − A is symmetric positive semidefinite, so isI − B, and therefore all the eigenvalues

associated withI − B are greater than or equal to zero, and the corresponding eigenvectors are

orthogonal;

• all the eigenvalues ofI − B are in the interval[0, 2].

Hence, from (19) it follows that the linear constraint on~u simply says that~u must be orthogonal to the

eigenvector ofI −B having the smallest eigenvalue. Accordingly, the vector minimizing the Rayleigh

Quotient and orthogonal to~d 1/2 is simply the eigenvector ofI−B with thesecond smallest eigenvalue.
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Spectral Approximation for Normalized Cut

The relaxed version of (16), ignoring the binary constraintyi ∈ {1,−b},

and taking~y to be real-valued, is a standard problem in linear algebra

known as the Rayleigh Quotient.

• The solution~y is the generalized eigenvector of the Laplacian ma-

trix, D − A, with the second smallest eigenvalueµ:

(D − A) ~y = µ D ~y . (20)

To obtain a discrete (approximate) solution to (16), Shi and Malik

threshold~y. They consider several thresholdsτ , and choose the one

with the lowest value of the Ncut objective function (14). Regions,F

andG = V −F , are recursively partitioned using the same method,

until a user-specified number of segments are found. (see pp.5-6.)

image eig 1

eig 2 eig 3

image eig 1

eig 2 eig 3
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Remarks on Ncuts

The step of thresholding the second largest eigenvector to provide a

partitioning proposal is a key limitation. In practice, the approximation

only appears to be consistently reliable when there is just one clear

way to partition the data. Yu and Shi [13] attempt to alleviate this

problem by extractingK segments from the subspace spanned by the

K eigenvectors ofI − B with the smallest eigenvalues.

Ncuts can be very slow for large images since the matrix becomes pro-

hibitively large. Efficient approximations to the eigenvector problem

have also been proposed.

A common use of Ncuts is for the computation of significantly over-

segmented images (called superpixels), to propose atomic (indivisible)

regions as a basis for subsequent processing.

For further information, see the reading list in the CVPR 2004, graph-

based segmentation tutorial [11].
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Source-Sink Minimum Cut

An alternative graph-based approach makes use of efficient solutions

of the max-flow/min-cut problem between source and sink nodes in

directed graphs.

From Boykov and Kolmogorov [2].

S-T Min-Cut Problem. An S-T graph is a weighted directed graph

with two identified nodes, the sources and the sinkt. We seek a mini-

mum cut separatings andt. That is, we seek a partioning of the graph

into F andG = V − F , s ∈ F , andt ∈ G, that minimizes the linkage

L(F, G) =
∑

~xi∈F, ~xj∈G

a(~xi, ~xj) . (21)

Efficient algorithms exist to solve the S-T min-cut problem (see [2]).

The S-T min-cut problem is computationally simpler than the general

graph partitioning problem (to find a non-empty partitionF andG

that minimizesL(F, G), i.e., without constraints likes ∈ F andt ∈ G).
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Source-Sink Minimum Cut (Cont.)

To take advantage of efficient solutions to the S-T min-cut problem, we

first need to construct an S-T graph.

Given two disjoint sets of pixelsS andT , we form a weighted directed

graph as follows:

• For each edge(~xi, ~xj) in the previous undirected graphs, we in-

clude two directed edges〈~xi, ~xj〉 and〈~xj, ~xi〉. Both are weighted

by the affinitya(~xi, ~xj).

• Two additional nodess andt are created, namely the source and

sink nodes, respectively.

• Infinitely weighted directed links〈s, ~xi〉 and 〈~xj, t〉 are included

for each~xi ∈ S and~xj ∈ T . This ensures that nodes inS andT

can never be cut froms andt.

The resulting S-T min-cut then provides theglobally, minimum-cost

cut between the sets of pixelsS andT .
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Seed Regions for S-T Min Cut

SetsS andT (nodes connected to source and sink) should satisfy:

1. EachS andT generated must be sufficiently large (otherwise the

minimum cut is eitherS andV − S, or T andV − T ),

2. EachS andT should be contained within different ‘true’ segments

(due to the infinite weights, neitherS or T will be partitioned),

3. Enough pairsS andT should be generated to identify most of the

salient segments in the image.

Interactive Min-Cut:

Spectral Min-Cut: One suitable generation process is discussed in

Estrada et al. [7]. It is based on spectral properties of a matrix repre-

senting the affinities. Sample results are given by theSpectral Min-

Cut technique (SMC on pp. 5,6). The process is much more compu-

tationally intensive than the previous ones. Several hundred min-cut

problems are typically solved for differentS, T .
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Berkeley Segmentation Database

The Berkeley Segmentation Dataset [9, 10] provides image segmenta-

tions done by humans. As stated on the dataset’s webpage:

The goal of this work is to provide an empirical and scientific

basis for research on image segmentation and boundary detec-

tion.

The public portion of this dataset consists of the segmentations of 300

images by roughly 5 humans each, done separately for greylevel and

colour versions of the images. Three examples from one image are

shown below:

Note these segmentations appear to be consistent, except different sub-

jects have decided to resolve particular regions into more or less detail.

This variability should be taken into account in a quantitative compari-

son of two segmentations.
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Benchmarking Segmentation

Segmentation algorithms have been benchmarked on synthetic frac-

tal images. The precision-recall curves for the detection of segment

boundary points were computed (Estrada and Jepson, 2004).

test
image

ground 
truth

SMC

Ncut

LV

ED
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Precision-Recall on Fractal Images
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Precision-Recall on Berkeley Dataset
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Precision-Recall on Berkeley Dataset

Here theF -score is the maximum of the harmonic mean of precision

and recall

F = max

[

2
1

precision + 1
recall

]

= max

[

2
precision · recall

precision + recall

]

.

More recent segmentation methods make use of trained image bound-

ary detectors which incorporate both colour and texture information.

See Arbeĺaez et al. [1]. (Note the Precision-Recall axes above have

been swapped to the standard arrangement.)
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Pascal VOC Challenge

Training examples for the 2009 segmentation/labelling challenge, each

with (1) training image; (2) object segmentation (colors specify first,

second, third object etc.); and (3) class segmentation (colors specify

class: 1=aeroplane, 2=bicycle, 3=bird, 4=boat, 5=bottle, 6=bus, ...).
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